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Abstract In this paper we study the problem of learning the gradient function with

application to variable selection and determining variable covariation. Firstly, we pro-

pose a novel unifying framework for coordinate gradient learning from the perspective

of multi-task learning. Various variable selection methods can be regarded as special

instances of this framework. Secondly, we formulate the dual problems of gradient

learning with general loss functions. This enables the direct application of standard

optimization toolboxes to the case of gradient learning. For instance, gradient learning

with SVM loss can be solved by quadratic programming (QP) routines. Thirdly, we

propose a novel gradient learning formulation which can be cast as a learning the kernel

matrix problem. Its relation with sparse regularization is highlighted. A semi-infinite

linear programming (SILP) approach and an iterative optimization approach are pro-

posed to efficiently solve this problem. Finally, we validate our proposed approaches

on both synthetic and real datasets.
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1 Introduction

Kernel methods [31,32], such as Support Vector Machines (SVMs), have been success-

fully demonstrated in many supervised learning tasks. In this case, we are interested

in learning an appropriate function for regression or classification. However, in many
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applications we are not only interested in learning a target function, but also wish to

learn salient coordinate variables and their interaction with each other. This problem

has strong practical motivations: to facilitate data visualization and dimensionality re-

duction, for example. Such a motivation is important when there are many redundant

variables and we wish to find the salient features among these. These problems can

occur in many contexts. For example, with gene expression array data sets, the vast

majority of features may be redundant to a classification task and we need to find

a small subset of genuinely distinguishing features (genes). These motivations have

driven the design of various statistical and machine learning models [8,15,35,36] for

variable (feature) selection.

In this paper we are concerned with learning the gradient function and its applications

to variable selection. Specifically, let X ⊆ Rd be compact, Y ⊆ R, Z = X × Y and

Nn = {1, 2 . . . , n} for any n ∈ N. For any x ∈ X, we denote x by (x1, x2, . . . , xd).

The relation between the unknown target function f∗ and the input space is described

by an observed set of input/outputs z = {(xi, yi) : i ∈ Nm}. Our aim is to simulate

the gradient of a target function f∗ (if it exists) denoted by ∇f∗(x) =
( ∂f∗
∂x1 , . . . ,

∂f∗
∂xd

)
and apply it to variable selection. The intuition behind gradient learning for variable

selection [29,27,28] is as follows. The specific norm of ∂f∗
∂xp can indicate the salience of

the p-th variable: the smaller the norm is, the less important this variable will be.

In this paper we address the problem of learning the gradient and its applications to

variable selection. Our main contributions are summarized as follows.

– We propose a unified framework for gradient learning which allows the more flexible

recovery of structures underlying the problem of gradient learning 1. The main idea

is to formulate gradient learning using matrix-valued kernels for multi-task learning

[23,24,6].

– We establish a dual formulation for this unified framework with general loss func-

tions. This enables the efficient implementation of gradient learning with SVM

hinge loss. In contrast, the implementation of gradient learning in [29,27] is based

on Newton’s method. The loss function is required to be twice differentiable and

hence excludes the SVM hinge loss.

– A novel gradient learning algorithm is proposed from the perspective of learn-

ing the kernel matrix problem [19] and sparse nonparametric group lasso [3]. A

semi-infinite linear programming (SILP) approach and an alternative approach of

iterative optimization are introduced to efficiently solve this problem.

The above contributions rely on very recent developments from machine learning:

multi-task learning [23,24,6] and multiple kernel learning with sparse regularization

(aka nonparametric group lasso) [3,19,34]. These new insights introduced for gradient

learning are important for the following reasons. Firstly, the multi-task formulation

for gradient learning allows a deeper understanding of current gradient learning algo-

rithms. Secondly, the novel gradient learning from the perspective of learning the kernel

problem enables a natural sparse regularization and allows an efficient implementation.

Note this is less straightforward for the gradient learning in [29,27]. Thirdly, we will

show that, due to the sparsity, our new gradient learning algorithms are more effective

to remove redundant features and can achieve state-of-the-art feature selection results

on real cancer datasets.

1 Part of this multi-task formulation first appeared as a conference paper [38]. This journal
version includes more illustrative examples.
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The organization of this paper is as follows. In Section 2, we briefly review the theory

of multi-task kernels and introduce a unifying approach for gradient learning. In par-

ticular, we provide several concrete examples that can be derived from this framework

and highlight their relationships with existing methods. Section 3 investigates the dual

problem of gradient learning algorithms with general loss functions. In Section 4, we

propose a novel gradient learning algorithm which can be cast as the problem of learn-

ing the kernel matrix. We validate our proposed approaches on both synthetic and real

data sets in Section 5. In particular, for the Leukemia cancer data set [14] our proposed

method achieves zero test error with only 3 genes which is more promising than the

solution using 8 genes found by recursive feature elimination with a SVM [15].

2 General Framework for Gradient Learning

As described above, we are concerned with learning the target function f∗ and its

gradient ∇f∗. This naturally can be regarded as multi-task learning: learning a vector-

valued function F∗ := (f∗,∇f∗). With this motivation, this section briefly describes

a general formulation of the gradient learning problem using ideas from multi-task

learning. Throughout this paper, we use the notation ⟨·, ·⟩ and ∥ · ∥ to denote the

standard Euclidean inner product and norm respectively. A description of notations is

summarized in Table 1.

2.1 General Learning Model

We depart from the definition of multi-task kernels, see [23,24] and the reference

therein.

Definition 1 We say that a function K : X × X → R(d+1)×(d+1) is a multi-task

(matrix-valued) kernel on X if, for any x, t ∈ X, K(x, t)T = K(t, x), and it is positive

semi-definite, i.e., for any m ∈ N, {xj ∈ X : j ∈ Nm} and {cj ∈ Rd+1 : j ∈ Nm} there

holds ∑
i,j∈Nm

⟨ci,K(xi, xj)cj⟩ ≥ 0. (1)

In the spirit of Moore-Aronszjain’s theorem, there exists a one-to-one correspondence

between the multi-task kernel K with property (1) and a vector-valued reproducing

kernel Hilbert space (RKHS) of functions F : X → Rd+1 with inner product ⟨·, ·⟩K
denoted by HK, see e.g. [23,24,6]. Moreover, for any x ∈ X, c ∈ Rd+1 and F ∈ HK,

we have the reproducing property

⟨F(x), c⟩ = ⟨F,Kxc⟩K (2)

where Kxc : X → Rd+1 is defined, for any t ∈ X, by Kxc(t) := K(t, x)c.

