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The Journal of Immunology

Learning the High-Dimensional Immunogenomic Features

That Predict Public and Private Antibody Repertoires

Victor Greiff,*,1 Cédric R. Weber,*,1 Johannes Palme,†,‡ Ulrich Bodenhofer,†

Enkelejda Miho,* Ulrike Menzel,* and Sai T. Reddy*

Recent studies have revealed that immune repertoires contain a substantial fraction of public clones, which may be defined as Ab or

TCR clonal sequences shared across individuals. It has remained unclear whether public clones possess predictable sequence

features that differentiate them from private clones, which are believed to be generated largely stochastically. This knowledge gap

represents a lack of insight into the shaping of immune repertoire diversity. Leveraging a machine learning approach capable of

capturing the high-dimensional compositional information of each clonal sequence (defined by CDR3), we detected predictive

public clone and private clone–specific immunogenomic differences concentrated in CDR3’s N1–D–N2 region, which allowed the

prediction of public and private status with 80% accuracy in humans and mice. Our results unexpectedly demonstrate that public,

as well as private, clones possess predictable high-dimensional immunogenomic features. Our support vector machine model could

be trained effectively on large published datasets (3 million clonal sequences) and was sufficiently robust for public clone

prediction across individuals and studies prepared with different library preparation and high-throughput sequencing protocols.

In summary, we have uncovered the existence of high-dimensional immunogenomic rules that shape immune repertoire diversity

in a predictable fashion. Our approach may pave the way for the construction of a comprehensive atlas of public mouse and

human immune repertoires with potential applications in rational vaccine design and immunotherapeutics. The Journal of

Immunology, 2017, 199: 2985–2997.

T
he clonal identity, specificity, and diversity of adaptive

immune receptors are largely defined by the CDR3 se-

quence of variable H and variable b chains of Abs and

TCRs, respectively (1–6). CDR3 encompasses the junction region

of recombined V, D, and J gene segments, as well as nontemplated

nucleotide (N- and P-nucleotides) addition (7). As a result of the

enormous theoretical diversity of Ab and TCR repertoires (.1013)

(8–11) and technological limitations (Sanger sequencing), it was

long believed that clonal repertoires were, to an overwhelming

extent, private to each individual (12, 13). However, as a result of

recent advances in high-throughput immune repertoire sequenc-

ing, it has been observed that a considerable fraction (.1%) of

CDR3s is shared across individuals (1, 5, 14–27). Thus, these

shared clones (hereafter referred to as “public clones”) are refining

our view of adaptive immune repertoire diversity. Therefore, a

fundamental question emerges: Are there immunogenomic dif-

ferences that predetermine whether a clone becomes part of the

public or private immune repertoire?

In the context of Ab and TCR repertoires, the large theoretical

clonal (CDR3) diversity renders the investigation of public and

private repertoires computationally challenging (28). Previous

studies using conventional low-dimensional analysis suggested

that public clones are “germline-like” clones with few insertions,

thereby having higher occurrence probabilities, whereas private

clones contain more stochastic elements (i.e., N1, N2 insertions)

(18, 24). To investigate the composition of large numbers of se-

quences with the appropriate dimensionality, sequence kernels are

increasingly used (29, 30). Sequence kernels are high-dimensional

functions that measure the similarity of pairs of sequences, for

example, by comparing the occurrence of specific subsequences

(k-mers) in a high-dimensional space (31, 32). Supervised ma-

chine learning (e.g., support vector machine [SVM] analysis) is an

approach that takes low- or high-dimensional feature functions as

input to find a classification rule that discriminates between two

(or more) given classes on a single-clone level (e.g., public versus

private clones) (33). In contrast to using conventional low-

dimensional features to analyze immune repertoires, the cou-

pling of high-dimensional sequence kernels to SVM analysis may

offer greater insight into the immunogenomic structure of reper-

toire diversity, specifically the difference between public and

private repertoires. As opposed to previous approaches (34), a key

advantage of sequence kernel–based SVM analysis is the predic-

tion profile–based identification of CDR3 subregions that are most

predictive for a respective class (public or private class) (31, 32).

This approach may lead to predictive immunological and
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mechanistic insight into the immunogenomic elements that shape

repertoire diversity.

To identify the immunogenomic differences between public and

private Ab repertoires (Fig. 1), we applied SVM (Fig. 1B) to six

large-scale immune repertoire (Ab and TCR) sequencing datasets

from mice and humans (Fig. 1A). When using low-dimensional

features (germline gene and amino acid usage, CDR3 subregion

length) as the input for SVM analysis, prediction accuracy of

private and public status reached a maximum of 67%, which only

moderately improves on a random classifier (50%). However,

when implementing a high-dimensional sequence kernel (se-

quence composition)–based SVM analysis, we were able to detect

strong immunogenomic differences concentrated in the N1–D–N2

region in public and private clones with a high prediction accuracy

(balanced accuracy [BACC] ∼ 79–83%, Fig. 1C). Our results

unexpectedly signify that public and private Ab repertoires con-

tain predictive high-dimensional features that enable their accurate

classification. Our SVM approach was sufficiently robust to be

applied across individuals and repertoire studies with different

library preparations and high-throughput sequencing protocols,

demonstrating its broad applicability.

