
J
H
E
P
1
2
(
2
0
1
9
)
0
0
7

Published for SISSA by Springer

Received: June 4, 2019

Revised: September 22, 2019

Accepted: October 9, 2019

Published: December 2, 2019

Learning the Alpha-bits of black holes

Patrick Hayden and Geoffrey Penington

Stanford Institute for Theoretical Physics, Stanford University,

450 Jane Stanford Way, Stanford, CA, U.S.A.

E-mail: phayden@stanford.edu, geoffp@stanford.edu

Abstract: When the bulk geometry in AdS/CFT contains a black hole, boundary sub-

regions may be sufficient to reconstruct certain bulk operators if and only if the black

hole microstate is known, an example of state dependence. Reconstructions exist for any

microstate, but no reconstruction works for all microstates. We refine this dichotomy,

demonstrating that the same boundary operator can often be used for large subspaces of

black hole microstates, corresponding to a constant fraction α of the black hole entropy.

In the Schrödinger picture, the boundary subregion encodes the α-bits (a concept from

quantum information) of a bulk region containing the black hole and bounded by extremal

surfaces. These results have important consequences for the structure of AdS/CFT and for

quantum information. Firstly, they imply that the bulk reconstruction is necessarily only

approximate and allow us to place non-perturbative lower bounds on the error when doing

so. Second, they provide a simple and tractable limit in which the entanglement wedge

is state dependent, but in a highly controlled way. Although the state dependence of op-

erators comes from ordinary quantum error correction, there are clear connections to the

Papadodimas-Raju proposal for understanding operators behind black hole horizons. In

tensor network toy models of AdS/CFT, we see how state dependence arises from the bulk

operator being ‘pushed’ through the black hole itself. Finally, we show that black holes pro-

vide the first ‘explicit’ examples of capacity-achieving α-bit codes. Unintuitively, Hawking

radiation always reveals the α-bits of a black hole as soon as possible. In an appendix, we

apply a result from the quantum information literature to prove that entanglement wedge

reconstruction can be made exact to all orders in 1/N .
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1 Introduction

Recent work [1, 2] has made clear that the semiclassical limit of the AdS/CFT duality is

perhaps best understood in the language of quantum error correcting codes.1 Specifically,

the Hilbert space of certain conformal field theories contains subspaces of states (we shall

refer to these as the bulk Hilbert spaces or code spaces), which have a dual interpretation as

a quantum field theory on a semiclassical gravitational background that is asymptotically

anti-de Sitter space. The error correcting codes are the isometries from the bulk subspaces

to the larger boundary space.

1This is just one of a series of insights that have been reached about quantum gravity through applying

the tools of quantum information [3–7].
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It is generally understood that the error correction should only become exact in the

limit of vanishing Newton’s constant GN → 0 or, equivalently, diverging gauge group rank

N → ∞. Nonetheless, out of convenience, many of the toy models and mathematical

results [2, 8, 9] that have been developed for understanding the AdS/CFT error-correction

paradigm involve finite dimensional Hilbert spaces with exact quantum error correction. In

this paper, we show that such a framework is insufficient to capture some of the important

aspects of error correction in AdS/CFT, which are only possible for finite-dimensional code

spaces if the error correction is merely approximate, rather than exact.

The magnitude ε of these uncorrectable errors is very small — in fact they are non-

perturbatively suppressed in the semiclassical limit (their Taylor expansion in GN or 1/N

has no non-zero terms). However, we show that the existence of these tiny, seemingly

insignificant approximations makes possible key features of the AdS/CFT correspondence

that provably could not otherwise exist.

Such features arise when the code space Hcode of ‘nice’ states with smooth bulk ge-

ometries that we wish to be able to error correct includes states containing black holes.

Since the Bekenstein-Hawking entropy becomes infinite in the classical limit GN → 0, the

maximum dimension of a code space consisting of a large number of black hole microstates

diverges, if the horizon area is held fixed in AdS units. As a result, there is no limit in which

the error ε→ 0, the code space contains ‘all’ the black hole microstates (or even contains a

constant fraction of the black hole entropy), and the dimension of the code space remains

bounded. This should immediately make us cautious about believing that results based on

the twin assumptions of exact error correction and finite-dimensional Hilbert spaces will

continue to be valid in this context.

Suppose we consider a black hole in AdS/CFT, together with a boundary region A that

consists of slightly over half of the entire boundary. The size of the entanglement wedge

of region A (the region of the bulk that can be reconstructed from boundary region A)

depends on whether the black hole is in a specific known microstate or if the black hole is an

unknown state (which we can model as the thermal ensemble). For the known microstate,

the black hole is contained in the entanglement wedge of A; for the thermal ensemble,

it lies outside. Because the two entanglement wedges are not the same, there exist bulk

operators that can be reconstructed in boundary region A if and, more importantly, only if

the state of the black hole is known. Such operators exist for every black hole microstate,

but there exists no single boundary operator that works for all microstates. In other words,

the boundary operator is state-dependent.

We emphasize that this notion of state dependent reconstructions should be distin-

guished from the idea that interior reconstructions are state dependent, as advocated for

most prominently by Papadodimas and Raju [10, 11] (although there appear to be close

connections between the two, see section 8.3). In the Papadodimas-Raju constructions,

even a global reconstruction that is allowed to act on the entire boundary is necessarily

state dependent. In contrast, in our case, the state dependence is only necessary when the

reconstruction is restricted to acting on a subregion of the boundary. All our results can

therefore be completely understood in the framework of quantum error correction; there is

no conflict with the linearity of quantum mechanics.

– 2 –
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Figure 1. A black hole with horizon area A0 in AdS-space. The boundary is separated into

two regions, A and Ā with shared boundary ∂A. There are two important bulk minimal surfaces

with boundary ∂A. The minimal surface homologous to Ā has area A1, while the minimal surface

homologous to A has area A2.

More specifically, the existence of state-dependent operators for all states (but the ab-

sence of state-independent operators) corresponds in the Schrödinger picture to a weakened

version of the usual notion of a quantum error correcting code, called universal subspace

quantum error correction. This was studied in detail in [12]. In terms of the language

introduced in [12], we say that region A encodes the zero-bits of the bulk region.

As the size of the boundary region A increases, less state dependence is required. A

single boundary operator can now reconstruct bulk operators for code subspaces containing

many different black hole microstates, although the reconstruction will still necessarily

depend on the code subspace chosen.2 As shown in figure 1, in general there will be two

minimal surfaces with boundary ∂A that might form the RT surface for states in this code

space. One will be homologous to Ā (and hence contain the black hole in the entanglement

wedge of A), while the other will be homologous to A. We say that they have areas A1

and A2 respectively; if region A is greater than half the boundary, then A2 > A1.

We show that there exists a single boundary reconstruction in region A of a given

bulk operator that works for every state in a subspace, so long as the bulk operator lies

within the entanglement wedge of A for every state in the subspace, including states that

are entangled with a reference system. Equivalently, the bulk operator must lie inside the

entanglement wedge of A for all states including mixed states with support only in the

subspace.

If there were no black hole, this subtle distinction of requiring even mixed states to

contain the bulk operator in their entanglement wedge would be unimportant. The Ryu-

Takayanagi surface (or more precisely the quantum extremal surface [13]), which bounds

2We shall continue to use the term “state dependence” even when a single reconstruction can simulta-

neously work for many, but not all, states, because the alternative expression “code subspace dependence”,

while more precise, is something of a mouthful.
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the entanglement wedge, is defined as the surface that minimises the sum of A/4GN (where

A is the area of the surface) and the bulk entropy Sbulk. If the bulk entropy

Sbulk = O(1),

this will always be the surface with area A1, at least in the limit GN → 0. However, if we

consider a subspace of black hole microstates of sufficiently large dimension d such that

log d+
A1

4GN
= max(Sbulk) +

A1

4GN
>

A2

4GN
, (1.1)

then the RT surface can jump to the surface with area A2 for states sufficiently entangled

with the reference system (or sufficiently mixed). For such states, the entanglement wedge

of A will no longer contain either the black hole or the bulk region between the two minimal

surfaces but outside the black hole. It is not possible to find a single boundary operator

reconstruction for operators in this region that will work for that entire subspace. However,

if the dimension d is not sufficiently large for this to happen, then the entanglement wedge

will always lie on the original surface. Hence, operators between the minimal surfaces (as

well as operators acting on the black hole itself) can be reconstructed from the boundary

region A.

In other words, any bulk operator lying between the two minimal surfaces can be

reconstructed as a single boundary operator that works for any subspace of black hole

microstates of dimension d < eαS where S = A0/4GN is the Bekenstein-Hawking entropy.

The dimensionless parameter

α =
A2 −A1

A0

is independent of GN , so remains fixed in the semiclassical limit. (In accordance with

our previous claim, it should be clear that the parameter α increases as the size of region

A increases, until eventually α = 1 and a single operator can work for all black hole

microstates.) As above, this is an example of universal subspace quantum error correction.

The difference now is that the dimension of the subspace which can be error-corrected is

allowed to grow with the dimension of the larger space of all black hole microstates. If we

again make use of terminology from [12], the region A now encodes the α-bits of the bulk

region.

Nontrivial realisations of universal subspace quantum error correction are only possible

when the error correction is approximate. In the exact setting, being able to correct all

small subspaces automatically implies being able to correct arbitrary subspaces. Even if

the error correction is approximate, the error in correcting subspaces of larger dimension

can be bounded in terms of the error for subspaces with smaller dimension. However, the

quality of the approximation degrades as the dimension of the subspaces increases. This

makes it possible to find a limit in which the errors tend to zero for small subspaces, but

stay order one for large subspaces, so long as in this limit the dimension of the full code

space tends to infinity. We will see that the classical limit GN → 0 (N → ∞) in AdS/CFT

is an example of precisely this kind of limit. The seemingly insignificant, non-perturbatively
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small errors make possible order one effects that continue to exist, and in fact become more

sharply defined, even in the semiclassical limit.

In section 2, we review the basic construction of α-bits and universal subspace error

correction. Section 3 then shows that the evaporation of black holes into Hawking radiation

provides a natural example of a capacity-achieving α-bit code. In contrast to our usual

intuition, black holes rush to reveal their α-bits in the Hawking radiation as quickly as they

possibly can; in this sense the Hawking radiation contains as much (rather than as little)

information as possible about the state of the black hole. Earlier work by Hayden and

Preskill in [14] on information retrieval from evaporating black holes can be interpreted as

the α = 0 case of this more general fact.

In section 4, we develop the main result of the paper: the appearance in AdS/CFT

of α-bit encodings for code spaces containing black holes. We develop the ideas sketched

out above in significantly greater depth and precision. Section 5 includes more specific

calculations for the simple case of a uncharged, non-rotating BTZ black hole in AdS3. They

show that the region between the minimal surfaces but outside the black hole horizon is

always approximately AdS scale, regardless of the size of the black hole — at least in this

simple case, it requires a large central charge CFT with a weakly curved gravity dual to

have locality at small scales compared to the size of this ‘α-bit’ region.

Section 6 explores how α-bit codes can arise in a basic tensor network toy model of

AdS/CFT. In this context, the intuition behind the state dependence of the boundary

operators can be made very clear; bulk operators have to be pushed through the black hole

itself in order to reach the boundary, in a way that manifestly depends on the subspace

of black hole microstates being considered. Meanwhile, section 7 provides more detailed,

technical justifications that back up our assumptions about the existence of a code space

of black hole microstates with the correct entropy.

Section 8 consists of an extended discussion on various aspects and implications of the

paper. This discussion makes use of many of the results derived in the main sections of the

paper, but can be read relatively independently. We show how α-bit codes can be used to

put lower bounds on the uncorrectable error ε. Specifically, even though it is possible to

make the error equal to zero to all orders in perturbation theory, we show that there must

sometimes exist errors

ε > e−η/GN

for any η > 0. We argue that α-bit codes provide the most controlled setting in which

we can understand a state-dependent entanglement wedge, before discussing tantalising

connections and similarities between the α-bit codes we discuss and the Papadodimas-Raju

proposal [10, 11] for the state dependence of operators behind the black hole horizon. We

then briefly discuss explicit recovery maps for the α-bit codes and, lastly, observe that black

holes provide examples of ‘explicit’ (as opposed to randomly generated) capacity-achieving

α-bit codes for noiseless quantum channels, which until now had not been known.

Finally appendix A describes a result from quantum information that has so far not

appeared in the quantum gravity literature [15]. It provides a generalisation of the Dong-

Harlow-Wall condition [9] to approximate reconstruction and is sufficient to prove that

– 5 –
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Figure 2. Alice has a quantum state |ψ〉 ∈ H
Ã
consisting of n qubits, for some large n. She adds

a few qubits in a fixed state |0〉 (embedding H
Ã

as a subspace of a slightly larger Hilbert space

HA), applies a Haar random unitary U and then sends slightly more than half of the qubits to Bob,

thowing the rest away. We say that Alice has sent the zerobits of the state |ψ〉 ∈ H
Ã
to Bob.

entanglement wedge reconstruction can be made exact to all orders in 1/N . A special

case of this result is used in section 4, but the theorem and some background are included

in full because of the relevance to the wider literature on quantum error correction and

AdS/CFT.

2 Alpha-bits

We begin with a basic review of the concept of universal subspace error correction and

α-bits. For more detail see [12]. Because the definitions involved are quite technical, we

will begin by illustrating the basic phenomenon we are trying to capture with a relatively

simple example.

Suppose we apply a Haar-random unitary U to some large number n of qubits then

throw away some fraction that is slightly less than half, as shown in figure 2. Call the

input Hilbert space HA, the qubits that are kept HB and the qubits that are discarded

HE . Now consider the fate of a typical pair of orthogonal pure states on HA in the limit

of large n. Both will get mapped to states almost maximally entangled between HB and

HE . Moreover, because HE is much smaller than HB, the reduced states on HE will be

nearly maximally mixed and therefore effectively indistinguishable. For the same reason,

the states on HB will have small rank relative to the dimension of HB, which leads to their

being nearly orthogonal.

In fact, due to strong measure concentration effects in high dimension, those properties

will hold not just for one pair of orthogonal states on HA, or two pairs, or even a countable

number of pairs. It will hold for all pairs of orthogonal states in a subspace HÃ ⊆ HA that

is almost as large as HA in qubit terms: n − o(n) qubits. More generally, the map from

HÃ to HB approximately preserves the pairwise distinguishability of states as measured

by the trace distance despite shrinking the number of qubits by a factor of two [16, 17].

Because the dimension of HB is roughly the square root of the dimension of HÃ, this seems

paradoxical. The resolution is that the map encodes the geometry of the unit sphere of

the Hilbert space HÃ into the space of density matrices on HB; the pure state geometry

is partially encoded into noise. “Sending the zero-bits of HÃ” can be roughly defined as

– 6 –
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approximately preserving the geometry of the unit sphere of pure states. We shall provide

a precise technical definition in section 2.1.

Returning to the example, while the full space HÃ has been transmitted in some sense,

it is clearly not possible to perform approximate quantum error correction and completely

reverse the effect of the channel; doing so would lead to the quantum capacity of a qubit

being greater than one, which by recursion would make it infinite. Geometry preservation

does have an operational consequence, however. If we restrict the states to any two-

dimensional subspace of HÃ, there is a decoding operation that will perform quantum

error correction. The only catch is that the decoding operation will in general depend on

the two-dimensional subspace that we wish to decode. Note, however, that the encoding

HÃ →֒ HA and the channel do not. If we think of Alice sending Bob a state, then Bob has

to know which two-dimensional subspace the state is in, but Alice does not.