In the following we describe our unified framework for gradient learning. To this end,

we adopt the notations f = (f1, . . . , fd), F = (f0, f) and xij = xi − xj . The derivation

of gradient learning algorithms is motivated by the Taylor expansion2 of the target

2 Our form of Taylor expansion is slightly different from that used in [27,29]. However, the
essential idea is the same.
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Table 1 Notations

name notation meaning

input space X subset of Euclidean space Rd

x, t elements of X
xℓ ℓ-th coordinate of x
xij xi − xj

Nk(i) k-nearest neighbor of xi

x̃ extended vector of x: (0, x⊤)⊤

x̃ij x̃i − x̃j

ẽ1 first coordinate basis in Rd+1

output space Y binary valued space {±1}
Z product space: X × Y
m number of training samples
z input/outputs data {(xi, yi)}mi=1
f∗ target function
∇f∗ d-dim gradient of target function
F∗ vector-valued function (f∗,∇f∗)

scalar kernel G real valued reproducing kernel
HG scalar RKHS space with kernel G
⟨·, ·⟩G inner product in HG

multi-task kernel K matrix-valued kernel, see Def. 1
HK RKHS with multi-task kernel K
⟨·, ·⟩ standard Euclidean inner product
⟨·, ·⟩K inner product in HK

vector function F = (f0, f1, . . . , fd) (d+ 1)-dim function in HK
f = (f1, . . . , fd) d-dim vector-valued function
Fz = (f0z, f1z, . . . , fdz) (d+ 1)-dim optimization solution
fz = (f1z, . . . , fdz) components of Fz

function f∗: f∗(xi) ≈ f∗(xj)+∇f∗(xj)xij . Then, a function f0 is used to learn f∗, and
f to simulate ∇f∗. Replacing f∗(xi) by yi, the error

yi ≈ f0(xj) + f(xj)xij

is expected to be small whenever xi is close to xj . To enforce the constraint that xi
is close to xj , we could use a weight function produced by a Gaussian with deviation

s defined by wij = s−(d+2)e−∥xi−xj∥2/2s2 . Another alternative is to use the k-nearest

neighborhood (kNN), e.g.

wij =

{
1

mk if xj ∈ Nk(i)

0 otherwise
(3)

where Nk(i) denotes the kNN of xi. This implies that wij ≈ 0 if xi is far away from

xj . We now propose the following formulation for gradient learning:

Fz = arg min
F∈HK

{
C

∑
i,j∈Nm

wijL
(
yi, f0(xj) + f(xj)xij

)
+

1

2
∥F∥2K

}
. (4)

where L : R× R → [0,∞) is a prescribed loss function and C is a positive parameter.

The minimum is taken over a vector-valued RKHS with multi-task kernel K. The first

component f0z of the minimizer Fz = (f0z, fz) of the above algorithm is used to

simulate the target function and fz := (f1z, . . . , fdz) to learn the true gradient.

We further introduce an equivalent formulation of (4) which will be convenient for the

derivation of its dual problem and the design of optimization approaches in subsequent
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sections. To this end, let ẽp be the p-th coordinate basis in Rd+1. For any x ∈ Rd,

denote the vector x̃⊤ by (0, x⊤) and, for any i, j ∈ Nm, x̃ij = x̃i − x̃j . By the repro-

ducing property (2), we have that f0(xj) = ⟨F(xj), ẽ1⟩ = ⟨F,Kxj ẽ1⟩K and likewise,

⟨f(xj), xij⟩ = ⟨F(xj), x̃ij⟩ = ⟨F,Kxj x̃ij⟩K. Then, formulation (4) can be rewritten as

min
F∈HK

{
C

∑
i,j∈Nm

wijL
(
yi, ⟨F,Kxj (ẽ1 + x̃ij)⟩K

)
+

1

2
∥F∥2K

}
. (5)

In the next subsections we will start with its representer theorem, and then unify dif-

ferent feature selection approaches [15,27,29] in the framework of multi-task learning.

2.2 Representer Theorem

In analogy with standard kernel methods [31,32], we have the following representer

theorem for the minimization problem (5) by using the properties of multi-task kernels.

Theorem 1 For any multi-task kernel K, consider the gradient learning formulation

(5). Then, there exists representer coefficients {cj,z ∈ Rd+1 : j ∈ Nm} such that

Fz =
∑
j∈Nm

Kxj cj,z

and, for every j ∈ Nm, the representer coefficient cj,z ∈ span{ẽ1, x̃i : i ∈ Nm}.

Proof We can write any minimizer Fz ∈ HK as Fz = F∥+F⊥ where F∥ is in the linear

span of
{
Kxj ẽ1,Kxj x̃i, i, j ∈ Nm

}
and F⊥ is perpendicular to this span space. By the

reproducing property (2), we have that ⟨F(xj), ẽ1 + x̃ij⟩ = ⟨F,Kxj (ẽ1 + x̃ij)⟩K =

⟨F∥,Kxj (ẽ1 + x̃ij)⟩K. Hence, F⊥ makes no contribution to the loss function in the

formulation (5). However, the norm ∥F∥2K = ∥F∥∥2K+∥F⊥∥2K > ∥F∥∥2K unless F⊥ = 0.

This implies that any solution Fz belongs to the span space
{
Kxj ẽ1,Kxj x̃i, i, j ∈ Nm

}
and the corresponding representer coefficients belong to the span of {ẽ1, x̃i : i ∈ Nm}.
�

The representer theorem indicates that the optimal solution Fz of problem (5) lives

in the finite span of training samples which paves the way for designing efficient opti-

mization algorithms for gradient learning.

2.3 Examples and Related Work

As listed below, we can get different gradient learning algorithms by choosing different

multi-task kernel K. We note that if K is a diagonal matrix-valued kernel, then each

component of a vector-valued function in the associated RKHS of K can be represented,

independently of the other components, as a function in the RKHS of a scalar kernel.

