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Abstract

This paper presents a deep architecture for

learning a similarity metric on variable-

length character sequences. The model

combines a stack of character-level bidi-

rectional LSTM’s with a Siamese archi-

tecture. It learns to project variable-

length strings into a fixed-dimensional em-

bedding space by using only informa-

tion about the similarity between pairs of

strings. This model is applied to the task

of job title normalization based on a manu-

ally annotated taxonomy. A small data set

is incrementally expanded and augmented

with new sources of variance. The model

learns a representation that is selective to

differences in the input that reflect seman-

tic differences (e.g., “Java developer” vs.

“HR manager”) but also invariant to non-

semantic string differences (e.g., “Java de-

veloper” vs. “Java programmer”).

1 Introduction

Text representation plays an important role in nat-

ural language processing (NLP). Tasks in this field

rely on representations that can express the seman-

tic similarity and dissimilarity between textual el-

ements, be they viewed as sequences of words or

characters. Such representations and their asso-

ciated similarity metrics have many applications.

For example, word similarity models based on

dense embeddings (Mikolov et al., 2013) have re-

cently been applied in diverse settings, such as

sentiment analysis (dos Santos and Gatti, 2014)

and recommender systems (Barkan and Koenig-

stein, 2016). Semantic textual similarity measures

have been applied to tasks such as automatic sum-

marization (Ponzanelli et al., 2015), debate anal-

ysis (Boltuzic and Šnajder, 2015) and paraphrase

detection (Socher et al., 2011).

Measuring the semantic similarity between

texts is also fundamental problem in Information

Extraction (IE) (Martin and Jurafsky, 2000). An

important step in many applications is normaliza-

tion, which puts pieces of information in a stan-

dard format, so that they can be compared to other

pieces of information. Normalization relies cru-

cially on semantic similarity. An example of nor-

malization is formatting dates and times in a stan-

dard way, so that “12pm”, “noon” and “12.00h” all

map to the same representation. Normalization is

also important for string values. Person names, for

example, may be written in different orderings or

character encodings depending on their country of

origin. A sophisticated search system may need to

understand that the strings “李小龙”, “Lee, Jun-

fan” and “Bruce Lee” all refer to the same person

and so need to be represented in a way that in-

dicates their semantic similarity. Normalization

is essential for retrieving actionable information

from free, unstructured text.

In this paper, we present a system for job title

normalization, a common task in information ex-

traction for recruitment and social network anal-

ysis (Javed et al., 2014; Malherbe et al., 2014).

The task is to receive an input string and map it to

one of a finite set of job codes, which are prede-

fined externally. For example, the string “software

architectural technician Java/J2EE” might need to

be mapped to “Java developer”. This task can be

approached as a highly multi-class classification

problem, but in this study, the approach we take

focuses on learning a representation of the strings

such that synonymous job titles are close together.

This approach has the advantage that it is flexi-

ble, i.e., the representation can function as the in-

put space to a subsequent classifier, but can also

be used to find closely related job titles or explore

job title clusters. In addition, the architecture of

the learning model allows us to learn useful repre-

sentations with limited supervision.
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2 Related Work

The use of (deep) neural networks for NLP has

recently received much attention, starting from

the seminal papers employing convolutional net-

works on traditional NLP tasks (Collobert et al.,

2011) and the availability of high quality seman-

tic word representations (Mikolov et al., 2013).

In the last few years, neural network models have

been applied to tasks ranging from machine trans-

lation (Zou et al., 2013; Cho et al., 2014) to

question answering (Weston et al., 2015). Cen-

tral to these models, which are usually trained on

large amounts of labeled data, is feature repre-

sentation. Word embedding techniques such as

word2vec (Mikolov et al., 2013) and Glove (Pen-

nington et al., 2014) have seen much use in such

models, but some go beyond the word level and

represent text as a sequence of characters (Kim et

al., 2015; Ling et al., 2015). In this paper we take

the latter approach for the flexibility it affords us

in dealing with out-of-vocabulary words.