Materials and Methods
Immune repertoire high-throughput sequencing datasets

We conducted our analysis on six high-throughput immune repertoire se-
quencing datasets, all of which are described below. Quality and read
statistics may be found in the respective publications.

Dataset 1

Murine B cell origin (C57BL/6JRj; Janvier Labs): Sequencing data were
generated by Greiff et al. (17). Briefly, B cells were isolated from four
C57BL/6 cohorts (n = 4 or 5), including untreated mice and mice that
received prime-boost immunization with hapten/protein Ags. Cells were
sorted into pre-B cell (preBC), naive B cell (nBC), and plasma cell (PC)
subsets by flow cytometry. Cell numbers per mouse were 750,000 for
preBCs, 1,000,000 for nBCs, and 90,000 for PCs. RNA was isolated
from cells, and Ab H-chain libraries were prepared by RT-PCR and se-
quenced using an Illumina MiSeq platform (2 3 300 bp paired end). The
sequencing data have been submitted to the ArrayExpress Archive of
Functional Genomics Data under accession number E-MTAB-5349 (http://
www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5349/) along with full
experimental details, and they were preprocessed using MiXCR software
for VDJ annotation, clonotype formation by CDR3, and error correction,
as described previously (17, 35). For downstream analyses, functional
clonotypes (clones, CDR3) were only retained if they were composed of
at least four aa and had a minimal read count of two (36, 37). Public
clones were defined as those clones that occurred in at least two different
individuals within the same B cell population and cohort.

Dataset 2

Murine B cell origin (BALB/cJRj; Janvier Labs): Sequencing data were
generated by Greiff et al. (17) and have been submitted to the ArrayExpress
Archive of Functional Genomics Data under accession number E-MTAB-
5349 (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5349/)
with full experimental details. Briefly, nBCs (1,000,000 cells per mouse)
from four unimmunized BALB/c mice were isolated using the sorting
panel from Dataset 1, and Ab H-chain libraries were prepared and se-
quenced analogously to Dataset 1. Data preprocessing was performed
analogously to Dataset 1. Public clones were defined as those clones that
occurred at least twice across mice.

Dataset 3

Murine B cell origin (pet shop mice): Sequencing data were generated by
Greiff et al. (17) and have been submitted to the ArrayExpress Archive of
Functional Genomics Data under accession number E-MTAB-5349 (http://
www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5349/) with full ex-
perimental details. Briefly, nBCs (∼671,000 cells per mouse) from three
pet shop mice were isolated, and library preparation, sequencing, and data
preprocessing were performed analogously to Dataset 1. Public clones
were defined as those clones that occurred at least twice across mice.

Dataset 4

Murine B cell origin (C57BL/6J): Sequencing data were published by Yang
et al. (21). Mature B cells were extracted from C57BL/6J mice and sorted
(1–2 3 104 per B cell population) into developmentally distinct subsets
(splenic follicular B cells [n = 5], marginal zone B cells [n = 7], and
peritoneal B2 B cells [n = 5] and B-1a B cells [n = 43]). Data pre-
processing was performed analogously to Dataset 1. Public clones were
defined as those clones of a given B cell population that occurred at least
twice across mice.

Dataset 5

Human B cell origin: Sequencing data of nBCs and memory B cells from
three healthy donors were published by DeWitt et al. (14) and downloaded
already preprocessed from http://datadryad.org/resource/doi:10.5061/
dryad.35ks2. Public clones were defined as those clones that occurred at
least twice across individuals within a given B cell population (naive,
memory). The numbers of nBCs and memory B cells were 2–4 3 107 and
1.5–2 3 107, respectively.

Dataset 6

Murine T cell origin: TCRb-chain sequencing data were published by Madi
et al. (18). CD4 T cells were isolated from 28 mice (three cohorts; un-
treated [n = 12], immunized with CFA [n = 7], or immunized with CFA
and OVA [n = 9]). Data preprocessing was performed using MiXCR
software for annotation and error correction, as described previously (17,
35). Public clones were defined as those clones that occurred at least twice
across mice of a given cohort.

Determination of statistical significance

Significance was tested using the Wilcoxon rank-sum test unless indicated
otherwise.Where applicable, the significance of correlation coefficients was
tested using the cor.test() function in R with default parameters.