What if Bob wishes to be able to decode larger subspaces of HÃ? What fraction of

the qubits need to be kept now? As one would expect, to decode the entire space HÃ

they have to keep almost all of them. On the other hand, so long as they keep a fraction

greater than 1+α
2 of the qubits, Bob can decode any subspace of up to αn qubits (or in

other words any subspace of dimension at most 2αn).3 We call the task of decoding any

such subspace universal approximate subspace error correction and say that HB encodes

the α-bits of HÃ.
4 A zero-bit is then simply the special case of an α-bit with α = 0.5

2.1 Technical definitions

We now turn to a more formal definition. Readers satisfied by the level of rigour given

above should feel free to proceed to the next section. An exact quantum error correcting

code consists at its simplest of an encoding and transmission channel N : S(HA) → S(HB)

(where S(HA) is the space of density matrices on HA) together with a decoding or recovery

channel D : S(HB) → S(HA) such that

D ◦ N = IdA.

In other words, given any state ρ ∈ S(HA), it is possible to exactly recover the state ρ

from the state N (ρ).

Suppose, as above, that we allow the receiver Bob to have some additional information

about the state ρ; he again knows that the state lies within some particular subspace of

A. Obviously this can make the task of finding a recovery channel D̃ considerably easier.

Indeed, the normal approach used to make error correcting codes out of a noisy transmission

3Technically, the construction in [12] requires the use of shared randomness to achieve this rate but this

can be eliminated by block coding.
4Note that the number of α-bits sent is determined by the dimension of HÃ rather than the dimension

of the subspaces Bob wishes to decode. This is because the whole space HÃ is available to him; he just

needs to make a choice about which subspace he is interested in. Furthermore, in the case of zero-bits, the

subspace dimension is always d = 2, even though the amount of information sent clearly depends on the

size of HÃ, and so this is the only sensible definition.
5Since decoding a one-dimensional state is trivial, we need the subspaces to have dimension 2αn + 1 to

correctly recover the definition of zerobits when α = 0. This change has negligible effect on the definition

of α-bits for α > 0; at most it can slightly increase the size of the error in recovering the state.

– 7 –
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channel is to first apply an encoding channel that consists of an isometry from a (smaller)

code space into the (larger) input space of the transmission channel, in such a way that

the code space is possible to decode, even though the large input space is not.

However, in this case we don’t just want Bob to be able to decode some particular

subspace that has especially nice properties. We want him to be able to decode the state

provided he knows any sufficiently small subspace that it is contained in. In the framework

of exact quantum error correction, this would mean the existence of an exact decoding

channel DS for any sufficiently small subspace HS .
6 However, it turns out that, even if

we only require any two-dimensional subspace to be error-correctable, the existence of a

decoding channel for every subspace implies that the complete space HA can also be error-

corrected. In other words there is no advantage to being able to use a different decoding

channel for each subspace, if you still have to be able to decode any possible subspace

exactly.

How can this be reconciled with our analysis above? The answer, of course, lies in

our assumption that the error correction had to be exact. If we instead only require

approximate error correction to be possible, the situation becomes completely different.

In this case we only require that the decoding channel get back something very close to

(rather than exactly) the original state. In other words we only require that,

‖DS ◦ N − Id‖⋄ ≤ ε

for some ε≪ 1.7

The Stinespring dilation theorem says that for any channel N : S(HA) → S(HB) there

exists an isometry V : HA → HB ⊗HE that is unique up to isomorphisms of HE such that

for all states ρ ∈ S(HA),

N (ρ) = TrEV ρV
†.

We can then define the complementary channel N c : S(HA) → S(HE) by

N c(ρ) = TrBV ρV
†.

The subspace decoupling duality, proved in [12], states that, if there exists a decoding

channel DS , for any subspace of dimension less than or equal to k, with error at most ε as

above, then there exists a state σ ∈ S(HE) such that for all states ρ ∈ S(HR ⊗HA)

‖(N c ⊗ IdR)ρAR − σE ⊗ ρR‖1 ≤ δ (2.1)

where HR is a reference system whose dimension is also equal to k and δ ≤ 8
√
ε.8 In

other words, the environment HE encodes almost no information about the state ρ. We

6We emphasize again that the encoding is not allowed to depend on HS . Otherwise the encoding channel

can simply map HS to any fixed subspace, and the task becomes identical to ordinary error correction for

the smaller space HS .
7We have bounded the error in terms of the diamond norm (see appendix A) here, but we could have

equally used the operator norm since these bound each other in a dimension-independent way in the

neighbourhood of the identity [18].
8The subspace decoupling duality can be derived almost immediately by applying Kretschmann et al.’s

information-disturbance theorem [19] to arbitrary subspaces of dimension k.
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say that the complementary channel N c is approximately k-forgetful. Conversely if the

complementary channel N c is approximately k-forgetful with uncertainty δ, then there

exists a decoding channel for any subspace of dimension at most k with error ε ≤ 2
√
2δ.

How important is the inclusion of a reference system with dimension k in (2.1)?

By writing out Schmidt decompositions and using triangle inequality (see for example

lemma 23 of [17]), one can easily show that, for any k,

max
ρ∈S(HR⊗HA)

‖(N c ⊗ IdR)ρAR − σE ⊗ ρR‖1 ≤ k max
ρ∈S(HA)

‖N c(ρ)− σE‖1 . (2.2)

In other words, δ grows at most linearly with the reference dimension k. Hence, as claimed

above, exact universal subspace error correction is indeed equivalent to exact quantum

error correction; if ε = 0 for k = 2, then we also have δ = 0 for k = 2, and hence δ = ε = 0

for all k.

However there are examples of quantum channels that saturate the bound (2.2) [17].

This means that, when the dimension of the complete space HA is very large, the for-

getfulness δ and reconstruction error ε can end up being much larger for large subspace

dimensions k than for small subspace dimensions. In other words, it may be possible to re-

construct any sufficiently small subspace with very high fidelity, while still being completely

impossible to reconstruct the entire space.

To make precise statements without reference to epsilons and deltas, it is generally

necessary to consider a limit where the dimension d of the code space tends to infinity, for

example the classical limit of the space of black hole microstates. In general, the question

of whether the error ε→ 0 will then depend on how the subspace dimension k scales with

the dimension d of the complete space.

To take a trivial example, universal subspace error correction for subspaces of dimen-

sion at most

k =
d

t

for some fixed t is equivalent to conventional error correction (i.e. either both have errors

that tend to zero in some limit or neither does). However, if the subspace dimension grows

sublinearly with d, universal subspace error correction is inequivalent to ordinary error

correction. The most natural possiblility to consider is that the dimension of the subspaces

grows proportionally to dα for some 0 ≤ α ≤ 1. If universal subspace error correction is

possible with vanishing error for such a dimension we say that Bob has the α-bits of the

state sent by Alice.

The case α = 0, which we call zero-bits, corresponds to the ability to do universal

subspace error correction for any constant dimension k that is independent of d. Just as

we saw above when d/k was held fixed, the exact value of k does not matter (we generally

take k = 2 for convenience) since, if ε → 0 for any k ≥ 2, it will also tend to zero for

all fixed k, even though, for finite errors, the size of k will affect the size of the error ε.

Formally, we define the α-bit decoding error based on subspaces of dimension k = 2αn+1,

since this formula gives k = 2 for zero-bits (k = 1 would be trivial) and scales as dα for

α > 0. However, as we have discussed, the exact dimension of the subspace is essentially

unimportant; we only care about how this dimension scales with n.

– 9 –
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3 Alpha-bits from the Hawking radiation

In this section we argue based on simple qubit toy models that an evaporating black hole

reveals its α-bits through its Hawking radiation as quickly as possible, saturating the α-bit

capacity of a noiseless quantum channel. This is in sharp contrast with the usual notion

that the Hawking radiation tries to hide information about the black hole state for as

long as possible, but we shall show that the two ideas are not merely reconcilable but in

fact equivalent. We generalise the arguments made by Hayden and Preskill in [14], which

can be interpreted as describing the special case where α = 0. This section is relatively

self-contained and is not necessary to understand the main claims of the paper, which are

developed in section 4; however, it is both of interest in its own right and features strong

similarities to the way the α-bits of black holes are encoded in AdS/CFT — suggesting

that the lessons from AdS/CFT may well be important in a significantly broader context.

It is often incorrectly implied that the Hawking radiation contains no information

until the Page time, after which it begins to reveal the qubits of the black hole one by

one. In fact there is good reason to think that (at least in simple toy models) not a single

qubit of the black hole will be revealed, to an observer knowing nothing about the original

black hole state, until the black hole has almost entirely evaporated.9 Instead, after the

Page time, the α-bits of the entire black hole will be revealed for increasing values of α,

until eventually all the qubits are revealed, essentially simultaneously, at the very end of

the evaporation process. No particular subsystem is revealed before any other subsystem;

however, increasingly large subspaces of the entire system become decodable.

Consider a large semiclassical black hole A in a pure microstate that is already known

by some observer Bob. Alice wants to hide her diary D, a small quantum state, from Bob

by dropping it into this black hole. After she has done so, Bob knows that the black hole

is in some particular small-dimensional subspace of the large Hilbert space of black hole

microstates — specifically the subspace of states that could have been created by the diary

falling in. In the semiclassical limit, the dimension of the space of black hole microstates

tends to infinity, while the dimension of the small subspace remains fixed.

The black hole is then allowed to evaporate into Hawking radiation. We assume Bob

has a perfect understanding of the microscopic dynamics of the black hole and the ability

to collect all the Hawking radiation that is emitted by it, as well as infinite computational

power. However, even with these awesome powers, he has no ability to measure the internal

black hole degrees of freedom themselves. How long does Bob have to wait in order to

determine the original state of the diary with a high degree of confidence?

This question was studied in detail in [14]. Since the dynamics of the black hole interior

are expected to be highly chaotic, Bob cannot hope for the small subspace of possible black

hole states that could have been created by the diary to be especially easy to decode from

the Hawking radiation. The problem is essentially equivalent to the question of whether

9More precisely, there will no tensor product factorisation of the black hole HBH
∼= Hqubit ⊗Hrest such

that the reduced state on Hqubit can be determined from the Hawking radiation before the black hole has

almost evaporated, even if the dimension of Hqubit is only two.
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Bob is able to decode any arbitrary small subspace of black hole states. In our language,

Bob needs to have access to the zero-bits of the black hole.

To conclusively answer the question of how information is encoded in the Hawking

radiation (we shall assume throughout this paper that the evaporation is unitary), we

would have to understand the exact details of the dynamics of the evaporation of black

holes; these details are, of course, as yet unknown. However, considerable progress can be

made using some fairly basic assumptions and arguments.

One toy model of the evaporation of a black hole is to add a few ancilla qubits (in order

to make the process slightly thermodynamically irreversible) and then to apply a random

unitary. However, this is exactly the model that we claimed in section 2 had its zero-bits

encoded in slight more than half of the output qubits. This suggests that the zero-bits of

the black hole should be encoded in any fraction of the Hawking radiation greater than

one half. Indeed this is essentially the model and conclusion reached in [14].

A slightly more sophisticated model of a black hole would be to use an element of a

unitary 2-design rather than a fully Haar random unitary. (All the elements of a 2-design

can be chosen to be much less computationally complex than a generic Haar random

unitary and hence could reasonably be applied within approximately the scrambling time.)

Conveniently, so long as we model the black hole as applying a randomly sampled element

of the 2-design with the choice of element known by Bob (and not simply as applying a

generic element of the 2-design), we obtain exactly the model that was shown in [12] to

saturate the α-bit capacity for general values of α.

Despite their popularity in the literature as toy models of black holes, such random

unitary models all suffer from a significant flaw as models of real-life black hole evapo-

ration. Specifically, rather than being only slightly thermodynamically irreversible, black

hole evaporation is in general highly thermodynamically irreversible, with numerical calcu-

lations suggesting that the thermodynamic entropy increases by a factor of approximately

1.48 over the course of the evaporation process [20]. This has a number of important quali-

tative effects: for example, it means that the Page time, when the entropy of the radiation

equals that of the black hole, occurs significantly before the black hole has lost half its

entropy.

However we can in principle prevent this O(S) thermodynamic entropy increase. For

example, we can extract only a small amound of energy and entropy from the Hawking

radiation, slightly reducing its temperature, and reflect the rest back into the black hole.

Notably, this can be achieved very easily and naturally in AdS/CFT by simply add a weak

local coupling to the boundary theory. Alternatively, all but the highest energy Hawking

modes (with frequency well above the Hawking temperature) may be reflected back into

the black hole by a potential barrier; this happens, for example, in near-extremal Reissner-

Nordström black holes, for example. In the interests of simplicity, we shall therefore assume

throughout this section that the black hole evaporates by some close-to-thermodynamically-

reversible process (unless stated otherwise).

An alternative argument to the simplified toy models discussed above, but which

reaches the same conclusion goes as follows. Rather than make any assumptions about

the dynamics of the black hole itself, we can simply assume that the semiclassical result
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of thermal Hawking radiation is correct — whenever this assumption is consistent with

unitarity. Assuming that our evaporation process is close to being thermodynamically re-

versible, this implies that the semiclassical calculation should be accurate (and the Hawking

radiation should look thermal) so long as we look at less than half of the Hawking radia-

tion. However, the subspace decoupling duality discussed in section 2 means that this is

equivalent to the zero-bits of the black hole being encoded in any fraction of the Hawking

radiation greater than half.

A natural generalisation of the problem of reconstructing a small diary thrown into

a known black hole is to replace the diary by a second smaller black hole D. Now the

dimension of the diary Hilbert space is no longer small and fixed; instead it is exponential

in 1/GN . Unlike the black hole that it is thrown into, the state of the black hole D is

unknown to Bob. Let the horizon area of the black hole D be αA where A is the horizon

area of the final combined black hole.

The subspace of possible black hole states that can be created upon throwing in the

diary is no longer small, but instead grows in the semiclassical limit as eαS where S =

A/4GN . To determine the original state of the diary, Bob now needs access to the α-bits

of the larger combined black hole.

Using the slightly more sophisticated version of the random unitary model, as well as

the α-bit capacity results from [12], we see that to recover the α-bits of the black hole, Bob

needs to obtain at least an
α+ 1

2

fraction of the Hawking radiation [12].

What about if we again try to argue from the principle that the Hawking radiation

should look thermal whenever this is consistent with information preservation? To make

use of the subspace decoupling duality, we now need to allow the black hole states to be

entangled with a reference system HR of dimension eαS . We want to know whether the

reference system HR, together with the part of the Hawking radiation HE which is thrown

away, contains any information about the state of the black hole. We assume that the

reduced density matrix of the state on HE ⊗ HR will look like the thermal ensemble on

HE tensored with the reduced density matrix of the original state on HR, so long as such

a state can be purified by the remaining fraction p of the Hawking radiation HB which is

collected by Bob. This is possible if and only if the dimension of HB is larger than the

dimension of HE ⊗HR. In other words if

α+ (1− p) ≤ p.

Hence a fraction (1−p) of the Hawking radiation will be eαS-forgetful so long as α ≤ 2p−1.