Representation learning through neural net-

works has received interest since autoencoders

(Hinton and Salakhutdinov, 2006) have been

shown to produce features that satisfy the two

desiderata of representations; that they are invari-

ant to differences in the input that do not matter

for that task and selective to differences that do

(Anselmi et al., 2015).

The Siamese network (Bromley et al., 1993)

is an architecture for non-linear metric learning

with similarity information. The Siamese network

naturally learns representations that embody the

invariance and selectivity desiderata through ex-

plicit information about similarity between pairs

of objects. In contrast, an autoencoder learns in-

variance through added noise and dimensionality

reduction in the bottleneck layer and selectivity

solely through the condition that the input should

be reproduced by the decoding part of the network.

In contrast, a Siamese network learns an invariant

and selective representation directly through the

use of similarity and dissimilarity information.

Originally applied to signature verification

(Bromley et al., 1993), the Siamese architecture

has since been widely used in vision applica-

tions. Siamese convolutional networks were used

to learn complex similarity metrics for face veri-

fication (Chopra et al., 2005) and dimensionality

reduction on image features (Hadsell et al., 2006).

A variant of the Siamese network, the triplet net-

work (Hoffer and Ailon, 2015), was used to learn

an image similarity measure based on ranking data

(Wang et al., 2014).

In other areas, Siamese networks have been ap-

plied to such diverse tasks as unsupervised acous-

tic modelling (Synnaeve et al., 2014; Thiolliere

et al., 2015; Kamper et al., 2016; Zeghidour et

al., 2015), learning food preferences (Yang et al.,

2015) and scene detection (Baraldi et al., 2015). In

NLP applications, Siamese networks with convo-

lutional layers have been applied to matching sen-

tences (Hu et al., 2014). More recently, (Mueller

and Thyagarajan, 2016) applied Siamese recurrent

networks to learning semantic entailment.

The task of job title normalization is often

framed as a classification task (Javed et al., 2014;

Malherbe et al., 2014). Given the large number of

classes (often in the thousands), multi-stage clas-

sifiers have shown good results, especially if in-

formation outside the string can be used (Javed et

al., 2015). There are several disadvantage to this

approach. The first is the expense of data acquisi-

tion for training. With many thousands of groups

of job titles, often not too dissimilar from one an-

other, manually classifying large amounts of job

title data becomes prohibitively expensive. A sec-

ond disadvantage of this approach is its lack of

corrigibility. Once a classification error has been

discovered or a new example has been added to

a class, the only option to improve the system is

to retrain the entire classifier with the new sam-

ple added to the correct class in the training set.

The last disadvantage is that using a traditional

classifier does not allow for transfer learning, i.e.,

reusing the learned model’s representations for a

different task.

A different approach is the use of string similar-

ity measures to classify input strings by proximity

to an element of a class (Spitters et al., 2010). The

advantage of this approach is that there is no need

to train the system, so that improvements can be

made by adding job title strings to the data. The

disadvantages are that data acquisition still needs

to be performed by manually classifying strings

and that the bulk of the problem is now shifted to

constructing a good similarity metric.

By modeling similarity directly based on pairs

of inputs, Siamese networks lend themselves well

to the semantic invariance phenomena present in

job title normalization: typos (e.g. “Java de-

velopeur”), near-synonymy (e.g., “developer” and
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“programmer”) and extra words (e.g., “experi-

enced Java developer”). This is the approach we

take in this study.

3 Siamese Recurrent Neural Network

Recurrent Neural Networks (RNN) are neural net-

works adapted for sequence data (x1, . . . , xT ).
At each time step t ∈ {1, . . . , T}, the hidden-

state vector ht is updated by the equation ht =
σ(Wxt + Uht−1), in which xt is the input at

time t, W is the weight matrix from inputs to the

hidden-state vector and U is the weight matrix on

the hidden-state vector from the previous time step

ht−1. In this equation and below the logistic func-

tion is denoted by σ(x) = (1 + e−x)−1.