Consequently, in our first example we choose, for a prescribed scalar kernel G, the

multi-task kernel K defined, for any x, t ∈ X, by K(x, t) = G(x, t)Id+1. Then, for any

function F ∈ HK, it is equivalent to the case that fp ∈ HG for any p ∈ Nd+1. Hence

we can use the ranking criterion {∥fpz∥G : p ∈ Nd} for variable selection.
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Example 1 Let G be a scalar kernel and K(x, t) = G(x, t)Id+1. Then, problem (5) is

reduced to gradient learning methods proposed by [27,29,28].

Our next example is motivated by the Hessian of Gaussian kernel proposed in [6] and

introduced for gradient learning in [38].

Example 2 For any smooth RBF kernel G, i.e. G(x, t) = ϕ(∥x− t∥2) for some smooth

function ϕ : (0,∞) → R, define the multi-task kernel K by

K(x, t) =

(
G(x, t), (∇tG(x, t))T

∇xG(x, t) ∇2
xtG(x, t)

)
. (6)

Then, problem (5) is reduced to the following formulation

fz = arg min
f∈HG

{
C

∑
i,j∈Nm

wijL(yi, f(xj) +∇f(xj)
⊤xij) +

1

2
∥f∥2G

}
(7)

Moreover, Fz = (fz, ∇fz) where, for any x ∈ X, fz(x) =
∑

j∈Nm
(cj0G(xj , x) +∑

ℓ∈Nd
cjℓ

∂G(xj ,x)
∂xℓ ).

Proof From the representer theorem above, we see that every solution of problem (5)

can be written as

Fz = (f0z, f1z, . . . , fdz) =
∑
j∈Nm

Kxjcj .

With K defined by equation (6), we know from [38, Proof of Proposition 1], for any

smooth Mercer kernel G, that

fpz =
∂f0z
∂xp

∈ HG

and

⟨∂G(·, xi)
∂xpi

, G(·, xj)⟩G =
∂G(xi, xj)

∂xpi
, ⟨

∂G(·, xj)
∂xpj

,
∂G(·, xi)

∂xqi
⟩G =

∂2G(xi, xj)

∂xpi ∂x
q
j

.

Combining this observation with property (2) we have that

∥Fz∥2K =
∑

i,j∈Nm

c⊤i K(xi, xj)cj = ∥f0z∥2G.

Letting f0z = fz yields the desired assertion. �
Moreover, one can exactly compute the criterion

{
∥ ∂fz
∂xp ∥G : p ∈ Nd

}
for the solution

of problem (7) and use them for variable selection, see the appendix in [38].

Further specifying G as a linear kernel in the multi-task kernel K defined by (6), it is

easy to see that problem (7) is reduced to a standard regularization scheme.

Example 3 Let wij = 1
m for any i, j ∈ Nm and

K(x, t) =

(
x⊤t t⊤

x Id

)
. (8)

Then, problem (5) is reduced to the following standard regularization scheme

wz = arg min
w∈Rd

{
C

∑
i∈Nm

L(yi, w
⊤xi) +

1

2
∥w∥2

}
with Fz = (w⊤

z x,wz).
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Note the gradient in this example is exactly wz. If we choose the loss function as SVM

hinge loss we get the SVM-RFE for feature selection [15].

We now turn our attention to a discussion of existing methods for feature selection. A

number of statistical models have been proposed for variable (feature) selection using

sparse regularization. Least absolute shrinkage and selection operator (LASSO) [35]

and basis pursuit denoising [8] suggested use of ℓ1 regularization to remove redundant

features. Several authors [26,7] proposed and studied feature selection methods for

SVMs that incorporate scaling factors into the kernel: KA(x, y) = K(Ax,Ay) where

A is a diagonal matrix of scaling factors a1, a2, . . . , an. Training is performed by itera-

tively optimizing α for a fixed A (regular dual problem of SVM training) and optimizing

A for fixed α by gradient descent. Another direction for variable selection is motivated

by the margin bound criterion of SVM: variables with least influence on the margin are

considered least important. Guyon et al. [15] proposed a recursive feature elimination

(RFE) strategy which used a linear SVM. In the linear case, as shown in Example 3

gradient learning and SVM margin-based criterion for variable selection coincides with

each other since both of them use the criterion {|wp| : p ∈ Nd} for variable rank-

ing. Weston et al. [36] also introduced a method for selecting features by minimizing

generalization bounds.

3 Dual Formulation for Gradient Learning

The above unifying formulation for gradient learning enables us to directly derive the

dual problem of gradient learning. This will facilitate optimization design of gradient

learning for general loss functions such as SVM hinge loss. Similar dual problems

are discussed for standard regularization schemes [41] and multi-kernel regularization

algorithms [37].

Theorem 2 Suppose that the loss function L : R× R → [0,∞) is convex with respect

to the second argument. Let L∗ be the adjoint function of L defined, for any y ∈ Y and

α ∈ R, by L∗(y, α) = max
s∈R

{sα− L(y, s)}. Then the dual problem of (5) is given by

αz = argmax
α

−C
∑

i,j∈Nm

L∗
(
yi,−

αij

C

)
wij −

1

2

∑
i,j,i′,j′∈Nm

wijαijwi′j′αi′j′

×
[
(ẽ1 + x̃ij)

TK(xj , xj′)(ẽ1 + x̃i′j′)
]
.

(9)

and, the solution is given by

Fz =
∑
i,j

αij,zwijKxj (ẽ1 + x̃ij). (10)

Proof Since L is convex with respect to the second argument, for any y ∈ Y, t ∈ R there

holds that L(y, t) = max
α∈R

{−tα − L∗(y,−α)}. Consequently, the objective function in

problem (5) can be written as

min
F∈HK

C
∑

i,j∈Nm

wij max
αij

{−αij⟨F,Kxj (ẽ1 + x̃ij)⟩K − L∗(yi,−αij)}+
1

2
∥F∥2K.
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Using the min-max theorem (e.g. [41]), this is identical to the following

max
α

min
F∈HK

{
−
⟨
F, C

∑
ij

wijαijKxj (ẽ1 + x̃ij)
⟩
K +

1

2
∥F∥2K

}
−C

∑
ij

wijL
∗(yi,−αij).