However, by the subspace decoupling duality, if some fraction 1 − p of the Hawking

radiation is 2αS-forgetful, the remaining fraction p of the Hawking radiation must encode

the α-bits of the black hole. Rearranging, we again find that the α-bits of the black hole

are encoded in any fraction p > (1 + α)/2 of the Hawking radiation. As for the zero-bit

case, the assumption of thermality, whenever it is consistent with unitarity, gives an answer

that agrees with the random unitary model.
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The black hole evaporation therefore compresses the α-bits of the entire black hole

(consisting of, say, n qubits) into only (1 + α)n/2 physical qubits of Hawking radiation.

The Hawking radiation forms an α-bit code for the entire black hole that encodes

2

1 + α
logicalα-bits per physical qubit.

This is exactly the α-bit capacity of the noiseless qubit channel; black holes give up their

α-bits as fast as they possibly can. On the one hand, this is unsurprising since random

unitary channels were exactly the strategy used in [12] to originally achieve the α-bit

capacity. It is nonetheless in sharp contrast to usual idea of Hawking radiation containing

as little information as possible.

However, as we have seen, these two phenomena are not merely reconciliable; they are

actually equivalent. The subspace decoupling duality means that if the black hole releases

as little information as possible in less than half of its Hawking radiation, then it necessarily

also releases as much information as possible in more than half of the Hawking radiation

(at least in the specific sense of encoding the α-bits for as large a value of α as possible).

Just like a small diary, if a black hole diary (as before with horizon area αA) is thrown

into a black hole that has already partially evaporated, the information within it will be

revealed more quickly. (Note that A = 4GN S is now the horizon area of the combined

black hole after it has both been allowed to partially evaporate and then had the black

hole diary thrown in.) We can see this for the random unitary model by making use of

results used to prove the achievability of the entanglement-assisted α-bit capacity in [12].

These show that if, when the black hole diary is thrown in, the black hole is already

approximately maximally entangled with Hawking radiation of entropy βS, Bob will be

able to determine the state of the black hole diary so long as the fraction p of the remaining

Hawking radiation that he obtains satisfies

βS + pS ≥ (1− p)S + αS . (3.1)

This inequality can also be derived from the thermality (whenever consistent with unitarity)

assumption. The left hand side is the combined entropy of the original Hawking radiation

βS together with the newly emitted Hawking radiation pS (i.e. the systems that Bob has

access to). The right hand side consists of the entropy of the Hawking radiation that is

thrown away (1− p)S plus the maximum entropy αS of the reference system HR that we

need to consider according to (2.1) (i.e. the systems that Bob does not have access to). For

these systems to look thermal while being purified by those Bob has access to requires (3.1).

Bob will therefore recover the state of the diary once he has access to at least a

p =
1 + α− β

2
(3.2)

fraction of the remaining Hawking radiation. In the special case β = 1 and α = 0, the

fraction required tends to zero. This case was studied in detail in [14]; it is probable that

Bob only needs to wait for at least the scrambling time (O(logS)) before he can recover

the state of the diary.
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It may seem from (3.2) that entangled black holes exceed the entanglement-assisted

α-bit capacity of 2/(1 + α) for a noiseless channel that was derived in [12]. However, a

precise comparison, done in section 8.5, shows that, as with the unentangled case, it merely

saturates the capacity.

At the start of this section, we claimed that, unlike for the α-bits of the black holes, we

should not expect that even a single qubit of the black hole Hilbert space, no matter what

basis we work in, is revealed until almost the end of the Hawking evaporation process. If

a qubit was revealed before this point, then there would necessarily exist a pair of states

in the black hole Hilbert space that are both maximally entangled with a reference Hilbert

space of only one fewer qubit than the black hole Hilbert space, but for which the Hawking

radiation produces (almost) orthogonal states after only some fraction p < 1 of the Hawking

radiation has been produced. Yet for such states, the entropy (S − log 2) of the reference

system, plus the remaining entropy (1−p)S of the black hole is far larger than the entropy

pS of the Hawking radiation. It follows that the Hawking radiation should look thermal

for randomly chosen states of this form, and hence (again using the fact that our black

hole evaporation is slightly thermodynamically non-reversible) measure concentration will

be sufficient to ensure that all such pairs of states should have almost indistinguishable

Hawking radiation, contradicting our original assumption.

Finally, it is worth commenting briefly on which of our conclusions are likely to change

if a black hole is allowed to evaporate irreversibly, and which should continue to be valid.

In particular, we would expect that the black hole evaporation will no longer saturate

the noiseless α-bit capacity. For example, the Page time, when the zero-bits of the black

hole should be revealed, will now occur when the entropy of the Hawking radiation is

significantly more than half of the initial black hole entropy (for realistic black holes the

figure is approximately 60% [20]).

However, many of the results above should still apply with small adaptations. In par-

ticular, it should continue to be the case that the α-bits of the black hole are revealed when

αS0 < Srad − SBH (3.3)

where S0 was the initial Bekenstein-Hawking entropy of the black hole, SBH is the Beken-

stein-Hawking entropy of the partially evaporated black hole and Srad is the thermodynamic

entropy of the Hawking radiation.

To see this, note that the natural generalisation of the random unitary models used

above to thermodynamically irreversible evaporation is a sequence of nested random isome-

tries. At each step a few qubits are released as Hawking radiation and then a smaller

number of qubits are added back to the black hole using a random isometry. Hence, over

time, the number of qubits describing the black hole (the Bekenstein-Hawking entropy) de-

creases, but the total number of qubits describing the black hole together with the Hawking

radiation (the total thermodynamic entropy) increases. This is shown in figure 3 and is an

example of a random tensor network; such networks obey a version of the Ryu-Takayanagi

formula [21], where the entropy of a subsystem is proportional to the number of legs in the

network that need to separate the subsystem from its complement.
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Figure 3. A simple two model of an evaporating black hole that incorporates thermodynamic

irreversibility. At each time step, two qubits are released from the black hole as Hawking radiation

and then a random isometry is applied to the black hole that adds a single qubit. This model is an

example of a random tensor network and hence obeys a version of the Ryu-Takayanagi formula.

An initial state that is maximally entangled with a reference system with log dR =

αSBH will therefore have maximal entropy (and hence be maximally mixed) on the black

hole Hilbert space plus reference system, so long as (3.3) holds. By the subspace decoupling

duality, the α-bits of the initial black hole can therefore be reconstructed from the Hawking

radiation at the same point in time.

The other results in this section can be similarly extended to irreversible evaporation.

For example, all the qubits of the initial black hole state are still revealed simultaneously.

However this revelation will now happen somewhat before the black hole has completely

evaporated, when

Srad − SBH > S0; (3.4)

the last part of the Hawking radiation can be completely error corrected.

In general, the inherent inefficiency of an irreversible process prevents the black hole

evaporation from saturating noiseless α-bit capacities. However, the random nature of

black hole dynamics means that the α-bits of the black hole are still revealed ‘as soon as

possible’, subject to these inefficiencies.

4 Alpha-bits in the entanglement wedge

We now turn to developing the main claim of this paper — that there exist bulk regions,

containing but not solely consisting of a black hole, for which the α-bits, but only the

α-bits, are encoded in a certain boundary region. These bulk regions are bounded on both

sides by extremal surfaces with areas A1 and A2 and they satisfy α = (A2−A1)/A0 where

A0 is the horizon area of the black hole.

We first introduce the concept of entanglement wedge reconstruction. We then estab-

lish a correct version of the entanglement wedge reconstruction conjecture in section 4.1,

including an underappreciated subtlety that proves qualitatively important for code spaces

whose dimension grows quickly in the limit GN → 0. Finally, in section 4.2 we apply our

results to geometries containing a single black hole in AdS space, establishing the results

mentioned above.
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The Ryu-Takayanagi formula [22, 23] states that, to leading order in GN , the entan-

glement entropy of a boundary region A is equal to

SRT =
A

4GN
+ Sbulk, (4.1)

where A is the area of the bulk minimal surface anchored to the boundary of A and Sbulk
is the bulk entropy of the bulk region bounded by the boundary region A and the minimal

surface. However, as conjectured in [13] and proved in [24], the correct definition of the

‘minimal surface’ that one must consider is not simply the surface of minimal area (the

minimal classical extremal surface),10 but rather the minimal quantum extremal surface,

which is the surface anchored on the boundary of A that minimises the total size of (4.1).11

If the size of the code space is held fixed as GN → 0, then the second term does not

contribute to leading order in GN and can be safely ignored at this order. However, if the

dimension dcode of the code space of allowed bulk states exponentially large in 1/GN , the

two terms can compete even in the semiclassical limit. This is exactly what happens when

one considers thermal or two-sided black hole states; it is one way to understand the source

of the ‘homology constraint’ in the original Ryu-Takayanagi formula [2].

The conjecture of entanglement wedge reconstruction was developed in [26–28] and

then established with increasing rigour in [9, 29, 30]. It states that, if we take a code

subspace of states with a fixed geometry, any region A of the boundary acts as a quantum

error correcting code for the region of the bulk within its entanglement wedge, the bulk

region enclosed by the boundary region A and the RT surface (specifically the quantum

extremal surface) associated to region A. However, as we shall see, the form of the quantum

error correction involved is somewhat more general than the definitions that we have given

so far.

Let us split the boundary into two complementary regions A and Ā. Each boundary

region has an associated entanglement wedge in the bulk that we label a and ā, as shown in

figure 4. However both the area term (at subleading order in GN ) and the bulk entropy term

of (4.1) will in general depend on the state of the system; hence both the entanglement

wedges may be state-dependent. If the boundary state is pure, the two entanglement

wedges, a and ā will be complementary bulk regions; their union will contain the entire

bulk. However, in the case of mixed states, as well as states that are entangled with a

second system, there may a non-empty third region a′ contained in neither entanglement

wedge; one-sided (thermal) and two-sided black holes are respectively good examples of

these two cases.

Every bulk region has an associated von Neumann algebra acting on the bulk (code)

Hilbert space; similarly boundary regions are associated with von Neumann algebras acting

10We assume throughout this paper that we are in the Einstein gravity limit (λ → ∞), where higher

curvature corrections can be ignored. Moreover, we only consider static spacetime geometries and hence

there is no need to use HRT surfaces [25] which generalises RT surfaces (which require a time-reflection

symmetry) to general spacetimes. There will no doubt exist α-bit codes in time-dependent spacetimes as

well, but we do not consider them here.
11To avoid ambiguities about whether homology constraints are being applied the term RT surface will

always refer in this paper to the quantum extremal surface.
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(a) Empty AdS. (b) A black hole in AdS.

Figure 4. Ryu-Takayanagi surfaces for empty AdS-space and a black hole in AdS. In each case,

the boundary is separated into two regions, A and Ā. In empty AdS, the boundary between these

regions is also the boundary of a single minimal surface through the bulk, with (divergent) area A,

which is known as the Ryu-Takayanagi or RT surface. This minimal surface separates the bulk into

two regions, a and ā, which we refer to as the entanglement wedges of A and Ā respectively. When a

black hole with horizon area A0 is introduced to the bulk, it creates infinitely many locally minimal

surfaces with the same boundary as A and Ā. In particular we are interested in the minimal surface

homologous to Ā with area A1 and the minimal surface homologous to A with area A2. They divide

the bulk into three regions a, ā and a′, where a′ lies between the minimal surfaces and contains the

black hole. For the thermal or canonical ensemble, regions a and ā form the entanglement wedges

of A and Ā respectively.

on the larger boundary Hilbert space. For both bulk and boundary, the algebra of a region

forms the commutant of the algebra associated to its complementary region.

Since we are only interested in a single bulk geometry, there are no non-trivial operators

in the centres of either the bulk or boundary algebras that are particularly relevant for our

purposes. Therefore, for pedagogical reasons, we shall mostly assume that the centres of

all the algebras are trivial and hence that we can associate a subsystem Hilbert space to

each region. This assumption, although incorrect, is commonly used in the literature for

simplicity and clarity. The von Neumann algebra associated to each region is simply the

algebra of operators acting on the associated subsystem. The isometric embedding of the

code subspace into the larger CFT Hilbert space has the form

Hcode
∼= Ha ⊗Hā (⊗Ha′) ⊆ HA ⊗HĀ

∼= HCFT, (4.2)

where Ha′ appears if region a′ is non-empty. For convenience we will sometimes use J :

Hcode → HCFT to represent the canonical embedding isometry.

In appendix A, we provide a more detailed description of the framework of operator

algebra quantum error correction, which is necessary to talk about von Neumann algebras

with non-trivial centres. This is particularly important for understanding code spaces with

more than one semiclassical geometry, where the area of the RT surface corresponds to a

non-trivial operator in the centre of the bulk algebras. All statements made in this section

can be translated into statements about operator algebras (thus eliminating the incorrect
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assumption about the algebras’ centres) simply by replacing tensor product factors with

von Neumann algebras and their commutants, and replacing partial traces with restrictions

to subalgebras.

If we assume trivial centres and hence a tensor product factorisation, the entanglement

wedge reconstruction conjecture can be phrased as follows: the channel N = TrĀ
(

J(·)J†
)

is a subsystem error correcting code for Ha.
12 This means that there exists some decoding

channel D : HA → Ha such that for all states ρ ∈ S (Ha ⊗Hā (⊗Ha′)),

(D ◦ N ) ρ ≈ ρa. (4.3)

In other words, region A contains all the information necessary to approximately recon-

struct the reduced density matrix of the state for region a.13

More commonly, we tend to think about quantum field theory using the Heisenberg

rather than Schrödinger picture. The adjoint decoding channel D† : B(Ha) → B(HA) is

a unital completely-positive superoperator that maps bulk operators in Ha to boundary

operators on HA. It is defined by

Tr
(

D†(Xa)ρA

)

= Tr (XaD(ρA)) , (4.4)

for any observable Xa ∈ B(Ha). We can therefore use D† to reconstruct operators in the

bulk using operators in only a subregion of the boundary, so long as the bulk operators are

contained in the entanglement wedge of the boundary subregion; the existence of such a

map is the most commonly-used definition of entanglement wedge reconstruction.

4.1 Entanglement wedge reconstruction from approximate decoupling

Before considering the specific task of bulk reconstruction in black hole geometries, we first

establish some more general facts about entanglement wedge reconstruction. It was argued

in [9] that a boundary region A can be used to reconstruct a bulk region a0 if the bulk

region a0 was not contained in the entanglement wedge of the complementary boundary

region Ā. Equivalently, region a0 must be contained in the entanglement wedge of region

A for all pure states.14

For simplicity, the technical arguments in [9] ignored the existence of finite GN cor-

rections that make any reconstruction at best approximate; however the authors expected

that the arguments should generalise to the approximate setting. For the situations con-

sidered in [9], where the code space dimension remains fixed in the limit GN → 0, this is

indeed the case, as was verified in [30].

12Without the assumption of trivial centres, it states that the algebra associated to region A forms an

operator algebra quantum error correcting code for the algebra associated to region a, see appendix A.
13Since the entanglement wedge a is in general state-dependent, we shall see in section 4.1 that we really

the intersection of the entanglement wedge a for all states in the code space.
14We continue to distinguish the entanglement wedge a from the decodable region a0 because in general the

entanglement wedge amay depend on the state we are considering. Note that state-dependent entanglement

wedges were not explicitly considered in [9]. However, applying the reconstruction theorem from [9] to code

spaces with state-dependent entanglement wedges and ignoring approximation issues, one finds that the

decodable region a0 must be contained in the entanglement wedge a for all pure states in Hcode.
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However, while the technical results of [9] continue to be true for exact error correcting

codes, even when the code space dimension is very large (e.g. when the code space contains

many black hole microstates), the generalisation to approximate error correction does not.