The Long Short-Term Memory (Hochreiter and

Schmidhuber, 1997) variant of RNNs in particular

has had success in tasks related to natural language

processing, such as text classification (Graves,

2012) and language translation (Sutskever et al.,

2014). Standard RNNs suffer from the vanish-

ing gradient problem in which the backpropagated

gradients become vanishingly small over long se-

quences (Pascanu et al., 2013). The LSTM model

was proposed as a solution to this problem. Like

the standard RNN, the LSTM sequentially updates

a hidden-state representation, but it introduces a

memory state ct and three gates that control the

flow of information through the time steps. An

output gate ot determines how much of ct should

be exposed to the next node. An input gate it con-

trols how much the input xt matters at this time

step. A forget gate ft determines whether the pre-

vious time step’s memory should be forgotten. An

LSTM is parametrized by weight matrices from

the input and the previous state for each of the

gates, in addition to the memory cell. We use the

standard formulation of LSTMs with the logistic

function (σ) on the gates and the hyperbolic tan-

gent (tanh) on the activations. In the equations

(1) below, ◦ denotes the Hadamard (elementwise)

product.

it = σ(Wixt + Uiht−1) (1)

ft = σ(Wfxt + Ufht−1) (2)

ot = σ(Woxt + Uoht−1) (3)

c̃t = tanh(Wcxt + Ucht−1) (4)

ct = it ◦ c̃t + ft ◦ ct−1 (5)

ht = ot ◦ tanh(ct) (6)

Bidirectional RNNs (Schuster and Paliwal,

1997) incorporate both future and past context by

running the reverse of the input through a sep-

arate RNN. The output of the combined model

at each time step is simply the concatenation of

the outputs from the forward and backward net-

works. Bidirectional LSTM models in particular

have recently shown good results on standard NLP

tasks like Named Entity Recognition (Huang et al.,

2015; Wang et al., 2015) and so we adopt this tech-

nique for this study.

Siamese networks (Chopra et al., 2005) are

dual-branch networks with tied weights, i.e., they

consist of the same network copied and merged

with an energy function. Figure 1 shows an

overview of the network architecture in this study.

The training set for a Siamese network consists of

triplets (x1, x2, y), where x1 and x2 are charac-

ter sequences and y ∈ {0, 1} indicates whether x1

and x2 are similar (y = 1) or dissimilar (y = 0).

The aim of training is to minimize the distance

in an embedding space between similar pairs and

maximize the distance between dissimilar pairs.

3.1 Contrastive loss function

The proposed network contains four layers of

Bidirectional LSTM nodes. The activations at

each timestep of the final BLSTM layer are aver-

aged to produce a fixed-dimensional output. This

output is projected through a single densely con-

nected feedforward layer.

Let fW(x1) and fW(x2) be the projections of

x1 and x2 in the embedding space computed by

the network function fW. We define the energy of

the model EW to be the cosine similarity between

the embeddings of x1 and x2:

EW(x1, x2) =
〈fW(x1), fW(x2)〉

‖fW(x1)‖‖fW(x2)‖
(7)

For brevity of notation, we will denote

EW(x1, x2) by EW. The total loss function over a

data set X =
{

〈x
(i)
1 , x

(i)
2 , y(i)〉

}

is given by:

LW(X) =

N
∑

i=1

L
(i)
W(x

(i)
1 , x

(i)
2 , y(i)) (8)

The instance loss function L
(i)
W is a contrastive loss

function, composed of terms for the similar (y =
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Figure 1: Overview of the Siamese Recurrent Network architecture used in this paper. The weights of

all the layers are shared between the right and the left branch of the network.