(11)

The minimum of the term within the first parenthesis is attained at

F = C
∑
i,j

αijwijKxj (ẽ1 + x̃ij),

and its minimum equals

−C2

2

∑
i,j,i′,j′∈Nm

wijαijwi′j′αi′j′

[
(ẽ1 + x̃ij)

TK(xj , xj′)(ẽ1 + x̃i′j′)
]
.

Replacing α by α/C, from equation (11) we get the desired result. �

By the above theorem, we can derive the dual problem of gradient learning by calcu-

lating the adjoint function L∗ for a different loss function L. Here are some examples.

Least Square Loss: For the least square loss L(y, t) = (y−t)2, L∗(y, α) = yα+ α2

4 .

The dual problem becomes

max
α

∑
i,j∈Nm

(
yiαij −

α2
ij

4C

)
wij −

1

2

∑
i,j,i′,j′∈Nm

αijwijwi′j′αi′j′

×
[
(ẽ1 + x̃ij)

TK(xj , xj′)(ẽ1 + x̃i′j′)
]
.

In binary classification, replacing αij by yiαij , the above equation is further reduced

to

max
α

∑
i,j∈Nm

wij

(
αij −

α2
ij

4C

)
− 1

2

∑
i,j,i′,j′∈Nm

yiwijαijyjαi′j′wi′j′yi′yj′

×
[
(ẽ1 + x̃ij)

TK(xj , xj′)(ẽ1 + x̃i′j′)
]
.

Soft Margin Loss: For the SVM hinge loss L(y, t) = (1− yt)+,

L∗(y, α) =

{
yα, −1 ≤ yα ≤ 0

∞, otherwise

The dual formulation in Theorem 2 is reduced to the following:

max
α

∑
i,j∈Nm

yiwijαij −
1

2

∑
i,j,i′,j′∈Nm

αijwijαi′j′wi′j′

×
[
(ẽ1 + x̃ij)

⊤K(xj , xj′)(ẽ1 + x̃i′j′)
]

s.t. 0 ≤ αijyi ≤ C, ∀i, j ∈ Nm.
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Replace αij by yiαij yields the following dual problem of gradient learning with

the SVM hinge loss:

max
α

∑
i,j∈Nm

wijαij −
1

2

∑
i,j,i′,j′∈Nm

wijαijyiαi′j′wi′j′yi′yjyj′

×
[
(ẽ1 + x̃ij)

⊤K(xj , xj′)(ẽ1 + x̃i′j′)
]

s.t. 0 ≤ αij ≤ C, ∀i, j ∈ Nm.

(12)

2-Norm Soft Margin Loss: For the 2-norm SVM loss L(y, t) = (1− yt)2+,

L∗(y, α) =

{
yα+ α2

4 , yα < 0

∞, otherwise

The corresponding dual problem becomes

min
α

∑
i,j∈Nm

wij(αij −
α2
ij

4C
)− 1

2

∑
i,j,i′,j′∈Nm

wijαijyiyjwi′j′αi′j′yi′yj′

×
[
(ẽ1 + x̃ij)

TK(xj , xj′)(ẽ1 + x̃i′j′)
]

s.t. 0 ≤ αij , ∀i, j ∈ Nm.

In the above three examples, note that(
wij(ẽ1 + x̃ij)

TK(xj , xj′)(ẽ1 + x̃i′j′)wi′j′

)
(i,j),(i′,j′)

is a scalar kernel matrix with double indices (i, j) and (i′, j′). The dual problem of

SVM-like gradient learning can be solved by quadratic programming. Once we get the

dual solution αz then the solution of gradient learning can be represented by

Fz =
∑

i,j∈Nm

yiwijαij,zKxj (ẽ1 + x̃ij).

It is also worth mentioning that we know from equation (9) that optimization is only

needed to be implemented in the space {αij : wij ̸= 0, i, j ∈ Nm} which is useful to

reduce computational complexity. We will come back to this point in Section 5.

4 Learning the Kernel Matrix for Gradient Learning

In this section we depart from the unified dual problem in the above section and

formulate gradient learning as a well-established kernel matrix learning problem. This

important observation enables us to directly apply the optimization approaches in [19,

34] to the scenario of gradient learning.

To this end, let G be a prescribed scalar kernel. We first introduce the notation

S0(α) = C
∑

i,j∈Nm

L∗(yi,−αij/C)wij +
1

2

∑
i,j,i′,j′∈Nm

wijαijwi′j′αi′j′G(xj , xj′). (13)
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Also, for any ℓ ∈ Nd, let x
ℓ
ij = xℓi − xℓj and define the kernel matrix Kℓ related to the

ℓ-th coordinate by

Kℓ =
(
wijx

ℓ
ijx

ℓ
i′j′wi′j′G(xj , xj′)

)
ij,i′j′

. (14)

In addition, for any matrix α = (αij)
m
i,j=1 we denote by vec(α) a column vector which

consecutively stacks the column vectors of the matrix α. Let

Sℓ(α) =
1

2
vec(α)⊤Kℓvec(α). (15)

Consequently, when the multi-task kernel K = GId+1, we know from Theorem 2 that

the dual problem of algorithm (5) is exactly

max
α

−S0(α)−
∑
ℓ∈Nd

Sℓ(α).

Furthermore, the optimum is given, for any ℓ ∈ Nd, by fℓ,z =
∑

ij wijαij,zx
ℓ
ijGxj

which means that

∥fℓ,z∥2G = vec(αz)
⊤Kℓvec(αz) = 2Sℓ(αz). (16)

Since the norm of {∥fℓ,z∥G : ℓ ∈ Nd} measures the saliency of coordinate variables, we

know from equation (16) that the kernel matrix Kℓ determines the importance of the

ℓ-th variable. For this reason we later refer to Kℓ as the ℓ-th coordinate kernel matrix.

Consequently, from the dual perspective it indicates that the gradient learning algo-

rithm (5) is identical to the case of taking summation of all coordinate kernel matrices,

i.e.

max
α

−S0(α)−
1

2
vec(α)⊤

( ∑
ℓ∈Nd

Kℓ

)
vec(α). (17)

With this motivation we propose the following formulation to learn the linear combi-

nation of coordinate kernel matrices:

min
β

max
α

−S0(α)−
1

2
vec(α)⊤

( ∑
ℓ∈Nd

βℓKℓ

)
vec(α), s.t.