Recall that we saw in section 2 that being able to universally and exactly decode

small subspaces implies being able to exactly decode the entire space, but that the ap-

proximate version of this statement was not true, because the quality of the approximation

could degrade linearly with the dimension of the decoded space. Furthermore, to obtain

dimension-independent bounds on the decoding error, we had to consider the forgetfulness

of the environment for input states entangled with a reference system of equal dimension to

the subspaces being decoded. No reference system was necessary when the error correction

was exact.

The same phenomenon will appear when we try to prove approximate entanglement

wedge reconstruction. It is not enough for the entanglement wedge of Ā to never contain the

bulk region a0; instead the entanglement wedge of Ā ∪ R cannot contain the bulk region

a0 for any (potentially entangled) pure state |ψ〉 ∈ Hcode ⊗ HR, where R is a reference

system with the same dimension as the code space Hcode. Equivalently, the entanglement

wedge a of A needs to always contain the bulk region a0 for any pure, or mixed state.

Hence region a0 is really the intersection of the entanglement wedges of A for all pure

states |ψ〉 ∈ Hcode ⊗ HR. The weaker Dong-Harlow-Wall condition that a bulk operator

only needs to be contained in the entanglement wedge a for all pure states is only sufficient

to show that the zero-bits of the operator can be reconstructed in region A.

Our justification for this claim involves a significant amount of technology from quan-

tum information and takes the rest of this section: only the basic conclusions already

mentioned will be required to understand the essential arguments in section 4.2. The

same results were also reached via very different arguments in [30]. We choose to make a

decoupling-based argument here, firstly because it makes explicit exactly when and how

the Dong-Harlow-Wall argument from [9] fails and secondly because we can use it to prove

that reconstruction can be made exact to all orders in perturbation theory. It appears

significantly harder to adapt the argument in [30] to be perturbatively exact.

A version of the argument used by Dong, Harlow and Wall in [9] to justify the entan-

glement wedge reconstruction conjecture starts as follows. It had been shown in [29] that

in the limit N → ∞ relative entropies in the bulk become equal to relative entropies on

the boundary. This means that if any two states, ρ and σ in the code subspace satisfy

ρā = σā, (4.5)

then

S(ρĀ||σĀ) ≤ ε (4.6)

for some small ε that tends to zero if N → ∞. In general the difference between the

bulk and boundary relative entropies will be O(GN ). However, ρā = σā implies that

the quantum extremal surface should be the same for the two states ρ, σ to all orders in

perturbation theory. Hence ε will be non-perturbatively small (although still non-zero) for

small GN [24].
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If ε = 0, then for all pairs of states ρ, σ ∈ S(Hcode) satisfying (4.5), it can be shown

that there must exist a channel D : S(HA) → S(Ha) such that

D ◦ TrĀ(ρ) = ρa, (4.7)

for all states ρ ∈ S(Hcode). (In fact it would imply that we could additionally reconstruct

region a′ if such a region existed for some mixed states.) The channel TrĀ(J(·)J†) would

therefore form an exact error-correcting subsystem code for Ha, which is what we wanted

to show. This was the main technical result of [9].

While acknowledging that the equality between bulk and boundary relative entropy,

and hence entanglement wedge reconstruction, should only be approximate at finite GN , [9]

did not attempt to prove an approximate version of their decoupling theorem, and instead

left it as a task for future work. Let us now attempt to do exactly that. To generalise

the argument given above to apply even for small but non-zero ε requires a generalisa-

tion of (2.1), or (equivalently) a version of Kretschmann et al.’s information-disturbance

theorem [19] that works for subsystem error-correcting codes. Fortunately, such a gener-

alisation is relatively straightforward and was done for the even more general structure of

operator algebra error correction in [15]. We discuss the general form and its applicability

in appendix A, but for now we shall simply apply the result in the special case of subsystem

error correction.

As in section 2, we only obtain dimension-independent bounds if we consider states

that are entangled with a reference system HR that has the same dimension as the space

of states we wish to decode.

We first define an approximate subsystem error correcting code as follows. Let the

channel N : S(Ha0 ⊗ Hā0) → S(HA). The channel N forms an approximate subsystem

error correcting code with error δ1 if

δ1 = inf
D

‖D ◦ N − Trb̄(·)‖⋄ , (4.8)

where the infimum is taken over decoding channels D : S(HA) → S(Hb).

The complementary channelN c completely forgets the subsystemHa0 with uncertainty

δ2 if

δ2 = sup
|ψ〉

‖ψĀR − TrA (ωa0 ⊗ ψā0R)‖1 (4.9)

where ωa0 ∈ S(Ha0) is maximally mixed and the supremum is again over all states |ψ〉 ∈
Ha0 ⊗Hā0 ⊗HR. The dimension dR of the reference system can be unrestricted; however,

it is sufficient to consider a reference system whose dimension is equal to the dimension

of Hcode.

What does (4.9) mean in the context of entanglement wedge reconstruction? Let a0
be the intersection of the entanglement wedges of a for all states |ψ〉 ∈ Hcode ⊗HR and let

ā0 be its bulk complement. Hence we have

Hcode
∼= Ha0 ⊗Hā0 . (4.10)
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If, as before, we have N =TrĀ(J(·)J†), then the complementary channel N c=TrA(J(·)J†).

We note that because in (4.9) we are considering pure states |ψ〉 ∈ HA ⊗ HĀ ⊗ HR, the

entanglement wedge of Ā∪R is by definition the complement of the entanglement wedge of

A. In other words, the entanglement wedge of Ā∪R is given by a′ ∪ ā∪R.15 By definition

this is contained in ā0 ∪R. Therefore

(ωa0 ⊗ ψā0R) |a′āR = ψa′āR (4.11)

and, hence, by the approximate equality between bulk and boundary relative entropies [24,

29], we have

S(TrA (ωa0 ⊗ ψā0R) ||ψĀR) ≤ ε, (4.12)

for some non-perturbatively small ε. Using Pinsker’s inequality [31], it follows that δ2 ≤√
2 ε ln 2 and so this will also be non-perturbatively small.

However the size of the uncorrectable error δ1 and the uncertainty in the forgetfulness

δ2 are related by [15]

1

4
δ22 ≤ δ1 ≤ 2δ

1
2

2 , (4.13)

and hence both tend to zero simultaneously with dimension-independent bounds. (The

equivalent result for general operator algebra error correction is reproduced in appendix A

as theorem 2; the subsystem error correction case (4.13) follows as a trivial consequence

from this.) We have therefore shown that there exists an approximate subsystem error

correcting code for region a0 with non-perturbatively small error.

As for ordinary subspace error correction (discussed in section 2), such dimension-

independent bounds are not possible if we do not include a reference system with the same

dimension as the code space in the definition of complete forgetfulness. If the dimension of

the code space is fixed in the semiclassical limit GN → 0, this is not especially problematic.

It may contribute a large constant factor to the size of the decoding error, but it cannot

affect with the error tends to zero in the limit GN → 0. This will not be true if want our

code space S to include a large number of black hole microstates. Since the code space

dimension dcode → ∞ if GN → 0, dimension-dependent factors can affect whether the error

tends to zero in this limit. As a result, they cannot be safely ignored.

If the code space dimension is fixed, the RT formula is dominated by the classical

area term in the semiclassical limit and the RT surface is state-independent. However if

the code space dimension diverges sufficiently fast, the bulk entropy term can compete

15Some readers may be unhappy at the notion of an entanglement wedge for states entangled with a

reference system, which is not itself holographic. If so, it may be comforting to imagine the reference

system as a second copy of the CFT with the same bulk code subspace so that everything is holographic.

Note that, depending on context, R then refers to either the entire boundary or the entire bulk of this

second system. We also remind readers that the arguments in [30] give the exact same conclusion we reach

here (region a0 must be contained in the entanglement wedge of A for all pure or mixed states) without

ever invoking a reference system. We only need to do so here to make comparisons with the arguments

in [9].
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with the area term and it matters whether we consider the entanglement wedge of mixed

states or only pure states. It is not a conincidence that a divergent code space dimension is

required for both; the Dong-Harlow-Wall argument gives qualitatively different conclusions

to the conclusions derived here — in exactly the contexts where we have shown that its

conclusions should not be trusted.

4.2 Entanglement wedges for code spaces containing black holes

We argue in section 7, that we can construct code spaces

Hcode
∼= HBH ⊗Hext,

where the dimensions dcode and dBH satisfy

lim
GN→0

4GN log dBH = lim
GN→0

4GN log dcode = A0,

for a black hole with horizon area A0. The Hilbert space Hext describes the degrees of

freedom outside the horizon, while HBH describes the microstate of the black hole itself.

Bulk operators outside the black hole horizon act only Hext, while the degrees of freedom

in HBH are localised to the black hole (in other words the state on a boundary region only

depends on HBH if the entanglement wedge of the boundary region contains the black hole).

Moreover, all of the microstates in this code space are thermalised, typical “equilibrium

states”.16

In figure 4b, we show an area A of the boundary together with two extremal surfaces

through the bulk whose boundary is ∂A. The first is homologous to Ā (the black hole is

between the minimal surface and A) and has area A1. The second is homologous to A

(the black hole is between the minimal surface and Ā) and has area A2. We shall assume

A1 < A2 < A1 + A0. We label the bulk region between A and the minimal surface with

area A2 by a, while the region between Ā and the minimal surface with area A1 is called ā

and the region between the two minimal surfaces (which contains the black hole) is labelled

a′. Note that, for the thermal state, region a is the entanglement wedge of region A and

region ā is the entanglement wedge of region ā and so this is consistent with our previous

notation. However, for individual microstates, the entanglement wedge of A will be region

a ∪ a′. To avoid confusion, we will keep the definitions of regions a, a′ and ā fixed and

state-independent throughout this section, rather than having their definition depend on

the state.

The code space has the form

Hcode
∼= Ha ⊗Ha′ ⊗Hā.

Since the black hole is contained within region a′, we have

Ha′
∼= HBH ⊗Hext

a′ .

16This last property is only possible because we are not trying to include all black hole microstates in our

code space, merely sufficiently many microstates to give the Bekenstein-Hawking entropy up to a subleading

correction.

– 22 –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
7

Since we chose the code space geometry to include only a single black hole plus perturbative

excitations outside it, onlyHa′ (and notHa orHā) contains an exponential number of states

(w.r.t. 1/GN ).

Now consider an arbitary pure state |ψ〉 ∈ Hcode ⊗ HR. We wish to find the entan-

glement wedge of Ā ∪ R for all such states. If some bulk region a′ is not contained in

the entanglement wedge of Ā ∪ R for any state in Hcode ⊗HR, then, by our arguments in

section 4.1, it should be possible to reduced density matrices for region a∪a′ from reduced

density matrices for region Ā. Equivalently it should be possible to simulate operators

acting on Ha ⊗Ha′ with operators acting on HA.

What can this entanglement wedge be? Since we chose the code space such that the

geometry is approximately the same for every state in the subspace, the first term in the

Ryu-Takayanagi formula (4.1) is approximately the same for all code states and any fixed

surface. As a result the only way state dependence of the entanglement wedge can arise is

through the second term in (4.1).17 Moreover, the only source of bulk entanglement that

can be sufficiently large to compete with the area term as GN → 0 is entanglement between

the black hole and reference system. As a result, the quantum minimal surface will always

be one of the two classical extremal surfaces with areas A1 and A2. The only question is

whether the entanglement wedge of Ā ∪R contains only ā ∪R or consists of a′ ∪ ā ∪R, as
depicted in figure 5. We can therefore decode a ∪ a′ (and hence the black hole) from A so

long as for all states |ψ〉 ∈ Hcode ⊗HR,

S(āa′R)ψ +
A2

4GN
> S(āR)ψ +

A1

4GN
, (4.14)

We have S(a′āR)ψ = S(a)ψ = O(1) and, by the triangle inequality, |S(R)ψ − S(āR)ψ| ≤
S(ā) = O(1). Hence, to leading order in GN , (4.14) is equivalent to

4GNS(R)ψ < A2 −A1, (4.15)

If

lim
GN→0

4GN log dR = lim
GN→0

4GN log dS < A2 −A1, (4.16)

then this will be satisfied for any state |ψ〉 ∈ Hcode ⊗HR. Conversely if

lim
GN→0

4GN log dR = lim
GN→0

4GN log dS > A2 −A1, (4.17)

then it will be violated for any maximally-entangled state on Hcode⊗HR. We therefore see

that in the classical limit we can decode Ha ⊗H′
a from HA for any subspace HS ⊆ Hcode

whose dimension is less than e
α

A0
4GN for

α =
A2 −A1

A0
. (4.18)

17In principle, as with the thermofield double state, there could be a smooth geometry between the

horizon of the black hole and R with an associated minimal area; however, we are always free to interpret

this as simply bulk entanglement, see [2].
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Figure 5. The black hole is now entangled with a reference system R. If the entanglement between

the black hole and R has entropy greater than A2−A1

4GN

, the entanglement wedge of Ā∪R is ā∪a′∪R.
Otherwise the entanglement wedge of Ā ∪R is only ā ∪R.

In other words A contains the α-bits of region a′ for the entire code space Hcode. This

region contains not just the black hole, but also an additional bulk region outside the black

hole horizon but between the two minimal surfaces. In contrast the region a can be decoded

for the entire code space, since this region will always lie outside the entanglement wedge

of region Ā ∪R.
In the Heisenberg picture, this means that we can simulate an operator Oa′ on a

′ with

an operator OA on A so long as we only require that the operator OA behave in the same

way as Oa′ within a subspace HS ⊆ Hcode with dimension less than e
α

A0
4GN . In other words,

for any bulk operator in a′, whether acting on the black hole or outside the horizon, the

operator on A must be state-dependent. We discuss the connection with other proposed

forms of operator state dependence in quantum gravity in section 8.3.

Finally, we want to show that the value of α given in (4.18) is optimal. In other

words, that for any α′ > α, the α′-bits of region a′ are not encoded in region A. We have

already shown that (4.15) can be violated when dR = eα
′S for such α′ and hence that there

exist states in Hcode ⊗HR for which the entanglement wedge of Ā ∪ R contains region a′.

Specifically we can consider a state where HR is maximally entangled with HBH. Acting

with bulk operators in region a′ but outside the black hole horizon cannot change the

entanglement wedge for such a state, and so we can construct a small subspace of states

HS ⊆ Hcode ⊗HR with dimension dS which look identical in region a and for which region

a′ is never contained in the entanglement wedge of A. Since the dimension of HS is small,

even if we consider states entangled with a second reference system HR′ , the entanglement

wedge of A ∪R′ will still never contain region a′.

It follows, by the arguments made in section 4.1, that we can recover the state for

region a′ from Ā∪R so long as we know that it lies in the subspace HS . By the no cloning

theorem (or, more formally, Kretschmann et al.’s information-disturbance theorem [19]),

we therefore cannot recover the state from A. However the support of any state in HS lies
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in a subspace Hsup ⊆ Hcode of dimension at most dR dS . It therefore cannot be possible to

decode region a′ using only region A for the subspace Hsup. Since dS is small and fixed,

lim
GN→0

log(dR dS)

SBH
= α′. (4.19)

Since we could have chosen α′ to be arbitrarily close to α, region A cannot encode the

α′-bits of region a′ for any α′ > α.