Statistical analysis and plots

Statistical analysis was performed using R (38) and Python (39). Graphics
were generated using the R packages ggplot2 (40), RColorBrewer (41),
and ComplexHeatmap (42). Parallel computing of SVM analyses was
performed using the R packages BatchJobs (43) and doParallel (44).

Definition of a clone

For all analyses, clones were defined by 100% amino acid sequence identity
of CDR3 (Ab H chain, TCRb) regions (1, 17, 36). CDR3 regions were
annotated and defined by MiXCR software (35) according to ImMuno-
GeneTics nomenclature (45).

Quantification of overlap and correlation

As defined previously (17), the percentage of clones shared between two

repertoires X and Y: overlapðX;Y Þ ¼ jX\ Y j
minðjXj;jY jÞ3100, where jXj and jY j

are the clonal sizes (number of unique clones, species richness) of reper-
toires X and Y. A repertoire was mathematically defined as a set of unique
clones. Correlation of germline gene/CDR3 subregion abundances be-
tween public and private repertoires was calculated using the Spearman
correlation coefficient.

Determination of sequence similarity among clones within a

repertoire

Sequence similarity among clones within a repertoire was calculated as pre-
viously described (17). Briefly, the Levenshtein distance between all pairwise
CDR3 amino acid sequence combinations of identical CDR3 length and V/J
genes was calculated, and each Levenshtein distance was subsequently nor-
malized by the sequence length of the respective sequence combination. Fi-
nally, to correct for the baseline sequence similarity that is common to all
clonal families, the similarity calculated among all CDR3s of identical length
(but undefined V/J gene usage) was subtracted from that calculated exclusively
among CDR3s of identical V/J gene usage and CDR3 length. Levenshtein
distances were computed using the stringdist package in R (46).

Junction analysis

V, N1, D, N2, and J subregion annotation of sequences was performed
using ImMunoGeneTics/HighV-QUEST (47) (after initial preprocessing by
MiXCR software) (35). Deletions were determined by finding the longest
common substring between the germline genes and the V, D, and J sub-
regions identified in the CDR3 sequences.

2986 PREDICTION OF PUBLIC AND PRIVATE Ab REPERTOIRES
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Determination of Shannon evenness

Shannon evenness was calculated as previously described (48). Briefly, we

calculated the Hill diversity for a = 1 aD ¼ ð+n

i¼1
fi
aÞ

1
12aÞ for a given CDR3

subregion frequency distribution ( f
!
, enumeration of the abundance of each

of the n V, N1, D, N2, J subregions or combinations thereof). Subsequently,

we obtained the Shannon evenness a¼1E by normalizing a¼1D by the re-
spective total number of V, N1, D, N2, or J regions or combinations thereof
(n) in the given repertoire. The Shannon evenness varies between ∼0 and 1;
higher values indicate an increasingly uniform frequency distribution.

SVM analysis

To classify clones into public and private classes, a supervised learning
approach was chosen in the form of an SVM model. As input for all SVM
analyses, CDR3-length equilibrated (normalized) and class-balanced
datasets were built for each sample (Table I). Briefly, for each sample,
all public clones were paired in equal numbers with private clones of the
same sample, such that public and private repertoires followed identical
CDR3 length distributions, with the following exceptions: for analyses of
aggregated datasets (Fig. 4D), neither CDR3 length distributions nor
public and private repertoire sizes were matched, and for Dataset 1, we
also show predictive performance for CDR3-length nonequilibrated public
and private repertoires (Supplemental Fig. 4C). Thus, within all datasets,
be they CDR3 length normalized or not, public and private repertoires
showed a wide range of CDR3 lengths (4–29 aa; see Table I legend).

SVM analysis was performed using kernel-based analysis of biological
sequences (KeBABS) (31) and sklearn (49), both of which are described in
more detail below. For all SVM analyses, each dataset was split into
training (80%) and test (20%) sets. Cross-validation and SVM training
were performed on the training set, and class prediction was performed on
the test set. Prediction accuracy of class discrimination was quantified by
calculating BACC¼ 1

2
3 ðspecþ sensÞ (50), where specificity was de-

fined as spec ¼ TN
TNþFP

and sensitivity was defined as sens ¼ TP
TPþFN

(TP =
true positive, TF = true negative, FP = false positive, and FN = false
negative). Additionally, the area under the receiver operating characteristic
curve (AUC) was calculated using KeBABS R package (31). An AUC
value of 1 means perfect prediction accuracy (BACC = 100%), whereas an
AUC value of 0.5 (BACC = 50%) is equivalent to a random classifier.