1) case (L+), and the dissimilar (y = 0) case (L
−

):

L
(i)
W = y(i)L+(x

(i)
1 , x

(i)
2 )+ (9)

(1 − y(i))L
−
(x

(i)
1 , x

(i)
2 ) (10)

(11)

The loss functions for the similar and dissimilar

cases are given by:

L+(x1, x2) =
1

4
(1 − EW)2 (12)

L
−
(x1, x2) =

{

E2
W if EW < m

0 otherwise
(13)

Figure 2 gives a geometric perspective on the

loss function, showing the positive and negative

components separately. Note that the positive loss

is scaled down to compensate for the sampling ra-

tios of positive and negative pairs (see below).

The network used in this study contains four

BLSTM layers with 64-dimensional hidden vec-

tors ht and memory ct. There are connections at

each time step between the layers. The outputs

of the last layer are averaged over time and this

128-dimensional vector is used as input to a dense

feedforward layer. The input strings are padded to

Figure 2: Positive and negative components of the

loss function.

produce a sequence of 100 characters, with the in-

put string randomly placed in this sequence. The

parameters of the model are optimized using the

Adam method (Kingma and Ba, 2014) and each

model is trained until convergence. We use the

dropout technique (Srivastava et al., 2014) on the

recurrent units (with probability 0.2) and between

layers (with probability 0.4) to prevent overfitting.

151



4 Experiments

We conduct a set of experiments to test the model’s

capabilities. We start from a small data set based

on a hand made taxonomy of job titles. In each

subsequent experiment the data set is augmented

by adding new sources of variance. We test the

model’s behavior in a set of unit tests, reflecting

desired capabilities of the model, taking our cue

from (Weston et al., 2015). This section discusses

the data augmentation strategies, the composition

of the unit tests, and the results of the experiments.

4.1 Baseline

Below we compare the performance of our model

against a baseline n-gram matcher (Daelemans et

al., 2004). Given an input string, this matcher

looks up the closest neighbor from the base tax-

onomy by maximizing a similarity scoring func-

tion. The matcher subsequently labels the input

string with that neighbor’s group label. The sim-

ilarity scoring function is defined as follows. Let

Q = 〈q1, . . . , qM 〉 be the query as a sequence of

characters and C = 〈c1, . . . , cN 〉 be the candidate

match from the taxonomy. The similarity function

is defined as:

sim(Q, C) = M − match(Q,C)

match(Q, C) = |TQ ⊖ TC | − |TQ ∩ TC |

where

A ⊖ B = (A \ B) ∪ (B \ A)

TQ =

M−2
⋃

i=1

{〈qi, qi+1, qi+2〉}

TC =

N−2
⋃

i=1

{〈ci, ci+1, ci+2〉}

This (non-calibrated) similarity function has the

properties that it is easy to compute, doesn’t re-

quire any learning and is particularly insensitive

to appending extra words in the input string, one

of the desiderata listed below.

In the experiments listed below, the test sets

consist of pairs of strings, the first of which is

the input string and the second a target group la-

bel from the base taxonomy. The network model

projects the input string into the embedding space

and searches for its nearest neighbor under co-

sine distance from the base taxonomy. The test

records a hit if and only if the neighbor’s group

label matches the target.

4.2 Data and Data Augmentation

The starting point for our data is a hand made pro-

prietary job title taxonomy. This taxonomy parti-

tions a set of 19,927 job titles into 4,431 groups.

Table 1 gives some examples of the groups in the

taxonomy. The job titles were manually and semi-

automatically collected from résumés and vacancy

postings. Each was manually assigned a group,

such that the job titles in a group are close to-

gether in meaning. In some cases this closeness

is an expression of a (near-)synonymy relation be-

tween the job titles, as in “developer” and “devel-

oper/programmer” in the “Software Engineer” cat-

egory. In other cases a job title in a group is a spe-

cialization of another, for example “general opera-

tor” and “buzz saw operator” in the “Machine Op-

erator” category. In yet other cases two job titles

differ only in their expression of seniority, as in

“developer” and “senior developer” in the “Soft-

ware Engineer” category. In all cases, the relation

between the job titles is one of semantic similar-

ity and not necessarily surface form similarity. So

while, “Java developer” and “J2EE programmer”

are in the same group, “Java developer” and “real

estate developer” should not be.