This argument makes clear that the operator state dependence is unavoidable; it is not

simply the product of a particular reconstruction strategy. However, as we make region A

larger, not only does the region a where operators can always be decoded become larger,

so does the value of α itself. The size of the subspaces HS , for which operators in region a′

can be reconstructed, grows as region A grows. Eventually, we reach the point where α = 1

and hence a single operator will exist that exhibits the correct behaviour for all the black

hole microstates in Hcode. The entanglement wedge of A will now always contain regions a

and a′; for the purposes of entanglement wedge reconstruction, it no longer matters which

of these regions an operator is in.

5 Alpha-bits of BTZ black holes

We now consider the case of an uncharged, non-rotating BTZ black hole in 2+1 dimensions.

This provides a sufficiently simple example of the phenomena introduced in section 4 that

many of the relevant quantities can be calculated analytically. Most of these calculations

have already been done in the literature [32, 33]. In particular the Holevo information χ

for an ensemble of black hole microstates in AdS3 was calculated in [33]; it turns out that

the Holevo information has a very simple relation to α which is given by18

χ =
A2 −A1

4GN
= αS. (5.1)

Nonetheless we shall carry out all the calculations here explicitly in the interest of clarity.

In general, the explicit calculations conform with one’s intuition; increasing the size of

the boundary region A increases α, while increasing the radius of the black hole decreases

α. We also explicitly calculate the volume of the region a′ and find that it is equal to

2πL2 — independent of the radius of the black hole. The size of the region is always

approximately AdS scale, even for very large black holes. The size is independent of GN —

α-bit codes exist even in the semiclassical limit (in fact that is where they are best defined)

— but it cannot be made significantly larger than the AdS scale. The same effect is seen

in section 6 in tensor network toy models of holographic α-bit codes.

One possible explanation for this is that α-bit codes in general seem to rely on the

properties large random-like unitaries — essentially they rely on and reflect some form of

scrambling. However, fast scrambling only happens in large AdS black holes up to the AdS

18It should be obvious that αS is a lower bound for the Holevo information. The fact that (5.1) is actually

an equality, however, is a non-trivial fact about black holes and comes from the universal behaviour of black

hole microstates.
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scale [34]. More generally, locality above the AdS scale in AdS/CFT comes from locality

in the CFT (and locality in energy scale for the radial dimension). However, sub-AdS

scale locality is more mysterious and is associated with the large number of local matrix

degrees of freedom in N = 4 SYM at large N (or the equivalent degrees of freedom in other

examples).

This suggests that α-bit codes, or more specifically α-bit degrees of freedom outside the

horizon, are a property of CFTs with large N (or large central charge). They are teaching

us something about the encoding of degrees of freedom specifically for CFTs with weakly

curved gravity duals. It would be interesting to see if the volume of region a′ continues

to be AdS scale for more complex black holes, or whether, by tuning charges, angular

momenta etc., we can make the region a′ arbitrarily large.

In Schwarzschild coordinates the BTZ metric is given by

ds2 = −r
2 −R2

L2
dt2 +

L2

r2 −R2
dr2 + r2dφ2 (5.2)

where φ ∼ φ+ 2π and R and L are respectively the horizon radius and the AdS scale.

Since gravity has no local degrees of freedom in 2 + 1 dimensions, the BTZ black hole

can be identified with a quotient of pure AdS3. We can take advantage of this by calculating

the area of minimal surfaces, which are just geodesics in 2 + 1 dimensions, using formulas

for the lengths of geodesics in pure AdS3.

The geodesic length d between two points in pure AdS satisfies

cosh

(

d

l

)

= T1T
′
1 + T2T

′
2 −X1X

′
1 −X2X

′
2 (5.3)

where the embedding co-ordinates (Ti, Xi) can be identified with Schwardschild co-ordi-

nates (r, t, φ) by

T1 =
1

R

√

r2 −R2sinh
Rt

L
,

T2 =
r

R
cosh

Rφ

L
,

X1 =
1

R

√

r2 −R2cosh
Rt

L
,

X2 =
r

R
sinh

Rφ

L
.

(5.4)

The relevant geodesics on the BTZ geometry, which travel from (r, 0, 0) to (r, 0, φ) in the

limit r → ∞, can be identified with the geodesics in pure AdS from (r, 0, 0) to (r, 0, φ) and

(r, 0, φ− 2π), since we identify φ ∼ φ+2π in the BTZ geometry. We label their lengths by

d1 and d2 respectively. In the limit of large r, then (5.3) implies,

d1
L

= 2 log

(

2r

R

)

+ 2 log

(

sinh
Rφ

2L

)

, (5.5)

and

d2
L

= 2 log

(

2r

R

)

+ 2 log

(

sinh
R(2π − φ)

2L

)

. (5.6)
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(a) Plot of α against boundary angle φ.
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(b) Plot of angle φ against radius R for various α.

Figure 6. (a) α smoothly increases as we increase the size of the boundary region A (with angle

φ). The black hole is a BTZ black hole with horizon radius R = 2L. The boundary encodes no

information about region a′ for φ < π. For φ > π, it contains the α-bits for increasingly large α,

until eventually α = 1 and the region a′ can be decoded without any knowledge of the black hole

microstate. (b) The angle φ of the boundary region A required to decode the bulk region a′ for

fixed values of α steadily increases with the radius R of the black hole in AdS units. As the radius

becomes large, the required angle φ converges to (1 + α)π.

Since the horizon area is simply 2πR, we find that a boundary region of angle φ > π

encodes the α-bits of a BTZ black hole of horizon radius R for

α =
d1 − d2
2πR

=
log

(

sinhRφ2L

)

− log
(

sinhR(2π−φ)
2L

)

πRL
. (5.7)

Figure 6a shows how α increases smoothly with the size of the boundary region A for a

fixed black hole radius, while figure 6b shows how the size of the region required for any

fixed α increases as the black hole radius increases.

If we take the limit where R
L ≫ 1, while holding φ fixed, we find that

α =
2φ

2π
− 1. (5.8)

The fraction of the boundary required to encode the α-bits is the inverse of the α-bit

capacity of the noiseless qubit channel (1 + α)/2. This is identical to the fraction of the

Hawking radiation that we learned in section 3 was required to encode the α-bits of a black

hole. We discuss this further in section 8.5.

Finally we can calculate the size of the bulk region a′ (ignoring the black hole itself)

for which the α-bits are encoded in the boundary region A. An explicit calculation in

Schwardschild co-ordinates seems daunting, so we shall instead again take advantage of

the fact that the BTZ geometry is a quotient of pure AdS space. If we extend our picture

of the BTZ black hole to include both sides of the Einstein-Rosen bridge, we see from

figure 7 that two copies of region a′ forms the interior of a hexagon in hyperbolic space,

bounded by two copies of each of the geodesics A1 and A2 together with the edges of the

fundamental region of the BTZ quotient.

This hexagon could be broken down in four triangles whose vertices all lie on the

boundary of the space. These are known as ideal triangles and by using the symmetries
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Figure 7. A spatial slice of a two-sided BTZ black hole can be viewed as a quotient of the Poincaré

disk. The fundamental domain is shown unshaded. We split each boundary into regions A and Ā,

with an associated geodesic through the bulk (shown in red). The black hole horizon is shown in

blue. Between the horizon and the geodesics (and within the fundamental region) there is a copy

of region a′ on each side. The union of these two regions is bounded by an ideal hexagon on the

Poincaré disk.

of hyperbolic space, we can push the three boundary points to any other three boundary

points: this shows that the area of the triangles (and hence a′) is independent of both the

radius R of the black hole and the boundary angle φ.

To calculate the volume of the hexagon explicitly we can use the Gauss-Bonnet formula
∫

M
K dA +

∫

∂M
kgds = 2πχ(M). (5.9)

The Gaussian curvature K = − 1
L2 and so can be taken out the front of the integral. Since

the line segments are geodesics the only contribution to the boundary curvature term

comes from the six corners, each of which lies on the boundary and so has angle θ → π.

Finally the hexagon is homeomorphic to the disk and so has Euler characteristic χ(M) = 1.

Evaluating this we obtain,

Va′ =
1

2
Vhex =

1

2
(6θ − 2π)L2 = 2πL2. (5.10)

We see that the region a′ is always approximately AdS scale, as discussed above. A weakly

curved bulk dual is required for region a′ to be sharply defined.

6 Alpha-bits in tensor networks

Tensor networks have been widely studied as a toy model of holography in recent years [8,

21, 35–38]. We find that they also give simple toy models of holographic α-bit codes. Most

importantly, they provide very clear intuition for why state dependence appears in the

operator reconstruction; to reconstruct operators in the α-bit region to the boundary we

have to push them through the black hole itself. In other words, the isometry mapping bulk
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Figure 8. A pentagon code with a black hole in the centre. The black hole is modelled as a large

random tensor with a single D-dimensional dangling leg creating the space of allowed microstates

and ntot d-dimensional legs flowing into the network. The remaining tensors are all perfect tensors

with a single dangling d-dimensional leg that forms the bulk degrees of freedom and 5 d-dimensional

legs flowing into the network.

operators to boundary operators doesn’t just depend on the state of the black hole; part

of the isometry consists of the tensor that literally describes the state of the black hole.

We consider a version of the pentagon code developed in [8]. Empty AdS in the bulk

is described by perfect tensors, which have the property that they describe a unitary map

from any half of their legs (or indices if one is more traditionally inclined) to the other half.

Each six-legged tensor has a single dangling bulk leg. The overall network can be thought

of as an isometry19 from a bulk Hilbert space to a large boundary Hilbert space. The image

of the bulk Hilbert space can be thought of as the code subspace of the boundary space.

To include a black hole in this network, we simply add a random tensor with a large

number of legs at the centre of the network, as shown in figure 8. If we wish to include

an entire subspace of black hole microstate (rather than simply a single microstate), this

tensor must have also have dangling bulk input leg whose dimension is the number of

microstates we wish to consider.

If we divide the boundary into two regions A and Ā as before, there is a natural notion

of a bulk surface of ‘minimal area’, which is simply the path through the bulk which cuts

through the fewest bulk legs. If we have a black hole in the network, we can find the

minimal surface on either side of the black hole. Just as in real AdS/CFT, there may exist

tensors outside of the black hole that lie between these two geodesics, giving a region that

19If we view the tensor network a map from the bulk sites outwards to the boundary, we see that each

tensor in the network has at least three legs flowing ‘outwards’ and hence forms an isometry from the

dangling and inwards pointing legs to the outwards legs. Additionally so long as logD < ntot log d the

black hole random tensor will be approximately an isometry from the dangling microstates leg to the

remaining legs. The entire network is therefore an isometry from bulk to boundary.
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naturally corresponds to the region a′ in figure 4b. Depending on the boundary points

in question, the region a′ may contain anywhere from zero to two tensors adjacent to the

black hole (as well as potentially other tensors further from the black hole). This is in

agreement with our calculation in section 5, where we found that volume outside of the

black hole horizon for the region a′ in the BTZ geometry is of approximately AdS scale,

independent of both the radius of the black hole and the angle of the boundary contained

in region A.

Since the map from the bulk Hilbert space to the boundary Hilbert space is an isom-

etry, clearly operators in the bulk can be represented (non-uniquely) by operators in the

boundary. In fact we can use the properties of perfect tensors to do considerable better

than this and represent operators in the bulk with operators on only part of the boundary;

the isometry is an error-correcting code. To see why, note that we can view the perfect

tensor at our bulk operator site as a unitary map from the bulk leg, as well as two other

legs of our choice, to the remaining three legs. By conjugating the operator by this unitary,

we can map it to an operator acting on only those three legs of the tensor network. In turn,

we can ‘push’ the operator acting on those three legs, through more tensors, so long as we

always push the operator onto at least three new legs each time. In this way we can push

the operator onto only a subregion of the boundary and achieve a version of entanglement

wedge reconstruction.20

What happens if we have a situation equivalent to the one in section 4? In this context

that means that the difference between the size of the minimal cuts through the network

on each side of the black hole is less than the number of legs coming out of the black hole.

They naturally divide the bulk into regions a, a′ and ā, as in figure 4b. An example is

shown in figure 9. In this case we see that it is impossible to push an operator in region a′

between the two cuts to the boundary without pushing it through the black hole. Of course

we can only push the operator through the black hole if the black hole tensor is (at least

approximately) an isometry from the legs we treat as input to the legs we use as outputs.

A random tensor becomes approximately an isometry with very high precision in the

limit of large dimension if the dimension of the input grows less quickly than the output

dimension. If na legs flow out of the black hole into region a, while na′ flow into region

a′ and nā legs flow into region ā, then, in the limit of large bond dimension d, we can

approximately push the operator through the black hole (with its D allowed microstates)

and onto sites in region a so long as

logD + (nā + na′) log d < na log d. (6.1)

In other words we require

logD < (na − na′ − nā) log d =
na − na′ − nā

ntot
S (6.2)

20In fact the region that can be reconstructed is slightly different to what one might naively guess, since

the pentagon code does not always satisfy the Ryu-Takayanagi formula. Instead only the region known as

the greedy entanglement wedge can be reconstructed. For the same reason, the pentagon code will prove to

be a weaker α-bit encoding than true AdS/CFT.
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Figure 9. An example of an operator that can only be pushed to region A of the boundary through

the black hole. This can only be achieved if the space of microstates is small enough for the black

hole to act approximately as an isometry. In this case we have na = 12, while nā = 6 and na′ = 2.

As a result we must have logD < 4 log d, or equivalently α = 1

5
.

where ntot is the total number of legs flowing out of the black hole and S = ntot log d is the

entropy of the black hole. We can therefore consider at most D = eαS microstates, where

α =
na − na′ − nā

ntot
.

How does this compare to our formula for AdS/CFT? We have that

A2 −A1

A0
=
na + nexta − nā − nextā

ntot
, (6.3)

where nexta and nextā are the number of legs cut by the minimal surfaces which do not

connect to the black hole. In the case of figure 9,

nexta = nextā ,

while na′ = 2, so we cannot decode as large subspaces in the pentagon code as we expect

to be able to decode in AdS/CFT.

Since the pentagon code does not always satisfy the Ryu-Takayanagi formula this

should not disturb us; however, in this case the explanation is quite simple. Because the

bulk dangling legs in the pentagon code also have dimension d, we cannot ignore their

contribution to the bulk entropy. If region a′ has k tensors outside the black hole, these

can give an additional contribution of k log d to the bulk entanglement entropy. This means

that the quantum extremal surface can be pushed to exclude a′ even if we only have

logD >
(

na + nexta − nā − nextā − k
)

log d. (6.4)
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Figure 10. Region A is now sufficiently large that the same operator from figure 9, which is still

in region a′, can now be pushed directly to the boundary without passing through the black hole.

As a result it can be reconstructed on the boundary without any dependence on the state of the

black hole.

In the case of figure 9, we have k = na′ = 2 and so this is sufficient to explain the

discrepancy; however, it is possible to choose the region A of the boundary such that

operators in region a′ can only be decoded for smaller α than we expect from AdS/CFT

(even taking the bulk entanglement fully into account). Just as with ordinary quantum

error correction, the pentagon code gives a weaker α-bit encoding than true AdS/CFT.