KeBABS SVM analysis

To discriminate public and private clones based on the CDR3 sequence, we
used the R package KeBABS (31), which implements KeBABS. For all
datasets, unless mentioned otherwise, we used the position-independent gappy
pair kernel (51, 52), which splits sequences into features of length k with a
gap of maximal length m (Fig. 4A). Independently of species (mouse, human)
or lymphocyte type (B/T cell), for the analysis of nucleotide sequences the
parameters were set to k = 3, m = 1, and cost parameter (C) = 10, whereas the
analysis of amino acid sequences was performed using parameters k = 1, m =
1, and C = 100. Optimal parameter combinations maximizing prediction
accuracy were determined by cross-validation on the training set. C sets the
cost for the misclassification of a sequence. The maximal numbers of possible
features used in the gappy kernel are 423k

3 (m + 1) = 8192 for nucleotide
sequences and 2023k

3 (m + 1) = 800 for amino acid sequences.

Prediction profiles

Prediction profiles were computed from feature weights, as we described
previously (31, 32, 52). Prediction profiles quantify the contribution of
each sequence position to the decision value (public, private). Thus, as
opposed to single feature weights, prediction profiles provide improved
biological interpretability of learning results, because they render those
individual positions or sequence stretches visible that substantially con-
tribute to classification accuracy (31).

sklearn SVM analysis

For public versus private discrimination based on amino acid and V, N1, D,
N2, and J composition (counts), the sklearn SVM implementation (49) for
Python (39) was used with a linear kernel, and the cost parameter was set
at C = 10, as determined by cross-validation.

Results
Public and private clone repertoires cannot be predicted by

germline gene or amino acid usage

As the basis for elucidating the immunogenomic differences be-

tween public and private clones, we used a recently published large-

scale high-throughput sequencing Ab repertoire dataset (17)

(Dataset 1, Materials and Methods). This dataset contains 400

million full-length Ab variable H sequences derived from 19 mice

and stratified into key stages of B cell differentiation: preBCs

(IgM), nBCs (IgM), and PCs (IgG). Thus, this dataset provided the

important advantages of high sequencing and biological depth

(preBCs and nBCs represent Ag-inexperienced cells, whereas PCs

are postclonal selection and expansion due to Ag exposure).

Public clones, precisely defined here as CDR3 sequences (100%

amino acid identity) occurring in at least two mice, were found to

compose, on average, 15% (preBCs), 23% (nBCs), and 26% (PCs)

of Ab repertoires across B cell stages (Figs. 1, 2A). As previously

reported, we found that public clones are biased to higher fre-

quencies and are enriched in sequences from natural Abs

(Supplemental Fig. 1C, 1D) (18, 25, 53). Irrespective of public or

private status, clones were, on average, 13–16% similar on the

amino acid sequence level (Supplemental Fig. 1B). Thus, public

clones were not substantially more similar to one another than

private clones. Across B cell development, public and private

clones used nearly identical V, D, J, VJ, and VDJ germline genes

(overlap . 95%), with nearly identical frequency in preBCs and

nBCs (Spearman r ∼ +1) and with varying frequencies in PCs

(Spearman r . +0.5–0.8) (Fig. 2B). Thus, overall, neither public

nor private clones showed any preferential germline gene usage.

On average, higher-frequency amino acids (e.g., A, C, and D)

occurred more often in public clones, whereas lower-frequency

amino acids (e.g., H, I, and K) could be found at higher fre-

quency in private clones (Fig. 2C). This observation held true

across all B cell stages (r = +0.5–0.76, p , 0.05, Supplemental

Fig. 1A). Repertoire-wide absolute differences in amino acid us-

age between private and public clones were slight (0.2–1.4 per-

centage points, Fig. 2C). To test whether these repertoire-level

differences were sufficient to predictively discriminate between

public and private clones on a single-clone level, we used SVM

analysis (Fig. 1B). For all SVM analyses in this study, we strove to

minimize technological classification bias by constructing SVM

datasets such that public and private repertoires had identical

CDR3 length distributions and were class balanced (identical

number of public and private clones; see Table I and Materials

and Methods). Nevertheless, as a control, all SVM analyses were

also validated without CDR3 length distribution matching

(Supplemental Fig. 4C). Datasets constructed for SVM analyses

were divided into 80% training sequences and 20% test sequences

(Fig. 1B). We found that amino acid usage (dimensionality: 20)

was a suboptimal predictor of clonal status, with a prediction

accuracy # 66% (Fig. 2D). Prediction accuracy (hereafter, the

terms BACC, prediction accuracy, and classification accuracy are

used interchangeably) is defined as the mean of specificity and

sensitivity (31, 48, 50).