∑
ℓ

βℓ = 1, βℓ ≥ 0, ∀ ℓ. (18)

Equivalently,

min
β

max
α

−S0(α)−
∑
ℓ∈Nd

βℓSℓ(α), s.t.
∑
ℓ

βℓ = 1, βℓ ≥ 0, ∀ ℓ, (19)

where Sℓ is defined by equation (15). For this reason, we refer to our gradient learning

algorithm (19) as GradKL. Since the weights β is restricted to the simplex ∆ = {β :∑
ℓ βℓ = 1, βℓ ≥ 0, ∀ ℓ}, this ℓ1-regularization restriction on β promotes the sparsity of

the coordinate kernel matrices {Kℓ : ℓ ∈ Nd}, and hence intuitively gives the saliency

of coordinates (variables).

In principal, we can formulate the above problem as semi-definite programming (SDP)

or quadratically constrained quadratic programming (QCQP) as in [19]. We use the

efficient semi-infinite linear optimization approach [34] which scales well with respect

to large data sets. The GradKL algorithm (19) is a typical concave convex problem,

i.e. concave with respect to α and convex with respect to β. Efficient bundle methods

[20] would also be possible for the gradient learning problem (19).
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4.1 Semi-infinite Linear Approach

In this subsection we show that algorithm (19) can be solved by a semi-infinite linear

programming (SILP), see e.g. [16,34]. The SILP problem refers to an optimization

problem that solves a linear objective function subject to infinite number of linear

constraints.

Theorem 3 The gradient learning algorithm (19) can be reformulated as a SILP prob-

lem:

max
γ,β

γ

s.t.
∑
ℓ∈Nd

βℓ = 1, 0 ≤ β ≤ 1

γ −
∑
ℓ∈Nd

βℓSℓ(α) ≤ S0(α),∀α.

(20)

Proof We know that problem (19) can be equivalently formulated as

max
β

min
α

S0(α) +
∑
ℓ∈Nd

βℓSℓ(α).

Then, the proof is direct from the equivalence between γ = minα S0(α)+
∑d

ℓ=0 βℓSℓ(α),

and the equation γ −
∑

ℓ∈Nd
βℓSℓ(α) ≤ S0(α), ∀α. �

In equation (20), there are infinite number of constraints (indexed by α) which is usually

termed semi-infinite linear programming (SILP). The SILP can be solved by an iterative

algorithm called column generation (or exchange methods) which is guaranteed to

converge to a global optimum. The basic idea is to compute the optimum (β, γ) by

linear programming for a restricted subset of constraints, and update the constraint

subset based on the obtained suboptimal (β, γ).

Given restricted constraints {αp : p = 1, ..., P}, first we find the intermediate solution

(β, γ) by the following linear programming optimization with P linear constraints

max
γ,β

γ

s.t.
∑
ℓ

βℓ = 1, 0 ≤ β ≤ 1

γ −
∑
ℓ

βℓSℓ(αp) ≤ S0(αp), ∀p = 1, . . . , P.

(21)

This problem is often called the restricted master problem. Then, we find the next

constraint with the maximum violation for the given intermediate solution (β, γ), i.e.

min
α

d∑
ℓ∈Nd

βℓSℓ(α) + S0(α). (22)

If the optimizer α∗ of the above equation satisfies
∑

ℓ βℓSℓ(α
∗) + S0(α) ≥ γ then the

current intermediate solution (β, γ) is optimal for the optimization (20). Otherwise α∗

should be added to the restriction set. We repeat the above iteration until convergence
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which is guaranteed to be globally optimal, see e.g. [16,34]. Similar to the convergence

criterion in [34], the algorithm stops when

∣∣∣∣∣∣∣∣1−
∑
ℓ

β
(t−1)
ℓ Sℓ(α

(t)) + S0(α
(t))

γ(t−1)

∣∣∣∣∣∣∣∣ ≤ ϵ.

By Theorem 2 the sub-optimization (22) is gradient learning with multi-task kernel K =

BG = diag([1, β])G. We list below some examples for the sub-optimization problem

(22).

Least Square Loss For least square loss, the maximum violation problem (22)

can be obtained by the linear system

min
α

∑
i,j∈Nm

wij

(
− αij +

α2
ij

4C

)
+

1

2

∑
i,j,i′,j′∈Nm

yiwijαijyiwi′j′αi′j′yi′

×
[
(ẽ1 + x̃ij)

⊤diag([1, β])(ẽ1 + x̃i′j′)G(xj , xj′)
]
.

Soft Margin Loss For SVM hinge loss, the sub-algorithm (22) is reduced to the

following QP problem

min
α

−
∑

i,j∈Nm

wijαij +
1

2

∑
i,j,i′,j′∈Nm

wijαijyiwi′j′αi′j′yi′

×
[
(ẽ1 + x̃ij)

⊤diag([1, β])(ẽ1 + x̃i′j′)G(xj , xj′)
]

s.t. 0 ≤ αij ≤ C, ∀i, j = 1, . . . ,m.

(23)

2-Norm Soft Margin Loss For 2-norm SVM hinge loss, subproblem (22) can be

solved by the following QP optimization

min
α

∑
i,j∈Nm

wij

(
− αij +

α2
ij

4C

)
+

1

2

∑
i,j,i′,j′∈Nm

wijαijyiwi′j′αi′j′yi′

×
[
(ẽ1 + x̃ij)

⊤diag([1, β])(ẽ1 + x̃i′j′)G(xj , xj′)
]

s.t. 0 ≤ αij , ∀i, j = 1, . . . ,m.