As in AdS/CFT, if we make the region A sufficiently large, we are able to simulate

the bulk for an arbitrarily large space of microstates, or even for a maximally-entangled

black hole. As shown in figure 10, eventually, as A gets larger, it becomes possible to push

operators in region a′ to the boundary without having to push them through the black

hole. This gives a boundary operator that works exactly for any black hole state (or even

no black hole at all).

7 The space of black hole microstates

Throughout this paper and particularly (and explicitly) in section 4, we have assumed that

there exists a linear subspace

Hcode
∼= HBH ⊗Hext

with dimensions dBH and dcode satisfying

lim
GN→0

4GN log dBH = lim
GN→0

4GNdcode = A0 (7.1)
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where we can treat HBH as describing the microstate of the black hole, while Hext describes

the state outside the horizon. Is this a reasonable assumption?

In this section we try to argue as rigourously as possible that the answer is yes. Any-

one who already agrees with this claim may well find the arguments overly detailed and

pedantic. We encourage such readers to skip this section. However, since this paper is built

around effects that are only possible when the dimension of the code space is exponentially

large, it is important to justify that such exponentially large code spaces do in fact exist.

The AdS/CFT dictionary maps pure black hole microstates in the bulk to pure states

that are thermalised on the boundary. We would not necessarily expect the subset of a

Hilbert space consisting of approximately thermal pure states to form a linear subspace.

There may well be ways to take superpositions of thermal states and produce out-of-

equilibrium unthermalised states. As a result, it seems likely that there does not exist

a linear subspace of CFT states which contains ‘all’ black hole microstates, without also

including some states with very different properties to generic microstates.21

However attempting to include every black hole microstate in a subspace is much

harder than finding a subspace with only black hole microstates and the correct entropy

to leading order in GN . If

log dBH = (1− δ)
A0

4GN
(7.2)

for some fixed very small δ > 0, only a tiny fraction of the microstates, exponentially small

in 1
GN

, need be included. However, restricting to such a subspace only affects α by O(δ)

and can be ignored to leading order.22 It follows that it doesn’t matter whether we are

talking about the α-bits of this smaller space or the hypothetical much larger space of all

black hole microstates (if such a space could even be defined, as discussed above).

Let us start by considering the microcanonical ensemble: the maximally mixed state

formed from all energy eigenstates within some small energy window whose width is inde-

pendent of GN (we of course need the energy itself to scale as 1/GN in order to keep the

size of the black hole constant in AdS units). The dimension of this space will obviously

scale as eA0/4GN .

By the arguments made in [39], almost all states, in the subspace spanned by eigen-

states in this energy window, will look almost indistinguishable from the microcanonical

ensemble (which in turn will look like the thermal or canonical ensemble to leading order)

so long as we only look at the state restricted to a subregion with less than half the size of

the entire boundary. In fact, the measure concentration is so strong that we can use the

union bound to show that, with very high probability, this will be true for all states in a

21A more precise statement might be that there do not necessarily exist code spaces containing only

black hole microstates such that the projection of the thermal ensemble onto the code space approaches

the thermal ensemble in the semiclassical limit. It should nonetheless be possible to include all microstates

in a sufficiently small energy window without including unthermalised states, as we argue below.
22Indeed, if we know that code spaces with the correct properties exist in the limit GN → 0 for any δ > 0,

we can construct a sequence of such code spaces where δ → 0 (albeit potentially very slowly) as GN → 0.

This sequence of code spaces will exactly satisfy (7.1).
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randomly-chosen subspace of dimension

e
(1−δ)

A0
4GN

in the limit of small GN for any δ > 0. See, for example, similar arguments in [17].

This is essentially all we need to construct the space HBH: any such space has the

requisite size and all the states are indistinguishable from a thermal state (a black hole) if we

look at less than half the boundary, and hence an entanglement wedge that does not include

the black hole. It follows that all operators acting on this space approximately commute

with any bulk operator in any such entanglement wedge. There is a small entanglement

shadow around the black hole horizon which is not contained in any such entanglement

wedge, however, it is sufficient for our purposes that the degrees of freedom in HBH be

localised within this shadow, since by definition no entanglement wedge can enter it.

Furthermore, if we assume the eigenstate thermalisation hypothesis [40–42], then the

expectation of all simple correlation functions of bulk operators outside the horizon, even

ones within the entanglement shadow, will be approximately equal to the thermal expec-

tation for all eigenstates. In fact since the variance of the off-diagonal terms is suppressed

by e−S , this will still be true for all superpositions of at most e(1−δ)S eigenstates. An

advantage of this construction is that it allows us to explicitly construct the code space

simply by restricting to a very small energy window (of size e−δS). The argument based on

measure concentration only allows us to make statements about ‘most’ randomly chosen

subspaces.

We can therefore construct a space of sufficient size with no bulk degrees of freedom

outside the black hole horizon. Every state in the space is an “equilibrium state” [43] i.e.

they satisfy the KMS condition [44]. Let us assume we have constructed such a subspace,

which we shall call H0
BH. To extend our code space to include Hext and hence degrees of

freedom outside the black hole requires slightly more work, but essentially it is the same

procedure used to construct a code space associated to a single microstate, where we simply

add states to the code space if they can be produced by acting with bulk operators on the

microstate (up to some limit).

Suppose we do this for an entire basis of states {|Ωi〉} in H0
BH. We get a set of code

subspaces {Hi,ext} — one for each basis microstate. However, because we already argued

that the expectation of any bulk operator is constant within H0
BH, these individual code

subspaces will all be (approximately) orthogonal within the larger CFT Hilbert space. We

also have the canonical isomorphisms

abulk |Ωi〉 ∼= abulk |Ωj〉

for all bulk operators abulk. We can use these to identify

⊕iHi,ext
∼= HBH ⊗Hext, (7.3)

where

HBH
∼= H0

BH (7.4)

– 34 –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
7

and

Hext
∼= Hi,ext. (7.5)

Operators on Hext act on the code spaces Hi,ext while operators on HBH map those spaces

into one another in accordance with their action on the basis states {|Ωi〉}.
Any low-energy bulk operator outside the horizon preserves the code spaces Hi,ext, and

hence corresponds to an operator acting only on Hext. Meanwhile operators on HBH change

the state of the black hole itself, while leaving the state outside the horizon unchanged.

We have constructed Hcode as desired.

It is important to note that, while many of the steps that we have made in this

section are only true approximately, in most cases the corrections are suppressed by powers

of exp (−δA0/4GN ). As a result, almost all the statements in this section should be

perturbatively exact to all orders in GN for any fixed δ > 0.

The only approximation that is not exact at the level of the perturbative expansion is

the equivalence between the microcanonical ensemble of all states in a narrow energy range

and the canonical or thermal ensemble. We shall briefly explain this observation, mostly

to make it clear that it does not prevent our construction from being perturbatively exact.

If we accept the eigenstate thermalisation hypothesis, any bulk operator O can be written

in the energy eigenbasis as

fO(Ei)δij +O(e−S).

The expectation of O for the microcanonical ensemble is just fO(E). For the canonical

ensemble it is given by

∫

dE eS(E)−βEfO(E). (7.6)

To leading order in a saddle point expansion this agrees with the microcanonical ensemble.

However, higher-order corrections will break this equality and are only polynomially sup-

pressed in 1/S ∼ GN . Fortunately this disagreement is completely unproblematic for our

purposes; all we wanted is for every state in H0
BH to be indistinguishable at the perturba-

tive level outside the horizon — and for their leading order geometry to be a black hole.

Both the canonical and microcanonical ensembles are described by a black hole geometry

to leading order in GN , and both will have perturbative corrections and fluctuations in the

geometry from the excitation of fields (including gravitons) outside the horizon. The fact

the bulk correlators have perturbative differences just tells us that those perturbative bulk

corrections are different for the microcanonical and canonical ensembles.

For temperatures below the AdS scale, the black hole saddle point is no longer domi-

nant and so the canonical ensemble is dominated by states consisting of thermal excitations

on a vacuum-AdS background, as is the microcanonical ensemble at sufficiently low ener-

gies. Nevertheless, there still exists a saddle point in the partition function that becomes

semiclassical in the limit GN → 0. As a result, we expect all the arguments made above

to continue to apply, with the caveat that the ensembles being discussed are no longer,

strictly speaking, canonical or microcanonical.
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8 Discussion

8.1 Upper bounds on error correction accuracy

The results in this paper can be used to put strong upper bounds on the accuracy with

which error correction can be achieved in certain circumstances. The essential idea is that,

if some combination of code space and boundary region forms an α-bit code, but not an

(α+η)-bit code, we can place a hard lower bound on the error of the α-bit encoding. Since

an α-bit code can be viewed as a family of ordinary error correcting codes, one for every

subspace of sufficiently small dimension, this also puts a lower bound on the error of the

ordinary quantum error correcting codes associated with each of the subspaces.

The sudden emergence of previously tiny, non-perturbative errors to create dramatic,

leading-order effects is reminiscent of the expected breakdown of Hawking’s black hole

evaporation calculation at the Page time. Indeed we saw in section 3 that they are two

examples of the same phenomenon. No ‘new’ effect causes the change in qualititative

behaviour; instead the tiny corrections that have always been present build on top of each

other more and more until they suddenly become significant.

We again consider a code space Hcode ∈ HA ⊗ HĀ of states which all have a single

black hole of fixed size in the centre of the AdS bulk. We shall use the same notation given

in figure 4b. For simplicity we will assume that all states in the code space are identical

in region ā. This avoids the need to deal with the details of subsystem error correction.

However, the generalisation of the proof to subsystem or operator algebra error correction

is straightforward. Let

δ = sup
|ψ〉

‖ψRĀ − ψR ⊗ ωĀ‖1 , (8.1)

where ω is the maximally mixed state in the code space be the uncertainty in the forgetful-

ness for a reference system of fixed dimension dR. We know that δ grows at most linearly

with the dimension dR of the reference system [17].

Let

α <
A2 −A1

A0
< α+ η,

for some small η. Suppose that with dR = eαS , where S = A0/4GN as usual, we have

δ < e−η
′S ,

for some η′ > η. Then, for dR = e(α+η)S , we would have to have

δ < e(η−η
′)S ≪ 1. (8.2)

However this would mean that region A forms an (α+ η)-bit code for region a′, which was

shown to be impossible in section 4. It follows that for dR = eαS we must have

δ ≥ e−η
′S .
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A lower bound on the trace distance can be converted into a lower bound on relative

entropy using Pinsker’s inequality. There must therefore exist a state |ψ〉 ∈ Hcode ⊗ HR

such that

S
(

ψĀR‖ωĀ ⊗ ψR
)

≥ 1

2
e−2η′S . (8.3)

Since the entanglement wedge of ĀR does not include the black hole for either state, the

bulk relative entropy is zero. As a result this provides a strict upper bound on the accuracy

of the equality between bulk and boundary relative entropies (4.6), even when the bulk

relative entropy is zero.

Similarly, using (2.1), we see that this provides an upper bound on the accuracy of the

error correction for the α-bit code of

‖D ◦ TrĀ − Id‖⋄ ≥
1

64
e−2η′S . (8.4)

Of course this argument, as we have given it, only puts a lower bound on the largest

recovery error for any state in the space. In the Heisenberg picture, it lower bounds the

worst-case error in operator recovery. That operator may be some complicated operator

involving the black hole Hilbert space HBH.

However, even if we restrict ourselves to the algebra A of bulk operators in region

a′, but outside the black hole horizon, we can make an almost identical argument to the

one above, by using theorem 2 from appendix A. The uncertainty δA (defined formally

in (A.13)) with which the algebra A is forgotten by region Ā still grows at most linearly

with the allowed dimension of the reference system. Hence, if the algebra could be error

corrected too accurately for all code subspaces of dimension eαS (which would imply that δA
is similarly small, even for larger code spaces, so long as we restrict the reference dimension

to be at most eαS), it could also be corrected for all larger spaces (which we know to be

impossible) with the same bounds as above. The same argument can be made even for the

algebra generated by any single operator. It follows that we get the same lower bound on

the error for every operator in region a′, whether acting on the black hole or only acting

in the bulk outside the horizon.

By either tuning the region A or adjusting the value of α, we can make the parameter

η (and hence η′) arbitrarily small. It follows that there exist cases where error correction is

possible if GN → 0, but that at large but finite GN the smallest achievable error is greater

than exp(−η/GN ) for any arbitrarily small η > 0.23 Similarly there exist states whose bulk

relative entropy is zero, but whose boundary relative entropy is at least exp(−η/GN ) for

any η > 0.

The equality between bulk and boundary relative entropies is not true to all orders

in GN ; however, a more precise equality was developed in [24] that is true to all orders

in perturbation theory. If the bulk relative entropy is exactly zero, this reduces to the

statement that the boundary relative entropy should be perturbatively equal to zero to all

23Technically, the error should presumably smoothly interpolate between exponentially suppressed and

order one as the dimension is increased. However, we do not have semiclassical control over the effects of

such fine-grained changes in code space dimension.

– 37 –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
7

orders in GN . Even this more sophisticated equality was always expected to be broken

by non-perturbative effects. However, here we have shown that such effects are absolutely

required for the expected error-correction properties of AdS/CFT to hold — at least when

a black hole is involved.

If there is no black hole, our arguments do not apply. However, a simple argument [45]

based on the Reeh-Schlieder theorem [46] shows that it is still impossible for the error

correction to be exact, even for a code space based on perturbations of the vacuum state

|Ω〉. Divide the boundary into four non-empty disjoint regions A, B, C and such that some

bulk operator φ lies in the entanglement wedge of AB and the entanglement wedge of BC,

but not in the entanglement wedge of B. There exists a boundary operators φAB and φBC
acting on AB and BC respectively such that

φAB |Ω〉 ≃ φ |Ω〉 ≃ φBC |Ω〉 . (8.5)

Since φ does not lie in the entanglement wedge of B we know that φAB−φBC 6= 0. However,

since D is non-empty, then, by the Reeh-Schlieder theorem, we know that

(φAB − φBC) |Ω〉 6= 0 (8.6)

and hence the equalities in (8.5) cannot be exact. We cannot ascribe the approximate

nature of the error correction in AdS/CFT purely to the presence of particular black hole

microstates. However it is only in the presence of a black hole that we are able to place

lower bounds on the size of the error.

What causes these non-perturbative corrections? Clearly, it seems to have something

to do with the existence of a closely competing candidate for the entanglement wedge. The

exponents in the error bounds that we calculate are proportional to the difference between

the Ryu-Takayanagi formula, evaluated for each of the two candidate wedges. This has the

strong feel of a contribution from a subleading saddle point calculation. Unfortunately, it

is not clear how this such contributions should be calculated, at least in the usual approach

to deriving the RT formula [23, 47]. Such effects are, nonetheless, widely expected to exist

(for example, in order to smooth out phase transitions in the entanglement entropy at

finite N).

8.2 State dependence of the entanglement wedge

If we consider a code space Hcode of perturbations about vacuum-AdS, the entanglement

wedge of a region A of the boundary is state-independent in the semiclassical limit where

gravity decouples and the background geometry is fixed. We can of course consider super-

positions of states with different background classical geometries. However, since gravity

decouples, these become non-interacting superselection sectors of the theory. The entan-

glement wedge is fixed for each classical geometry and hence does not depend on the state

in any non-trivial sense.