Public and private clones do not differ predictively in CDR3

subregion length

Because public and private clones did not differ in germline gene

usage, we asked whether they differed with respect to length and

diversity of CDR3 subregions (V, N1, D, N2, and J). The V, D,

and J subregions are derived from germline gene segments

(IGHV, IGHD, IGHJ), whereas N1 and N2 represent insertions

(n- and p-nucleotides) introduced during the junctional somatic

recombination process. Public clones in preBC and nBC rep-

ertoires possessed a relative V subregion length of 23–24%

(Fig. 3A), whereas private clones had slightly shorter V subre-

gions (∼21%, p , 0.05, Supplemental Fig. 2A). The J subregion

length behaved analogously (public 40%, private 36%), whereas the

D subregion length did not differ between classes (public 25%,
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private 25%). We observed the largest difference between public and

private clones in the relative length of N1 and N2 subregions with

deviations of 36–46 percentage points from a 1:1 ratio (N1: public ∼

6.5%, private ∼ 8.2%; N2: public ∼ 4.3%, private� 7.7%, p, 0.05,

Fig. 3A, Supplemental Fig. 2A, 2B). Conversely, PC CDR3 subre-

gion lengths did not differ between public and private clones (with

the exception of N1, which was slightly longer in public clones, Fig.

3A, Supplemental Fig. 2B).

Regardless of public or private designation, nearly all CDR3s

(.94%) had at least one nucleotide insertion (N1 or N2) and at

least one deletion (Fig. 3B); thus, only a very small portion of

clones were germline-like, having neither insertion nor deletion

(#4%, Supplemental Fig. 3C, 3D). Furthermore, across B cell

populations, N1 and N2 insertions were present in .50 and

.70% of public and private clones, respectively. Of note, N1 and

N2 insertions showed no preferential selection of germline gene

segments (IGHV, D, J) (Supplemental Fig. 2D).

Deletion length was highest in D subregions (mean of 59 and 39 D

deletions ∼ 7 nt), whereas it was lowest in V subregions (∼0.8 nt,

Supplemental Fig. 2C). Although private clones showed a higher

FIGURE 1. Immunogenomic analysis of public and private Ab repertoires. (A) We asked whether immunogenomic differences exist that predetermine a

clonal sequence’s (CDR3) public or private status within an immune repertoire. The public repertoire is composed of clones being shared among at least

two individuals (we also explored an alternative public clone definition, Fig. 5C). Private clones are those unique to each individual. We defined Ab and T

cell clones based on 100% H/b-chain CDR3 identity. For statistical power, we used six large-scale immune repertoire datasets (Table I) comprising different

B cell populations, species (humans, mice), and immune AgRs (BCR/TCR). (B) To answer our question, we decomposed public and private immune

repertoires into conventional low-dimensional features (e.g., CDR3 amino acid usage [Figs. 2, 3]) or novel high-dimensional features (CDR3 sequence

decomposition into subsequences of length k (k-mers) separated by a gap of length m [Figs. 4–6]). Leveraging supervised machine learning (SVMs), we

tested whether low- and high-dimensional features can identify immunogenomic differences between public and private repertoires and, consequently, can

be used for prediction of public and private status at single-clone resolution. (C) We found that low-dimensional features are poor predictors of public and

private clone status. In contrast, we detected strong predictive immunogenomic differences, concentrated in the N1–D–N2 CDR3 subregion, between public

and private clones using high-dimensional features. Thus, public and private clones each possess a class-specific high-dimensional immunofingerprint

composed of class-specific subsequences that enables their classification with high accuracy. Our SVM approach was generalizable across individuals and

datasets produced in different laboratories with varying library-preparation and high-throughput sequencing protocols.
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number of deletions, differences between public and private clones

were slight (maximum difference ∼ 0.6 nt, Supplemental Fig. 2C).

Despite statistically significant differences in CDR3 subregion

length and occurrence of insertions and deletions between public

and private clones (Fig. 3A, Supplemental Figs. 2A–C, 3C, 3D,

p , 0.05), training an SVM based on CDR3 subregion length led

to a suboptimal prediction accuracy of public/private clone dis-

crimination (BACC # 67%, Fig. 3E). Therefore, CDR3 subregion

length (dimensionality 5) is not a reliable predictor of public/

private clone status.

FIGURE 2. Public and private repertoires do not differ predictively in germline gene usage or amino acid composition. (A) Public clones represent 15–

26% of murine Ab repertoires throughout B cell ontogeny. Public clones were defined as being shared in at least two mice (seeMaterials and Methods). (B)

Overlap of V, D, and J germline genes (as well as respective combinations: V-J, and V-D-J) and the Spearman correlation of their frequencies between

private and public clones by B cell population. (C) Relative amino acid composition of public and private clones. Differences between public and private

clones were not significant (p . 0.05, Kolmogorov–Smirnov test). (D) SVM-based discrimination (dimensionality: 20, number of amino acids) of public

and private clones based on CDR3 amino acid composition (linear SVM kernel). For SVM-based classification, a class-balanced dataset composed of equal

numbers of public and private clones, as well as identical CDR3-length distributions, was assembled for each repertoire (Table I, see Materials and

Methods). Balanced prediction accuracy was defined as the mean of specificity (detection rate of public clones) and sensitivity (detection rate of private

clones). Bar graphs show mean 6 SEM across samples. All data shown stem from Dataset 1.