Note that some groups are close together in

meaning, like the “Production Employee” and

“Machine Operator” groups. Some groups could

conceivably be split into two groups, depending

on the level of granularity that is desired. We

make no claim to completeness or consistency of

these groupings, but instead regard the wide va-

riety of different semantic relations between and

within groups as an asset that should be exploited

by our model.

The groups are not equal in size; the sizes fol-

low a broken power-law distribution. The largest

group contains 130 job titles, the groups at the

other end of the distribution have only one. This

affects the amount of information we can give to

the system with regards to the semantic similar-

ity between job titles in a group. The long tail of

the distribution may impact the model’s ability to

accurately learn to represent the smallest groups.

Figure 3 shows the distribution of the group sizes

of the original taxonomy.

We proceed from the base taxonomy of job titles

in four stages. At each stage we introduce (1) an
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Customer Service Agent Production Employee Software Engineer Machine Operator Software Tester

support specialist assembler developer operator punch press tester sip

service desk agent manufacturing assistant application programmer machinist test consultant

support staff production engineer software architect buzz saw operator stress tester

customer care agent III factory employee cloud engineer operator turret punch press kit tester

customer service agent casting machine operator lead software engineer blueprint machine operator agile java tester

customer interaction helper production senior developer general operator test engineer

customer care officer production laborer developer/programmer operator nibbler QTP tester

Table 1: Example job title groups from the taxonomy. The total taxonomy consists of 19,927 job titles

in 4,431 groups.

Figure 3: The distributions of group sizes in the

original taxonomy (blue) and the taxonomy aug-

mented with synonym substitutions (green) follow

broken power-law distributions. Note that both

axes are on a logarithmic scale. The figure shows

the long tail of the distribution, in which groups

contain one or only a few job titles.

augmentation of the data which focuses on a par-

ticular property and (2) a test that probes the model

for behavior related to that property. Each stage

builds on the next, so the augmentations from the

previous stage are always included. Initially, the

data set consists of pairs of strings sampled from

the taxonomy in a 4:1 ratio of between-class (neg-

ative) pairs to within-class (positive) pairs. This

ratio was empirically determined but other studies

have found a similar optimal ratio of negative to

positive pairs in Siamese networks (Synnaeve and

Dupoux, 2016). In the subsequent augmentations,

we keep this ratio constant.

1. Typo and spelling invariance. Users of the

system may supply job titles that differ in spelling

from what is present in the taxonomy (e.g., “la-

borer” vs “labourer”) or they may make a typo and

insert, delete or substitute a character. To induce

invariance to these we augment the base taxonomy

by extending it with positive sample pairs consist-

ing of job title strings and the same string but with

20% of characters randomly substituted and 5%

randomly deleted. Of the resulting training set,

10% consists of these typo pairs. The correspond-

ing test set (Typos) consists of all the 19,928 job

title strings in the taxonomy with 5% of their char-

acters randomly substituted or deleted. This corre-

sponds to an approximate upper bound on the pro-

portion of spelling errors (Salthouse, 1986).