In contrast, at finite coupling, the geometry is dynamical (and the bulk entanglement

term in the RT formula may in principle compete with the area term). As a result, the

entanglement wedge will in general depend on the state — the size of the fluctuations will be
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approximately Planckian scale. We will be unable to reconstruct operators precisely unless

they are separated from the entanglement wedge by a large distance in Planck units.

Alpha-bit codes for a black hole in the limit GN → 0 are in some sense an intermediate

case: the geometry is fixed and smooth at arbitrarily small scales. However, large amounts

of bulk entanglement can cause the entanglement wedge to be state-dependent. If we

believe in the ER = EPR correspondence [48], this bulk entanglement may itself have a

geometrical interpretation.

This provides arguably the most controlled setting in which the entanglement wedge

is state-dependent. We do not have to deal with any issues of backreaction or fluctuations

in the geometry. By making the coupling GN small, we can make the size of the α-bit

region (which was shown in section 5 to be approximately the AdS scale) arbitrarily large

compared to the Planck scale where the classical geometry breaks down. In this way we

are able to isolate the issues that arise from state dependence of the entanglement wedge,

without having to deal with all the attendant issues of the classical geometry breaking

down at the Planck scale.

Now consider the quantum error correction which exists in each of these three cases.

In the strict GN → 0 limit and the absence of black holes, the quantum error correction

approaches zero error. Conversely, at finite coupling, the error correction will always only

be approximate. Just like when we looked at the fluctuations of the engtanglement wedge,

the α-bit encodings discussed in this paper form an interesting intermediate case. The

actual error ε tends to zero for any decoding of allowed subspaces in the semiclassical

limit. However, the phenomenon is only possible at all because the error is non-zero for

any finite dimensional code space and finite coupling — it is still a phenomenon inherent

only to approximate quantum error correction.

It seems likely that, if we want to truly understand entanglement wedge reconstruction

in the context of a dynamical spacetime geometry, we may well have no choice but to think

hard about issues specific to approximate quantum error correction.

8.3 State dependence of operators and the Papadodimas-Raju proposal

Of course, in α-bit codes, it is not only the entanglement wedge that is state-dependent;

operators within the ‘α-bit region’ (region a′ in figure 5) are as well. If we wish to construct

a decoding map D : S(A) → S(a⊗ a′) such that

‖D ◦ TrĀ(·)− Trā(·)‖⋄ (8.7)

is small and hence we can recover the state on a ⊗ a′ from the state on A, we must

first choose some code subspace of dimension less than dα that we wish to decode —

it is impossible to construct an approximate decoding channel that works for all states

at once. In the Heisenberg picture, an operator φa′ that is local to region a′ can be

approximately simulated by an operator D†(φa′) on the boundary that is local to A so

long as we only require that this operator behave correctly when restricted to some code

subspace of dimension less than dα.

This state dependence of operators is unavoidable: there is no operator that will work

for all states at once. This is in contrast to previous work on entanglement wedge recon-
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struction where there was apparent state dependence because the method of constructing

the operator made use of a choice of fixed state, but where this was merely an artifact of

the construction. Boundary operators would still work for the entire code space, even if

the boundary operator corresponding to a given bulk operator was not unique and so could

have a definition that depended non-trivially on a choice of state.

One open question is to what extent similar state dependence exists for operators

reconstructed on boundary subregions, even in the absence of a black hole, but at finite

coupling. In this case fluctuations in the entanglement-wedge are only of order the Planck

scale and as a result it is not even clear how well-defined it is to talk about bulk operators

localised within such a region. Nonetheless, brushing aside such issues, one might speculate

that it should again prove possible to reconstruct operators near the RT surface with greater

accuracy if they only have to act correctly on a single state rather than an entire large code

space of states. We will not, however, do so any more here.

More importantly, it has been argued, primarily by Papadodimas and Raju [10, 11],

that local operators behind a black hole horizon are necessarily state-dependent. For some

fixed choice of KMS-equilibrium black hole state |ψ0〉 (essentially a pure state in the space

H0
BH that we defined in section 7), they use a variant of Tomita-Takesaki theory to construct

‘mirror operators’ that depend on |ψ0〉 and that they claim describe the modes behind the

black hole horizon. The mirror operators will behave correctly, so long as the state lies in

the ‘small Hilbert space’ formed by applying simple operators to the chosen equilibrium

black hole state |ψ0〉.
These small Hilbert spaces form the equivalent of the decodable code subspaces in

α-bit codes. Since their dimension is independent of GN , in our language it is tempting to

say that the Papadodimas-Raju proposal effectively gives a procedure for recovering the

zero-bits of the interior of the black hole.24

There has been considerable debate as to whether the Papadodimas-Raju proposal is

consistent with a standard quantum mechanical interpretation of the bulk e.g. [49]. In our

construction there are no such concerns: the state dependence is simply a phenomenon that

arises from this particular form of quantum error correction and because we are restricting

ourselves to a subregion of the boundary. If we have access to the entire boundary, the entire

bulk (outside the horizon) can be understood without resorting to any state dependence

beyond the basic geometry of the bulk itself. In contrast, in the Papdodimas-Raju proposal,

the observer always has access to the entire boundary; in this sense there aren’t any errors

to correct. If we accept the usual paradigm for error correction in AdS/CFT, where there is

an isometry from a bulk code space to a larger boundary Hilbert space, then all operators,

including interior operators should be reconstructable on the entire boundary in a state-

independent way.

24One apparent difference between the Papadodimas-Raju proposal and zero-bits is that the small Hilbert

space is not a completely arbitrary choice of subspace. Instead we are free to choose to choose the equilibrium

state |ψ0〉, and this choice determines the entire small Hilbert space. However, if we want to reconstruct

simple interior operators then we clearly need those simple operators to preserve the code subspace. So

this constraint on the small Hilbert space is simply a consequence of the fact that in α-bit codes it is only

meaningful to reconstruct operators for a subspace that is preserved by those operators.
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However there are important physical reasons, independent of Papadodimas-Raju con-

struction itself, to think that bulk reconstruction is only possible for interior modes in a

state-dependent way. Recent work [50] has shown that in a simple toy model of quantum

gravity, known as the SYK model, there exists an (over)complete basis of black hole mi-

crostates for which simple excitations behind the horizon can be pulled out of the horizon

by using a perturbed Hamiltonian which depends on the microstate in question. It follows

that we can decode interior operators by evolving exterior operators with this perturbed

Hamiltonian. However the reconstructed interior operator that one obtains will depend

on the black hole microstate. Even more recently, it was argued in [51] that it should be

possible in a general holographic CFT to use the mirror operators Õ to create a negative

energy shockwave that will pull degrees of freedom outside the horizon — provided the

state lies in the small Hilbert space defined above.

On the other hand, there clearly cannot be a single Hamiltonian that can pull out

interior modes for any black hole microstate. If such a Hamiltonian existed, we could

presumably use it to evolve one CFT in a thermofield double state and thereby create a

traversable wormhole without having any interaction between the two CFTs. From this, it

is very natural to conclude that the modes behind the horizon can only be defined on the

boundary in a state-dependent way. The Papadodimas-Raju proposal suggests that only

code subspaces of fixed dimension can be decoded — that perhaps only the zero-bits of

the black hole interior are encoded in the boundary CFT.

It is tempting to go further and suggest that these two examples of state dependence

— the α-bit codes discussed in this paper and the possible state dependence of operators

in the black hole interior — result from the same basic mechanism. In the situations

considered in this paper, the region a′ where operators are state-dependent lies behind the

causal (Rindler) horizon, just as the state dependence in the Papadodimas-Raju proposal

appears for operators behind the black hole horizon. Furthermore, if we consider too large

a code space of interior bulk states, it seems plausible that the RT surface might jump

to near the horizon, for states sufficiently entangled with a reference system. Hence it

would follow that interior modes could only be reconstructed for sufficiently small code

subspaces, thus ‘deriving’ something like the Papadodimas-Raju proposal from the same

sort of argument we have been making throughout this paper.

However, if we really take this argument seriously, we don’t reach quite the same

conclusion as Papadodimas and Raju. For a single-sided pure black hole the true Ryu-

Takayanagi surface for the entire boundary should trivially be empty since the boundary

state is pure. Even if we have a significant amount of bulk entanglement between the

region behind the horizon and a reference system, the entropy of the complete boundary

CFT will simply be equal to the entropy of the reference system. In order to make the

Ryu-Takayanagi surface lie directly on the black hole horizon we would need a reference

system of dimension

dR ∼ eS .

Hence bulk reconstruction for code spaces whose dimension

dS ∼ eαS ,
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for any α < 1, which would be far larger than the GN -independent small Hilbert space in

the Papadodimas-Raju proposal.

One speculative way to try to reconcile these differences would be to argue that we can

include the mirror operators for an increasing number of modes (perhaps because of the

reduced backreaction) as we take GN → 0, creating a Hilbert space whose dimension scales

rapidly with 1/GN . An alternative approach, which is perhaps more compelling, would

be to conclude that the Papadodimas-Raju proposal is correct but incomplete — that

there also exist more complicated reconstructions which work for larger code subspaces.

In particular it should be possible to combine the Papadodimas-Raju mirror operators ÕS
for a large number of orthogonal small Hilbert spaces HS with the boundary projectors PS
associated to each small Hilbert space to construct an operator

Õ =
∑

S

ÕSPS ,

that reproduces the bulk interior mode operator for a far larger class of states. This

argument will break down when the small Hilbert spaces stop all being approximately

orthogonal, but (by similar arguments to those in section 7) we might hope that this

should not occur if we only consider e(1−δ)S small Hilbert spaces for any fixed δ > 0. (Note

that even if you can decode operators directly behind the black hole for any code subspace

of dimension e(1−δ)S for arbitrary small δ > 0, it is still not possible to decode operators

directly behind the black hole for the thermofield double state, which, as we argued above,

should clearly be impossible.25)

Similarly, the method used in [50] to pull operators out from behind the horizon in the

SYK model relies on evolving the system with a perturbed Hamiltonian precisely tuned

to the black hole microstate in question. However, even if the Hamiltonian were only

approximately tuned to the microstate (for example if only some sufficiently large fraction

of the terms in the perturbed Hamiltonian were tuned correctly), it should still be possible

to successfully pull the mode from behind the horizon. Hence a single Hamiltonian, and

thus a single boundary reconstruction, can be used for a larger subspace of microstates. It

would be very interesting to try to calculate exactly how large a subspace could successfully

be reconstructed in this way.

As our understanding of AdS/CFT has developed, there has been a gradual de-

emphasis of the idea of a unitary isomorphism between two distinct bulk and boundary

Hilbert spaces, as in the traditional sense of a duality. Since most boundary states corre-

spond to a large black hole with little geometrical bulk interpretation, it is instead more

natural to think of an isometry from a code space of semiclassical geometrical bulk states

to the larger boundary space.26 By recognising that only a (relatively) small code space of

25The idea that the α-bits are encoded for any α < 1, but not for α = 1, is strongly reminiscent of the

discontinuity in the amortised α-bit capacity at α = 1, see [12].
26It is of course still possible that there exists a non-perturbative bulk description of the entire Hilbert

space. In this case we would have a true duality between different theories and the code space isometries

would simply come from the embedding of semiclassical sectors into the larger bulk Hilbert space. As yet,

however, such a complete non-perturbative bulk description remains unknown and it is not clear that one

must exist at all.
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states have any given bulk geometry, apparent paradoxes where bulk operators appeared

to commute with every local boundary operator were resolved [1]. However, if operators

behind a black hole horizon are truly necessarily state-dependent — despite the fact that

we have access to the entire boundary — then we cannot even have a simple isometry from

bulk to boundary, since an isometry can always be error-corrected exactly without any

need for state dependence.

One possibility is that we need to consider a general quantum channel, where bulk

operators outside the horizon can lie in the image of the space of boundary operators un-

der the adjoint channel, but bulk operators inside the horizon can only be simulated in a

state-dependent way. This more general formalism was used in [30], although any physical

implications of a noisy bulk-to-boundary channel were not discussed and the possiblility

was included mostly for the sake of completeness. However a noisy quantum channel does

not seem to be quite the right object. It would suggest that pure bulk states should be

associated to mixed boundary states. Instead almost the opposite seems to be the case,

with multiple bulk descriptions corresponding to the same pure boundary state. The bulk-

to-boundary map is more reminiscent of a linear map that is not always exactly isometric.

Certainly, such a non-isometric linear map could appear very naturally in a tensor network

model of AdS/CFT. For obvious physical reasons, generalisations of quantum error correc-

tion to such maps have not really been studied; they seem to be at least worth considering,

if we want to understand holography.

There is one final connection between the Papadodimas-Raju proposal and more gen-

eral zero-bit codes, which is too intriguing not to mention, but whose exact meaning and

significance is somewhat unclear to the authors of this paper. The mirror operators in the

Papadodimas-Raju proposal give an effective doubling of the CFT degrees of freedom, pro-

vided you only consider sufficiently simple operators. This doubling appears to correspond

extremely elegantly with the fact that it is possible to encode zero-bits at an asymptotic

rate of at most two zero-bits per qubit. In other words, if we only want the boundary state

to encode the zero-bits of the bulk state, we are able to encode twice the number of degrees

of freedom into the boundary state — potentially the modes both in front of and behind

the horizon. Of course, as discussed above, the map from bulk to boundary does not quite

seem to be a noisy quantum channel in the usual sense. Hence we cannot really think of

mirror operators as giving a capacity-achieving zero-bit code. However the correspondence

seems too tantalising to completely ignore.

8.4 Explicit reconstruction of state-dependent bulk operators

Until this point we have contented ourselves with showing the existence of decoding maps

with the desired properties, we have not worried about how they should be constructed.

Fortunately to a large degree this work has already been done for us. For any particular

choice of subspace that we wish to decode, finding an explicit decoding map for an α-bit

entanglement wedge is no different than the task of finding an explicit decoding map for

ordinary entanglement wedge error correction, when the code space is given by the subspace

we wish to decode. This task has been achieved recently in [30, 52].
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In [30], it was shown that operators in the entanglement wedge can be reconstructed

on the boundary using a universal decoding map, built from the twirled Petz map Rσ,N ,

developed in [53]. It is defined for some fixed state σ, which we shall take to be the

maximally mixed state on the subspace we wish to decode, and encoding channel N , which

here is simply the partial trace over Ā, by

Rσ,N =

∫

❘

dt β0(t)σ
1
2
(1−it)N †

(

N (σ)−
1
2
(1−it)(·)N (σ)−

1
2
(1+it)

)

σ
1
2
(1+it), (8.8)

where β0(t) :=
π
2 (cosh(πt)+1)−1. The argument in [30], like the arguments made here and

in [9], relies on the approximate equality between bulk and boundary relative entropies.

However, in this case, the relative entropies under consideration are associated to the

boundary region A, used to decode the state, rather than its complement Ā. For this

argument to go through, we need the bulk region we wish to reconstruct to be contained in

the entanglement wedge of A for all states (pure or mixed) in the space we wish to decode.

This is exactly equivalent, as we would hope, to the bulk region not being contained

in the entanglement wedge of ĀR for any pure state that may be entangled with the

reference system R. It follows that all the same arguments used in section 4 still apply

and the twirled Petz map can be used to decode correctable subspaces in the α-bit codes.