Table I. Size of CDR3 length–equilibrated datasets used for SVM classification

Data Origin Cell Type No. of CDR3 Sequences

Dataset 1: mouse (C57BL/6J), B cell (17) preBC (IgM) (19) 48,682 6 10,493
nBC (IgM) (19) 177,197 6 28,393
PC (IgG) (19) 51 6 30

Dataset 2: mouse (BALB/c), B cell (17) nBC (IgM) (4) 244,067 6 11,293
Dataset 3: mouse (pet shop), B cell (17) nBC (IgM) (3) 34,218 6 1207
Dataset 4: mouse (C57BL/6J), B cell (21) B-1a B cells (43) 2867 6 1742

Marginal zone B cells (7) 2987 6 1151
Follicular B cells (5) 2295 6 406

Peritoneal B2 B cells (5) 1519 6 429
Dataset 5: human (healthy), B cell (14) nBCs (IgM) (3) 289,598 6 36,627

Memory B cells (IgM, IgG) (3) 35,221 6 5163
Dataset 6: mouse (C57BL/6J), T cell (18) CD4 T cells (28) 2621 6 1777

For each of the six datasets used in this study, a dataset of CDR3 length–equilibrated sequences was constructed consisting of 50% public and 50% private CDR3 sequences.
Mean and SD of sequences used across all samples of a given dataset and B/T cell population are displayed. Numbers in parentheses indicate the number of samples for a given
category. Amino acid CDR3 lengths are presented as mean 6 SD with maximum in parentheses, for Dataset 1, 13 6 2 (28); Dataset 2, 13 6 2 (23); Dataset 3, 12 6 1 (21);
Dataset 4, 12 6 3 (22); Dataset 5, 14 6 3 (29); and Dataset 6, 10 6 1 (13).
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FIGURE 3. CDR3 subregion length does not predict clonal public/private status. (A) Normalized CDR3 subregion (V, N1, D, N2, J) lengths (median) of

public and private clones by B cell population. (B) Percentage of clones (public, private) with at least one N1/N2 insertion or deletion occurrence by B cell

population. (C) Overlap and Spearman correlation of CDR3 subregions and combinations thereof by B cell population. (D) Number of unique V, N1, D, N2,

and J CDR3 subregions (species richness) of public and private clones. Species richness of private clone CDR3 subregions was obtained by accounting for

private and public clone size differences (bootstrapping, see Materials and Methods). See Supplemental Fig. 3A for nonbootstrapped version. (E) SVM-

based prediction (dimensionality: 5, number of CDR3 subregions, linear SVM kernel) of public and private clones based on relative V, N1, D, N2, and J

subregion composition [(A), see Materials and Methods]. Class-balanced datasets, as described for Fig. 2, were used for SVM classification. Balanced

(prediction) accuracy was defined as the mean of specificity (detection rate of public clones) and sensitivity (detection rate of private clones). Bar graphs

show mean 6 SEM across samples. All data shown stem from Dataset 1.
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Public and private clones show differences in sequence

composition

Because low-dimensional features (CDR3 amino acid and subre-

gion length) only achieved #67% classification accuracy (Figs.

2D, 3E), we investigated whether CDR3 sequence composition

(potential dimensionality .1013 different CDR3 sequences) (8,

17) differed between public and private clones. In preBCs and

nBCs, V and J subregions were almost completely overlapping

with regard to sequence (.97%) and frequency (Spearman r .

+0.95, Fig. 3C). Consequently, we observed no difference in Vor J

subregion diversity (number of unique V and J subregions) be-

tween public and private clones (Fig. 3D). In contrast, we ob-

served considerable differences between private and public

repertoires with respect to the diversity of N1, D, and N2 subre-

gions (Fig. 3C, 3D, Supplemental Fig. 2A). Specifically, combi-

nations of CDR3 subregions showed low overlap between public

and private repertoires, irrespective of B cell population (e.g., N1–

D–N2 overlap in nBCs was ∼6%, Fig. 3C, Supplemental Fig. 3B).

To summarize, in general, sequence composition differed sub-

stantially between public and private clone repertoires.

High-dimensional CDR3 sequence composition analysis

predicts public and private clones with 80% accuracy

To test whether the detected differences in sequence composition

were predictive, we used high-dimensional sequence kernels for SVM

analysis (31). Specifically, we used the gappy-pair sequence kernel

(31, 51, 52), which decomposes each CDR3 into subsequences

(features) of length k (k-mers) separated by a gap of length m

(Fig. 4A; seeMaterials and Methods). Applying this kernel function

to all CDR3s of a given training dataset generates a feature matrix of

dimension n 3 f, which serves as input for the SVM analysis: n is

the number of CDR3s in the training dataset, and f is the number of

features. By cross-validation, we selected the parameter combina-

tions that resulted in the highest prediction accuracy: k = 3, m = 1 at

the nucleotide level (maximal feature diversity = 8192) and k = 1,

m = 1 at the amino acid level (maximal feature diversity = 800). On

the nucleotide and the amino acid levels, public and private clones in

preBCs and nBCs could be classified with ∼80% accuracy, with very

low variation across mice (Fig. 4A). We validated the robustness of

this sequence-based SVM approach in three ways. We showed that

the SVM was incapable of separating public from public and private

from private clones of different individuals (BACC ∼ 50%, Fig. 5D).