2. Synonyms. Furthermore, the model must

be invariant to synonym substitution. To continue

on the example given above, the similarity be-

tween “Java developer” and “Java programmer”

show that in the context of computer science “de-

veloper” and “programmer” are synonyms. This

entails that, given the same context, “developer”

can be substituted for “programmer” in any string

in which it occurs without altering the meaning of

that string. So “C++ developer” can be changed

into “C++ programmer” and still refer to the same

job. Together with the selectivity constraint, the

invariance to synonym substitution constitutes a

form of compositionality on the component parts

of job titles. A model with this compositionality

property will be able to generalize over the mean-

ings of parts of job titles to form useful represen-

tations of unobserved inputs. We augment the data

set by substituting words in job titles by synonyms

from two sources. The first source is a manually

constructed job title synonym set, consisting of

around 1100 job titles, each with between one and

ten synonyms for a total of 7000 synonyms. The

second source of synonyms is by induction. As

in the example above, we look through the taxon-

omy for groups in which two job titles share one

or two words, e.g., “C++”. The complements of

the matching strings form a synonym candidate,

e.g., “developer” and “programmer”. If the can-
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didate meets certain requirements (neither part oc-

curs in isolation, the parts do not contain special

characters like ‘&’, the parts consist of at most

two words), then the candidate is accepted as a

synonym and is substituted throughout the group.

The effect of this augmentation on the group sizes

is shown in figure 3. The corresponding test set

(Composition) consists of a held out set of 7909

pairs constructed in the same way.

3. Extra words. To be useful in real-world

applications, the model must also be invariant to

the presence of superfluous words. Due to pars-

ing errors or user mistakes the input to the nor-

malization system may contain strings like “look-

ing for C++ developers (urgent!)”, or references

to technologies, certifications or locations that are

not present in the taxonomy. Table 2 shows some

examples of real input. We augment the data set

by extracting examples of superfluous words from

real world data. We construct a set by selecting

those input strings for which there is a job title

in the base taxonomy which is the complete and

strict substring of the input and which the base-

line n-gram matcher selects as the normalization.

As an example, in table 2, the input string “public

relations consultant business business b2c” con-

tains the taxonomy job title “public relations con-

sultant”. Part of this set (N = 1949) is held out

from training and forms the corresponding test set

(Extra Words).

Input string

supervisor dedicated services share plans
part II architectural assistant or architect at
geography teacher 0.4 contract now
customer relationship management developer super user â
forgot password
public relations consultant business business b2c
teaching assistant degree holders only contract

Table 2: Example input strings to the system.

4. Feedback. Lastly, and importantly for indus-

trial applications, we would like our model to be

corrigible, i.e., when the model displays undesired

behavior or our knowledge about the domain in-

creases, we want the model to facilitate manual in-

tervention. As an example, if the trained model as-

signs a high similarity score to the string “Java de-

veloper” and “Coffee expert (Java, Yemen)” based

on the corresponding substrings, we would like to

be able to signal to the model that these particular

instances do not belong together. To test this be-

havior, we manually scored a set of 11929 predic-

tions. This set was subsequently used for training.

The corresponding test set (Annotations) consists

of a different set of 1000 manually annotated held-

out input strings.

4.3 Results

Table 3 shows the results of the experiments. It

compares the baseline n-gram system and pro-

posed neural network models on the four tests out-

lined above. Each of the neural network models

(1)-(4) was trained on augmentations of the data

set that the previous model was trained on.

The first thing to note is that both the n-gram

matching system and the proposed models have

near-complete invariance to simple typos. This is

of course expected behavior, but this test functions

as a good sanity check on the surface form map-

ping to the representations that the models learn.

In the performance of all tests except for the An-

notations test, we see a strong effect of the asso-

ciated augmentation. Model (1) shows 0.04 im-

provement over model (0) on the typo test. This

indicates that the proposed architecture is suitable

for learning invariance to typos, but that the addi-

tion of typos and spelling variants to the training

input only produces marginal improvements over

the already high accuracy on this test.

Model (2) shows 0.29 improvement over model

(1) on the Composition test. This indicates that

model (2) has successfully learned to combine the

meanings of individual words in the job titles into

new meanings. This is an important property for

a system that aims to learn semantic similarity be-

tween text data. Compositionality is arguably the

most important property of human language and it

is a defining characteristic of the way we construct

compound terms such as job titles. Note also that

the model learned this behavior based largely on

observations of combinations of words, while hav-

ing little evidence on the individual meanings.