The above formulation for gradient learning focuses on the learning weights β only

when the trade-off parameter C is fixed. In analogy to the spirit of [12], we can easily

extend this formulation with least square loss or 2-norm soft margin SVM loss to the

case of automatically learning C and β together. However, no improved performance

is guaranteed for this joint optimization compared with the case of fixed C.
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4.2 Relation with ℓ1-Regularization and Iterative Optimization

We further explore the equivalent form of algorithm (19) from the sparse regularization

perspective. In particular we investigate its close relationship with the well-established

sparse ℓ1-regularization. To this end, given a scalar kernel G we consider the following

set of multi-task kernels

K =
{
BG : B = diag(1, β1, . . . , βd),

∑
ℓ∈Nd

βℓ = 1, βℓ ≥ 0, ∀ℓ ∈ Nd

}
. (24)

We consider the following algorithm to jointly learn the gradient function and the

multi-task kernel K ∈ K

min
K∈K

min
F∈HK

∥F∥2K + C
∑

i,j∈Nm

wijL
(
yi, ⟨F,Kxj (ẽ1 + x̃ij)⟩K

)
. (25)

Theorem 4 Let B and K be defined by equation (24). Then, the dual problem of

algorithm (25) is exactly (19). Moreover, (25) can be equivalently rewritten as

min
F

∥f0∥2G +
∑
ℓ∈Nd

∥fℓ∥2G
βℓ

+ C
∑

i,j∈Nm

wijL
(
yi, ⟨F,BGxj (ẽ1 + x̃ij)⟩K

)
s.t.

∑
ℓ∈Nd

βℓ = 1, βℓ ≥ 0, ∀ℓ ∈ Nd.
(26)

Proof For fixed K ∈ K (i.e. fixed β), by Theorem 2 it is easy to check that the dual

problem is identical to the following:

max
α

−
d∑

ℓ∈Nd

βℓSℓ(α)− S0(α).

Consequently, the dual problem of algorithm (25) is reduced to algorithm (19), i.e.

min
β

max
α

−
d∑

ℓ∈Nd

βℓSℓ(α)− S0(α),

The second argument is directly from the observation that, for any K = BG,

∥F∥2K = ∥f0∥2G +
∑
ℓ∈Nd

∥fℓ∥2G
βℓ

.

This completes the proof of the theorem. �

As mentioned above, the restriction of β can be regarded as ℓ1-regularization. From

the above equation, if some βℓ is close to zero then ∥fℓ∥G should be close to zero since

we are minimizing the objective function. This will give sparsity for RKHS norms

{∥fℓ∥G : ℓ ∈ Nd}. Indeed, it is shown in [25] that

min
β

{∑
ℓ∈Nd

∥fℓ∥2G/βℓ :
∑
ℓ

βℓ = 1, βℓ ≥ 0
}
=

(∑
ℓ

∥fℓ∥G
)2

. (27)
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Hence, algorithm (25) can be further reformulated as a direct minimization with ℓ1-

regularizer over the RKHS norms {∥fℓ∥G : ℓ ∈ Nd}:

min
F

∥f0∥2G + (
∑
ℓ∈Nd

∥fℓ∥G)2 + C
∑

i,j∈Nm

wijL
(
yi, ⟨F,BGxj (ẽ1 + x̃ij)⟩K

)
. (28)

The regularization term in equation (27) is usually referred to as block ℓ1 regularization.

The parallel work of [34,25] used similar regularization terms but from the motivation

of multiple kernel learning for data integration which is also known as nonparametric

groupd lasso [3].

The SILP approach iteratively solves the linear programming problem using the sim-

plex method, for example. When the feature dimension d is very large, of the order of

thousands, the SILP approach suffers from computational inefficiency. As an alternative

approach, we employ an alternate updating method which avoids linear programming.

In particular, this alternative optimization approach builds on the following observa-

tion.

Theorem 5 Suppose that the loss function L : R× R → [0,∞) is convex with respect

to the second argument. Then, the gradient learning problem (25) is jointly convex with

respective to F and λ.

Proof It suffices to prove the joint convexity of ∥f∥2G/λ with respect to f ∈ HG and

λ ∈ (0, 1). Its proof is parallel to that in [1] except replacing Euclidean space by RKHS

and the positive semi-definite matrix D by λ. For completeness, we briefly prove it for

our specific scenario. We need to show, for any f1, f2 ∈ HG and λ1, λ2 ∈ (0, 1) and

θ ∈ (0, 1), that

∥θf1 + (1− θ)f2∥2G
θλ1 + (1− θ)λ2

≤ ∥θf1∥2G
θλ1

+
∥(1− θ)f2∥2G
(1− θ)λ2

Let a = 1
λ1θ

, b = 1
(1−θ)λ2

, c = 1
θλ1+(1−θ)λ2

and f = θf1 + (1 − θ)f2, g = θf1. Since

f1, f2 is arbitrary, the above equation is reduced to the following:

c∥f∥2G ≤ a∥g∥2G + b∥f − g∥2G, ∀f, g ∈ HG.

Equivalently,

c∥f∥2G ≤ min
g∈HG

a∥g∥2G + b∥f − g∥2G

= ∥f∥2G
b2a

(a+b)2
+ ∥f∥2G

a2b
(a+b)2

, ∀f ∈ HG.

which is obviously true by the definition of a, b, c. This completes the proof of the

convexity. �

We now propose an extremely simple iterative approach from the primal problem (26).

In particular, we first initialize β
(0)
ℓ = 1

d for any ℓ ∈ Nd. Then, for this fixed kernel

coefficient β(0), solve the dual formulation (9) for gradient learning with fixed multi-

task kernel K = diag
(
1, β

(0)
1 , . . . , β

(0)
d

)
G. Next, for any t ∈ N we update β(t) for fixed

F(t−1) and update F(t) for fixed β(t). We repeat the above iteration until convergence.

The convergence can reasonably be monitored by changes of the objective function.

Based on the joint convexity of algorithm (26) proved in Theorem 5, global convergence

is expected. The detailed updates at step t ∈ N for general loss function L are listed

as follows:
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– For fixed F(t), β
(t)
ℓ =

∥f(t−1)
ℓ ∥G∑

ℓ

∥f (t−1)
ℓ ∥G

for any ℓ ∈ Nd.

– For given β(t), f
(t)
ℓ (·) = β

(t)
ℓ

∑
i

α
(t)
ij wij(x

ℓ
i − xℓj)G(xi, ·). Here, α(t) = (α

(t)
ij ) is

given by solving the dual formulation

αz = argmax
α

−C
∑

i,j∈Nm

L∗
(
yi,−

αij

C

)
wij −

1

2

∑
i,j,i′,j′∈Nm

wijαijwi′j′αi′j′

×
[
(ẽ1 + x̃ij)

TK(xj , xj′)(ẽ1 + x̃i′j′)
]
.

where K = diag(1, β
(t)
1 , . . . , β

(t)
d )G.