Furthermore, we showed that the high prediction accuracy was

maintained for an alternative and more stringent definition for public

clones (BACC = 83–84%, Fig. 5C). Finally, we confirmed that the

prediction accuracy was close to random (50%) when shuffling

CDR3 nucleotide and amino acid sequences (Fig. 5A) and when

shuffling public and private labels across clones (Fig. 5B). In sum,

we have performed a combination of simulation controls that ex-

clude the possibility that factors other than class-specific repertoire

sequence features substantially impact classification accuracy.

Furthermore, we confirmed that the differences in immuno-

genomic composition between public and private clones were not

exclusively species specific (mouse) or mouse strain specific

(C57BL/6) by replicating a classification accuracy ∼ 80% in

BALB/c and pet shop mice (Datasets 2 and 3, Supplemental

Fig. 4A). Also, public and private clones could be discrimi-

nated with .80% accuracy in human nBC and memory B cell

repertoires (Fig. 4B, Dataset 5), thus indicating robust classifi-

cation accuracy for hypermutated (memory) repertoires, as well.

Finally, we showed that our approach demonstrated reasonable

classification accuracy in mouse TCR variable b repertoires

(BACC = 74%, Fig. 4B, Dataset 6).

Theoretically, successful classification of public/private clones

within each individual (mouse or human) could be due to lineage-

driven (clonal relatedness) effects and, thus, may not be general-

izable. We excluded this possibility and showed cross-individual

generalizability as follows: we aggregated public and private

clones across individuals into datasets of up to 33 106 unique clonal

sequences and showed that classification accuracy was maintained

(maximum BACC = 83%, AUC = 0.90, Fig. 4C), and we used nBC

and T cell repertoires of distinct mouse/human individuals as

training set and predicted with ∼80% accuracy private/public status

of clones in repertoires of unrelated individuals (but of identical

species and lymphocyte population [B cell/T cell], Fig. 4C). These

results signified that the same set of features used to predict public

and private clones within one individual is sufficient for prediction

across individuals of the same species. Thus, the public/private-

specific features identified using sequence kernel-based SVM on

the repertoire level were generalizable enough to gain a species-

wide high-dimensional representation of public and private reper-

toires allowing the discrimination of public from private clones in

humans and mice at single-clone resolution with high accuracy.

Prediction by CDR3 sequence composition is dependent on

dataset size and is possible across studies

Our high-dimensional sequence composition–based SVM approach

was unable to predict public and private clones in PCs (BACC =

50%, Fig. 4A, Dataset 1). With respect to unique CDR3s, the PC

SVM dataset was three to four orders of magnitude smaller than that

of preBCs and nBCs (Table I, Dataset 1); therefore, we tested

whether the lower accuracy was due to sample size. We performed

SVM analysis on datasets ranging in size from 100 to 230,000 unique

CDR3 sequences (Fig. 5D) and found that prediction accuracy was

indeed a function of sample size, increasing from 56% for 100 clonal

sequences to 80% for 230,000 clonal sequences. Thus, small sample

size may explain the lower prediction accuracies observed in the PC

(IgG) dataset. In further support of this hypothesis, we found that, in

a dataset of human memory B cells (mixed IgM, IgG; Dataset 5) that

was three orders of magnitude larger than the PC dataset, we were

able to achieve. 80% accuracy (Fig. 4B), suggesting that prediction

of public clones may also be possible for Ag-experienced B cell

populations (such as memory cells and PCs) and, thus, is not lim-

ited to Ag-inexperienced ones (such as preBCs and nBCs).

Because we observed that dataset size was important for attaining

higher prediction accuracy (Fig. 5E), we asked whether large datasets

could function as training sets for performing public and private clone

prediction in other (smaller) datasets (obtained from studies with

possibly different library preparation and high-throughput sequencing

protocols). To answer this question, we investigated the prediction

accuracy of the sequence composition–based SVM classifier trained

on Dataset 1 (nBC B2 B cell population), applied to a test dataset 100

times smaller (177,197 versus 1,519 sequences), consisting of rep-

ertoires from various C57BL/6 B2 B cell populations (21) (Dataset 4,

Table I). By using the SVM model computed on the larger dataset

(Dataset 1), prediction accuracy could be improved by up to 7 per-

centage points (76–77 versus 69–73%, Fig. 4D), approaching the

prediction accuracy within Dataset 1 (Fig. 4A). Thus, sequence

kernel-based SVM models can be effectively trained on large, openly

accessible datasets, enabling robust predictive performance for meta-

analysis across studies of different laboratories using custom library-

preparation methods and sequencing protocols.