Model (3) shows 0.45 improvement over model

(2) on the Extra Words test, jumping from 0.29 ac-

curacy to 0.76. This indicates firstly that the pro-

posed model can successfully learn to ignore large

portions of the input sequence and secondly that

the evidence of extra words around the job title is

crucial for the system to do so. Being able to ig-

nore subsequences of an input sequence is an im-

portant ability for information extraction systems.

The improvements on the Annotations test is

also greatest when the extra words are added to the
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Typos Composition Extra Words Annotations

(N = 19928) (N = 7909) (N = 1949) (N = 1000)

n-gram 0.99 0.61 1.00* 0.83

(0) RNN base taxonomy 0.95 0.55 0.40 0.69

(1) + typos 0.99 0.54 0.36 0.77

(2) + synonyms 1.00 0.83 0.29 0.76

(3) + extra words 1.00 0.84 0.76 0.87

(4) + feedback 1.00 0.79 0.82 0.84

Table 3: Accuracy of the baseline and models on each of the four test cases. The best performing neural

network in each column is indicated in bold. Note that the performance of the n-gram match system (*)

on the Extra Words test is 1.00 by construction.

training set. Model (4) actually shows a decrease

in performance with respect to model (3) on this

test. The cause for this is likely the fact that the

Extra Words test and the held out Annotations tests

show a lot of similarity in the structure of their in-

puts. Real production inputs often consist of ad-

ditional characters, words and phrases before or

after the actual job title. It is unclear why model

(4) shows an improvement on the Extra Words

test while simultaneously showing a decrease in

performance on the Composition and Annotations

tests. This matter is left to future investigation.

5 Discussion

In this paper, we presented a model architec-

ture for learning text similarity based on Siamese

recurrent neural networks. With this architec-

ture, we learned a series of embedding spaces,

each based on a specific augmentation of the

data set used to train the model. The experi-

ments demonstrated that these embedding spaces

captured important invariances of the input; the

models showed themselves invariant to spelling

variation, synonym replacements and superfluous

words. The proposed architecture made no as-

sumptions on the input distribution and naturally

scales to a large number of classes.

The ability of the system to learn these in-

variances stems from the contrastive loss function

combined with the stack of recurrent layers. Using

separate loss functions for similar and dissimilar

samples helps the model maintain selectivity while

learning invariance over different sources of vari-

ability. The experiment shows that the explicit use

of prior knowledge to add these sources of invari-

ance to the system was crucial in learning. With-

out this knowledge extra words and synonyms will

negatively affect the performance of the system.

We would like to explore several directions in

future work. The possibility space around the

proposed network architecture could be explored

more fully, for example by incorporating convolu-

tional layers in addition to the recurrent layers, or

by investigating a triplet loss function instead of

the contrastive loss used in this study.

The application used here is a good use case for

the proposed system, but in future work we would

also like to explore the behavior of the Siamese

recurrent network on standard textual similarity

and semantic entailment data sets. In addition, the

baseline used in this paper is relatively weak. A

comparison to a stronger baseline would serve the

further development of the proposed models.

Currently negative samples are selected ran-

domly from the data set. Given the similarity be-

tween some groups and the large differences in

group sizes, a more advanced selection strategy is

likely to yield good results. For example, nega-

tive samples could be chosen such that they always

emphasize minimal distances between groups. In

addition, new sources of variation as well as the

sampling ratios between them can be explored.

Systems like the job title taxonomy used in the

current study often exhibit a hierarchical structure

that we did not exploit or attempt to model in the

current study. Future research could attempt to

learn a single embedding which would preserve

the separations between groups at different lev-

els in the hierarchy. This would enable sophisti-

cated transfer learning based on a rich embedding

space that can represent multiple levels of similar-

ities and contrasts simultaneously.
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