Recall [25] that

( |w1|∑
ℓ∈Nm

|wℓ|
, . . . ,

|wm|∑
ℓ∈Nm

|wℓ|

)
= argmin

{ ∑
ℓ∈Nd

w2
ℓ

βℓ
:
∑
ℓ∈Nd

βℓ = 1, βℓ ≥ 0
}
.

Hence, the first update for β follows directly by replacing, for any ℓ ∈ Nd, wℓ with

∥fℓ∥G. By the dual formulation (9) of gradient learning with general multi-task kernels,

letting K = diag(1, β1, . . . , βd)G directly yields the second update.

In [5] the LASSO type regularization
∑

ℓ ∥fℓ∥G was introduced to gradient learning

for regression. Precisely they estimate ∇f∗ by

fz = arg min
f∈H d

G

∑
ij∈Nm

wij

(
yi − yj − f(xj)x̃ij

)2

+ λ
∑
ℓ

∥fℓ∥G.

Note in this algorithm yj replaces f0(xj) and only the gradient function is estimated.

It can be solved by the proximal forward-backward splitting iteration technique [10].

Similar to the block regularization above, sparsity is used to realize automatic feature

subset selection. When the least square loss is used, the empirical error term in the

gradient learning formulation is exactly the same as the local polynomial modeling

[13]. Kernel models introduced in [29,27,28,5] and this paper enable various penalties

and the use of sparsity. This is important for variable selection.

5 Experiments

In this section we validate the proposed kernel matrix learning approaches for gradient

learning with applications to variable selection and covariation.

To this end, we first discuss the computational complexity of gradient learning. From

Theorem 2, the dual problem of SVM-like gradient learning can be solved by quadratic

programming with respect to α ∈ Rm2

with time complexity O(m6) which makes

gradient learning computationally prohibitive. For least square loss function or a proper

class of multi-task kernels such as radial basis kernels, the computation time can be

reduced to low dimension formulation with α ∈ Rsm where s is the rank of data matrix

{x1 − xm, x2 − xm, . . . , xm−1 − xm}, see [27,29,38]. However, in most cases s is either

the number of training sample m or dimension of feature space d.
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To reduce computational complexity, we define wij by equation (3) using k-nearest

neighbors to restrict the Taylor expansion to first order. Hence, optimization is re-

stricted to the space α ∈ Rmk with α = {αij : i ∈ Nm, j ∈ Nk(i)}. This will yield

reduced complexity O(k3m3). When k is too small, we may lose useful information

for learning gradient. On other hand if k is too large, as mentioned above we have

high computational complexity. Moreover we may include noise information since the

approximation to gradient function using a Taylor expansion is unreliable if samples

are far away from each other. Although the parameter k should be chosen from appro-

priate cross-validation on the training samples, in our experience k = 8 is generally a

proper choice from computational efficiency and performance.

Throughout all experiments, the parameter C is fixed to be C = 1, for simplicity,

and the weights wij are given by equation (3) taking k = 8 nearest neighbor. All

experiments are implemented using MATLAB3. For the implementation of quadratic

programming and linear programming, we use the MOSEK package4. As in [27,29,38],

for the solution Fz = (f0z, fz) of gradient learning algorithms (19) (i.e. (26)) we use

the coordinate covariance

Cov(fz) =
(
⟨fpz, fqz⟩G

)
p,q∈Nd

(29)

to measure how the variables covary. Also, the variable (feature) ranking can be done

according to the following relative magnitude of norm of each component of fz

sp =
∥fpz∥G∑

q∈Nd

∥fqz∥G
, ∀p ∈ Nd. (30)

5.1 Synthetic Data

In the first experiment we compare two types of gradient learning with SVM soft mar-

gin loss. The first one uses an independent multi-task kernel K = GI(d+1)×(d+1) (i.e.

algorithm (17)) (Grad-SVM) and the other one is kernel matrix learning for gradi-

ent learning (GradKL-SVM) defined by equation (19) (i.e. algorithm (26)). For the

algorithm GradKL-SVM, we use the SILP approach.

In this experiment, only the first two features are relevant to the classification task.

The remaining 20 redundant features are distributed according to a small Gaussian

random deviate. The distribution for the first two features is shown in subfigure (a) of

Figure 1. Subfigure (b) and (d) respectively shows ranked features and the covariance

matrix Cov(fz) using {sp : p ∈ Nd} for gradient learning with SVM loss (Grad-SVM)

which is equivalent to standard ℓ2 regularization. Subfigure (c) and (e) are results of our

proposed algorithm GradKL-SVM (19) which is shown to be equivalent to algorithm

(26) with ℓ1-regularization. As expected, GradKL-SVM is more effective at removing

the redundant features.

3 MATLAB code will soon be available in http://www.cs.ucl.ac.uk/staff/Y.Ying
4 http://www.mosek.com/
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Fig. 1 Performance of Gradient learning with soft margin SVM; (a) illustration of the dataset
with the first two features; (b) and (d) ranked features and coordinate covariance by Grad-
SVM; (c) and (e) ranked features and coordinate covariance by GradKL-SVM.

5.2 Cancer Datasets

Next we test our gradient learning algorithm (19) with least square loss (GradKL-LS)

and SVM hinge loss (GradKL-SVM) on real cancer datasets. We also compare it with

the ordinary gradient learning with independent multi-task kernel K = GI(d+1)×(d+1)

which respectively is denoted by Grad-LS and Grad-SVM depending on the loss func-

tion. Since the dimension of features is usually larger than thousands, we use the

alternative iterative optimization to solve GradKL algorithms as presented in Section

4.2. To test the effect of variable selection by gradient learning, we first rank the genes

by gradient learning on training samples and then make prediction on the test set

which is performed by hard margin linear SVM.