In practice unfortunately the twirled Petz map is hard to evaluate even for simple bulk

geometries — trying to do so for a particular subspace of black hole microstates is likely to

be essentially impossible. Furthermore, since the argument in [30] is based on the equality

of bulk and boundary relative entropies for bulk states that are not identical either within

or outside the entanglement wedge of A, it is unclear whether this recovery map is exact

to all orders in perturbation theory.

In [52] a different explicit formula for entanglement wedge reconstruction was developed

by relating the bulk and boundary modular flows (the evolution of operators using the

modular Hamiltonian K = − log ρ). The basic extension of the extrapolate dictionary to

bulk and boundary modular evolutions of operators developed in [52] should continue to

apply when the bulk contains a black hole. However, because the bulk no longer consists

only of free fields to leading order (the reconstruction needs to also somehow depend on

the state of the black hole), the bulk modular-evolved fields will no longer be simply a

Bogoliubov transformation of the original fields. This was the key property used in [52] to

argue that they formed a natural basis to attempt entanglement wedge reconstruction.

It should be essentially unsurprising that explicit construction of the state dependent

operators is highly challenging in practice. The whole point of the requirement of state

dependence is that we are unable to reconstruct the operators without taking advantage

of our detailed knowledge of the subspace of black hole states in question. In section 6 we

saw that in tensor network toy models this involves literally pushing the operator through

the black hole; all the details of the construction of the boundary operator depend on the

black hole states in question. Nonetheless it is comforting that there exist an explicit, even

if impractical, reconstruction procedure.
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8.5 Black holes are α-bit sup?

We argued in section 3 that the α-bits of a black hole are encoded in any fraction

greater than

p =
1 + α

2

of its Hawking radiation so long as the evaporation is approximately thermodynamically

reversible. The α-bit capacity of the noiseless qubit channel [12] is equal to

2

1 + α
.

It follows that Hawking radiation is a capacity-achieving α-bit encoding of the black hole

state.

Although less obvious at first glance, this continues to be true in the ‘entanglement-

assisted’ case, when some Hawking radiation (with entropy βS) has been emitted before

the unknown black hole is dropped in: in this case we require a fraction greater than

p =
1 + α− β

2
(8.9)

of the Hawking radiation in order to decode a subspace of dimension exp(αS). The

‘entanglement-assistance’ has reduced the fraction of the Hawking radiation that is re-

quired to decode a subspace of the same size, so this might seem to exceed the α-bit

capacity. However, Bob had to know the state of the original black hole, which must have

had entropy of at least βS in order to be so entangled with the original Hawking radiation.

Even if the remaining ‘unknown’ entropy of the black hole were as large as possible, it

would only be equal to (1− β)S. As a result, Bob is effectively only recovering the α′-bits

of this smaller unknown system for

α′ =
α

1− β
. (8.10)

He can decode the α′-bits of a system with entropy (1−β)S using Hawking radiation with

entropy only

pS =
1 + α′

2
(1− β)S. (8.11)

In other words, we find that the α′-bits of the unknown black hole are still being encoded

at the noiseless α′-bit capacity rate of 2/(1 + α′).

If the black hole evaporation is significantly thermodynamically irreversible, it no

longer saturates the α-bit capacities. However, this inefficiency is an inevitable conse-

quence of thermodynamic entropy being produced. As we saw in (3.3), the black hole

still reveals its α-bits in the Hawking radiation as soon as the Hawking radiation contains

sufficient entropy to both purify the black hole and encode the α-bits of the initial state

Similarly, in section 5, we found that the α-bits of a large (in AdS units) BTZ black

hole are encoded holographically in any fraction of the boundary greater than

1 + α

2
.
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This is in fact also true in higher dimensions, since we can approximate minimal surfaces

around a large black hole by the minimal surface connecting the horizon to the boundary,

together with part of the horizon itself. Corrections to this approximation will only be of

order the AdS scale and so are negligible in the limit of large horizon area. As a result

they have no effect on α to leading order in L/R.

If we impose a UV cut-off on the CFT, which cuts off the bulk close to the horizon

area, we should expect the effective dimension of the CFT to be only of order eS . As a

result, the boundary subregion forms a capacity-achieving encoding of the black hole state.

Because black holes seem to achieve the α-bit capacity whenever possible, we say that

black holes are ‘α-bit sup’. As discussed in section 3, the subspace decoupling duality

shows that anything which looks ‘as thermal as possible’ when looking at less than half of

its degrees of freedom is necessarily also α-bit sup when one has access to more than half

of the degrees of freedom. It should therefore not surprise us at all that black holes tend

to satisfy it. However, to a physicist used to thinking of black holes as hiding information

whenever possible, it may seem counterintuitive that we can equivalently think of them as

revealing information (specifically their α-bits) as soon as possible.

At this point, there exist almost no known explicit constructions of capacity-achieving

α-bit codes;27 it has only been possible to show that they exist by considering randomly

chosen unitaries. It is questionable exactly how much more explicit it is to define a space

as ‘a subspace of black hole states in AdS/CFT’ than to define it as ‘a subspace that is

k-forgetful to the environment (which provably must exist)’, but it is amusing to note from

a quantum information perspective that black holes therefore form the first example of

an explicit capacity-achieving α-bit code for a noiseless quantum channel (for a forgiving

definition of explicit).
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A Operator algebra quantum error correction and the information dis-

turbance tradeoff

The framework of operator algebra quantum error correction was first introduced in [55];

it is a generalisation of the notion of subsystem quantum error correction that is natural

in holography because it allows one to talk about superpositions of different geometries in

AdS/CFT [1, 56]. Even though we make essentially no use of the formalism in the rest

27The only known example is for the zero-bit capacity of the noiseless cbit channel [54].
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of the paper, we include a brief review here, mainly focussed on providing a statement of

(and also something of the context behind) theorem 2, which was first proved in [15].28

Theorem 2, applied to the special case of a subsystem error correcting code as (4.13),

lies at the heart of the results of section 4. We include the operator algebraic version here

because it has not appeared previously in the literature on AdS/CFT and is the natu-

ral generalisation of the Dong-Harlow-Wall condition [9] to approximate reconstruction.

Using the argument from [24] that the boundary relative entropy is zero to all orders in

perturbation theory if the bulk states agree exactly, theorem 2 is sufficient to prove that

entanglement wedge reconstruction can be made exact to all orders in 1/N . A version of

the proof assuming the existence of a tensor product factorization was given in section 4.1.

We give a more general argument from an algebraic perspective here, although we still

need to assume that all the Hilbert spaces involved are finite-dimensional.

So long as the dimension of the code space grows at most polynomially with N or

1/GN , there is no need to consider a reference system and the argument can proceed

almost identically to the argument based on assuming exact error correction given in [9].

However, as we have seen in this paper, the argument completely fails for larger code

spaces unless we additionally consider states entangled with a reference system. Explicitly

considering the approximate case therefore provides important non-trivial insight.

A quantum channel N : S(H1) → S(H2) is a completely positive trace-preserving

linear superoperator and hence maps density matrices to density matrices. The adjoint

channel N † : L(H2) → L(H1) is defined by

Tr
(

N †(X)ρ
)

= Tr (XN (ρ)) (A.1)

and hence is a unital, trace-preserving map from operators on H2 to operators on H1.

When working in the Heisenberg picture, this is sometimes given as the definition of a

quantum channel.

The diamond norm between two channels N1, N2 is defined by

‖N1 −N2‖⋄ = sup
‖ρ‖1≤1

‖[(N1 −N2)⊗ IdR] ρ‖1 , (A.2)

where we can take the dimension of the reference Hilbert space HR to be equal to the

dimension of H1. Equivalently

‖N1 −N2‖⋄ = sup
X 6=0

∥

∥

∥

[(

N †
1 −N †

2

)

⊗ IdR

]

X
∥

∥

∥

∞

‖X‖∞
, (A.3)

where the supremum is taken over non-zero operators X acting on H2 ⊗HR.

A finite-dimensional von Neumann algebra A ⊆ L(H1) is a subset of linear operators

that contains the identity and is closed under multiplication, scalar multiplication, addition

and Hermitian conjugation. It can be shown that for such an algebra, there exists an

orthogonal decomposition of the Hilbert space

H1 =
⊕

i

HAi
⊗HĀi

28For earlier related results, see [58].
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such that the algebra A consists of all operators of the form

X =
∑

i

Xi ⊗ ✶Āi

for Xi ∈ L (HAi
). If Pi is the projector onto HAi

⊗HĀi
, we define the projector PA onto

the algebra to be the quantum channel

PA(ρ) =
∑

i

1

dĀi

TrĀi
(Pi ρPi)⊗ ✶Āi

, (A.4)

Note that P2
A = PA = P†

A. PA is therefore both trace-preserving and unital; it is the

quantum channel in both the Schrödinger and Heisenberg pictures. For notational con-

venience we write ρA = PA(ρ). The image of the channel PA (when acting on density

matrices) is the intersection of the algebra A with space of density matrices S(H) and is

canonically isomorphic to the space of positive normalised linear functionals on A, which

is the standard abstract definition of states on a von Neumann algebra.

We say that the pair of channels N : S(H1) → S(H2) and D : S(H2) → S(H1) form

an exact quantum error correcting code for the finite-dimensional von Neumann algebra

A if

D ◦ N = PA. (A.5)

Note this implies that for all X ∈ A then

(D ◦ N )†X = PA(X) = X. (A.6)

To make this approximate, we simply allow some small separation εA in terms of the

diamond norm

‖D ◦ N − PA‖⋄ ≤ εA. (A.7)

Define the von Neumann algebra A′ to be the set of operators that commute with all

operators in A (this is known as the commutant of A). These are the operators of the form

X ′ =
∑

i

✶Ai
⊗X ′

i (A.8)

for X ′
i ∈ L

(

HĀi

)

. By considering the Stinespring dilation V : H1 → H1 ⊗H1 defined by

V
(

|ψi〉Ai ⊗ |φi〉Āi

)

= |ψi〉Ai
⊗ |ωi〉ĀiAi

⊗ |φi〉Āi
(A.9)

for some maximally entangled state |ωi〉 ∈ HĀi
⊗HAi

, we see that PA′ is the complementary

channel to PA.

This relationship allows the application of the following theorem [57], defined in terms

of the fidelity between channels

F (N ,M) = min
ρ
F ((N ⊗ Id) ρ, (M⊗ Id) ρ) (A.10)

where F (ρ, σ) is the usual fidelity between states.
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Theorem 1.

max
R

F (R ◦N ,M) = max
R′

F
(

N c,R′ ◦Mc
)

(A.11)

where Qc is the complementary channel to Q.

If we take the channel M to be the projector PA onto the algebra and convert the

statements about fidelities into statements about distances with respect to the diamond

norm, we obtain the following result, which was first proved in [15].

Theorem 2. Let

εA = min
D

‖D ◦ N − PA‖⋄ (A.12)

and let

δA = ‖N c −N c ◦ PA′‖⋄ . (A.13)

Then

1

4
δ2A ≤ εA ≤ 2δ

1
2

A. (A.14)

For the purposes of this paper, we are mostly content to consider the case of a single

geometry, which could treat as subsystem quantum error correction without causing serious

problems.29 This corresponds to the special case of operator algebra error correction where

the centre of the algebra is trivial and hence the Hilbert space

H1 = Ha ⊗Hā.

The algebra A is simply operators on Ha while the commutant A′ consists of operators on

Hā. The projectors become

PA = Trā (·)⊗ ωā and PA = ωa ⊗ Tra (·) ,

where ω is maximally mixed in both cases. It follows that

εA = min
D

∥

∥D ◦ N − Trā (·)⊗ ωā
∥

∥

⋄
= min

D
‖D ◦ N − Trā (·)‖⋄ .

If, as in section 4, we define N to be the restriction of TrĀ(·) to S(Hcode) (and hence

N c is the restriction of TrA(·) to S(Hcode)), then εA and δA become δ1 and δ2, as defined

in (4.8) and (4.9), respectively. We see that theorem 2 becomes (4.13).

As we saw throughout this paper, for large code spaces the fact δA is defined using

the diamond norm (and hence that we have to consider states entangled with a reference

29In reality, all the statements in section 4 are more precisely interpreted as statements about operator

algebras; the use of the subsystem error correction paradigm was purely for pedagogical reasons. Since

nothing in section 4 relied on the (false) assumption that the algebras had trivial centres, the entirety of

section 4 can, if desired, be converted back into the (less sloppy) language of operator algebras using the

dictionary given below.
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system) is crucially important. However, if the dimension d of the code space is fixed in

the limit GN → 0, we can use the bound [17]

‖N −M‖⋄ ≤ d sup
|ψ〉∈Hcode

‖N (ψ)−M(ψ)‖1 (A.15)

to avoid considering any sort of reference system at all.

It was shown in [24] that for any two, up to non-perturbative corrections, the boundary

relative entropy,

S(ρĀ||σĀ) = 〈AXσ +Kbulk,σ〉ρ − 〈AXρ +Kbulk,ρ〉ρ, (A.16)

where AX is the area of the RT surface, Kbulk is the bulk relative entropy for region ā and

we have ignored higher curvature corrections (we assume λ → ∞). Since the right hand

side of (A.16) depends only on the restriction of the bulk states to algebra A′,

S(ρĀ||(ρA′)|Ā) ≤ ε, (A.17)

for some ε that is non-perturbatively small in GN .
30 As usual, we convert the relative

entropy into a trace distance using Pinsker’s inequality, which gives

‖(N c −N c ◦ PA′) ρ‖1 ≤
√
2ε ln 2, (A.18)

which is also non-perturbatively small. If the dimension d of the code space is held fixed (or

even grows polynomially in 1/GN or N), then δA and εA will also be non-perturbatively

small and the error correction will be exact to all orders in perturbation theory

As a final technical comment, when working perturbatively to higher orders in GN , we

need to take into account the state dependence of the entanglement wedge ā. At finite GN ,

different states therefore have different algebras A and A′ associated to the same boundary

regions A and Ā. To fix this we should instead work with the bulk algebra A′
0 associated

to the union of the entanglement wedge ā for all states in the code space. Then for any

algebra A′ associated to the entanglement wedge ā of a particular state ρ,

PA′PA′
0
= PA′ , (A.19)

and hence
∥

∥

∥
N c ◦ (Id− PA′

0
) ρ

∥

∥

∥

1
≤ ‖N c ◦ (Id− PA′) ρ‖1 +

∥

∥

∥
N c ◦ (Id− PA′)(PA′

0
(ρ))

∥

∥

∥

1
≤

√
8ε ln 2

(A.20)

where we have used the fact that both ρ and PA′
0
(ρ) have the same entanglement wedge

and hence satisfy (A.18) for the same algebra A′.

It follows that only the algebra A0 associated to the intersection of the entanglement

wedge a for all states can be decoded from region A. In the limit GN → 0, the entanglement

wedge for every state converges to the classical entanglement wedge with no backreaction

and hence the algebra A0 becomes the algebra associated to the classical region a.

30To be as rigorous as possible in our construction we should acknowledge that the boundary theory also

does not actually factorise into Hilbert spaces on A and Ā and hence N and N c are really projectors onto

the algebras of regions A and Ā respectively, rather than partial traces onto subsystems. However, this

makes no difference to the argument.
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