The first dataset is a well-known Leukemia dataset [14] for analyzing gene expression

data obtained from DNA micro-arrays in order to classify types of cancer. The problem

is to distinguish between two variants of leukemia (ALL and AML). The data is split

into a training set and a test set. The training set consists of 38 samples (27 ALL and

11 AML) from bone marrow specimens. The test set has 34 samples (20 ALL and 14

AML), prepared under different experimental conditions and including 24 bone marrow

and 10 blood sample specimens. All samples have 7129 features, corresponding to some

normalized gene expression value extracted from the micro-array image. The dataset

is normalized to be mean zero and unit deviation. In [26], the authors got zero error

on the test set using the top 40 genes. In [36], the authors report zero error with 20

genes and 1 error with 5 genes. The state-of-art result was achieved by [15] with zero

test error for 8 genes.
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Table 2 Test set accuracy comparison on Leukemia cancer dataset [14]; The result for SVM-
RFE is cited from [15]. The missing results of SVM-RFE for top 3, 5, 6 ranked genes are denoted
by dash line. The best test set accuracy for each method is marked in bold.

No. of genes GradKL-LS GradKL-SVM Grad-LS Grad-SVM SVM-RFE
1 0.91 0.91 0.76 0.76 0.79
2 0.94 0.94 0.76 0.79 0.88
3 1.00 1.00 0.73 0.79 –
4 1.00 1.00 0.70 0.76 0.91
5 1.00 1.00 0.82 0.82 –
6 1.00 1.00 0.82 0.82 –
8 0.82 1.00 0.88 0.79 1.00
16 0.91 0.94 0.91 0.91 1.00
32 0.91 0.91 0.94 0.94 0.97
64 0.91 0.94 0.91 0.91 0.94
128 0.85 0.94 0.97 0.97 0.97
256 0.94 0.97 0.97 0.97 0.94
512 0.97 0.94 0.91 0.91 0.88
1024 0.94 0.91 0.91 0.91 0.94
2048 0.94 0.94 0.91 0.91 0.85
4096 0.91 0.91 0.91 0.91 0.71
7129 0.91 0.91 0.91 0.91 0.85

We compare our method with SVM-RFE [15]5. The result of SVM-RFE is directly

taken from [15]. As listed in Table 2, it is quite notable that both GradKL-LS and

GradKL-SVM achieved zero test error with only 3 genes while SVM-RFE needs 8

genes. This outperforms SVM-RFE with fewer genes to attain zero test error. The

top six ranked genes by GradKL-LS is M23197, M19507, M20902, X70297, D49950,

Y12670 among which gene M23197 and Y12670 are also observed to be among 50 genes

with most prediction powers observed in [14] using correlation analysis. It is also worth

mentioning that we did not use a backward recursive feature elimination strategy for

GradKL in contrast to SVM-RFE method [15].

The second dataset is prostate cancer dataset [33]. In this dataset there are 12600 gene

probes. The dataset is split into a training set and a test set. The training set has 102

samples with 52 tumor samples and 50 non-tumor samples. The independent test set

has 34 samples from a different experiment.

All five methods are competitive with each other: only 1 error in the test set using

the top two genes. Grad-LS and SVM-RFE performs slightly better since it attained

zero test error respectively with 4 genes and 3 genes. This means that the sparse regu-

larization formulation (25) for gradient learning (equivalently learning the coordinate

matrix formulation (17)) does not guarantee good gradient learning with respect to

variable selection. This is consistent with the fact that kernel matrix learning method

does not necessarily guarantee better performance than the naive method of taking

all average of base kernel matrices [18] unless we include irrelevant data sources. More

interestingly, all methods indicate that gene X07732 (no. 6185) is the top ranked gene.

5 MATLAB code can be obtained from http://www.kyb.mpg.de/bs/people/spider/
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Table 3 Test set accuracy comparison on Prostate cancer dataset [33]. For each method, the
best test set accuracy is marked in bold.

No. of genes GradKL-LS GradKL-SVM Grad-LS Grad-SVM SVM-RFE
1 0.97 0.97 0.97 0.97 0.97
2 0.97 0.97 0.97 0.97 0.97
3 0.91 0.97 0.97 0.97 1.00
4 0.94 0.91 1.00 0.97 0.97
5 0.94 0.97 1.00 0.97 0.94
6 0.97 0.85 0.97 0.97 0.91
13 0.85 0.88 0.88 0.79 0.85
25 0.73 0.70 0.91 0.91 0.88
50 0.64 0.67 0.91 0.91 0.88
99 0.64 0.73 0.91 0.91 0.91
197 0.76 0.82 0.94 0.94 0.82
394 0.76 0.82 0.85 0.88 0.88
788 0.82 0.76 0.79 0.79 0.79
1575 0.82 0.82 0.79 0.79 0.79
3150 0.82 0.82 0.85 0.85 0.85
6300 0.85 0.85 0.85 0.85 0.91
12600 0.94 0.94 0.94 0.94 0.94

6 Conclusion

In this paper we first introduced a unifying approach for gradient learning in the frame-

work of multi-task learning. Then, under this formulation dual problems for general

gradient learning algorithms were straightforwardly established. Finally, motivated by

this dual formulation we proposed a novel gradient learning formulation which can

be cast as the problem of learning the kernel matrix [19]. A SILP optimization ap-

proach and an alternative iterative optimization were proposed to solve this problem

efficiently. We validated our proposed approaches on both synthetic and real datasets.

In particular our proposed method achieved competitive feature selection results on

the Leukemia dataset [14] and Prostate cacner dataset [33] compared with existing

method such as SVM-RFE [15].

There are several questions remaining to be further studied. Firstly, it will be interest-

ing to apply the spectral decomposition of the gradient outer products to dimension

reduction (see e.g. [28]), and the possible use for gene network inference from the

covariance of the learned gradient function. The sparsity may benefit the dimension

reduction [22,5]. Secondly, gradient learning aims at estimating the gradient ∇f∗ of

the target function f∗. When the SVM hinge loss is used, the target function is known

to be the Bayes rule [21,42] which is usually not continuous. Hence, gradient learning

with SVM loss could be mathematically inappropriate. However our simulations shows

it works well in practice. It should be interesting to understand this theoretically. Last

but not least, generalization analysis and optimal convergence rates of gradient learn-

ing algorithms (19) would be another direction for investigation using Rademacher

complexity approaches [4,17].
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