Stereotypical immunogenomic differences between public and

private clones are concentrated in the N1–D–N2 subregions

To identify the subregions that contributed most to classification

accuracy, we performed sequence kernel-based SVM on each
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CDR3 subregion separately, as well as all 10 relevant combinations

thereof (Fig. 6A). Classification based on each single or paired

CDR3 subregion resulted in a BACC , 70% (Fig. 6A). Among

the partial combinations, the N1–D–N2 subregion combina-

tion achieved maximum prediction accuracy (74%, Fig. 6A,

Supplemental Fig. 4D), approaching that of the full combination

(V–N1–D–N2–J, ∼80%), indicating that the sequence composi-

tion between public and private clones differed most within N1–

D–N2 subregions. J subregions contributed least to prediction

accuracy, because V–N1–D (BACC ∼ 73%) and N1–D–N2

(BACC ∼ 73%) surpassed D–N2–J (BACC ∼ 70%, Fig. 6A). To

confirm that subregion differences between public and private

clones were largely dictated by the N1, D, and N2 subregions and

not by the overhang regions linking N1, D, and N2, we showed

FIGURE 4. Public and private clones are predictable with 80% accuracy using high-dimensional CDR3 sequence decomposition. (A) Gapped k-mer–based

SVM discrimination of murine public and private clones (nucleotide sequence, Dataset 1). For each repertoire, a dataset composed of equal numbers of public and

private clones (nucleotide sequences, length equilibrated) was assembled (Table I) analogously to Figs. 2D and 3E. Subsequently, as displayed in the schematic

diagram, the gappy pair kernel function decomposes each CDR3 sequence into features made of two k-mers separated by a gap of maximal length m. Parameters

maximizing classification accuracy were determined via cross-validation on the training set [k = 3, m = 1, 4(2 3 k) 3 (m + 1) = 8192 possible features per

dimensionality]. Based on the feature decomposition, a feature matrix of dimension #CDR3s 3 #Features is constructed. Thus, each row of the feature matrix

corresponds to a feature vector for a CDR3 and contains counts of each feature as it occurs in the CDR3 sequence. These feature vectors serve as the input to the

linear SVM analysis. Results for amino acid–based classification are displayed in Supplemental Fig. 4A, 4B. (B) SVM-based prediction of human B cell (Dataset

5) and murine CD4 T cell (Dataset 6) public and private clones. Dataset preparation and SVM method (gappy-pair kernel) per parameter were identical to those

used in (A). (C) SVM-based prediction [SVM method identical to (A)] of public and private clones when training the classifier on one respective sample i of each

of the three datasets (Datasets 1, 5, 6) to predict public/private status of sequences from all other respective n 2 1 samples of Datasets 1, 5, and 6. Thus, training

and test SVM sets stem from entirely distinct individuals (cross-sample prediction). (D) Public clones were aggregated across mice by B/T cell populations (nBCs,

CD4), strain (nBCs: C57BL/6, BALB/c, pet) or across B cell populations (human nBCs and memory B cells [Bmem]) to subsequently perform SVM-based

classification, as described in (A) (Datasets 1, 2, 3, 5, and 6). Sizes of aggregated SVM datasets ranged between ∼5 3 104 (CD4 T cell) and 3 3 106 (nBCs:

C57BL/6, BALB/c, pet) clones. Receiver operating characteristic curves show excellent classification results across unrelated datasets with identical library

preparation (AUC ∼ 0.90). (E) SVM-based prediction of public versus private clones across experimental studies with different library preparations. nBC rep-

ertoires of Dataset 1 (mean size ∼ 180,000 clones) were used to predict public and private clones in the B2 B cell repertoires of Dataset 4 (mean size ∼ 2400

clones, Table I). Bar graphs show mean 6 SEM across samples.
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that subregion shuffling impacted prediction accuracy only neg-

ligibly (Supplemental Fig. 4B). Furthermore, we confirmed that

N1, D, and N2 subregions are the drivers of public and private

clone discrimination by constructing prediction profiles, which

quantify for each CDR3 sequence, in contrast to few selected

features (30, 54), the contribution of each position to the decision

value (public, private). Differences in contribution to the decision

value were highest in the sequence positions belonging to the N1,

D, and N2 subregions (Fig. 6B, 6D).

Next, we set out to answer the question whether both public and

private repertoires possess class-specific (stereotypic; i.e., nonrandom)

sequence signatures in the N1–D–N2 region because classifi-

cation theoretically could be driven by dominant signals from

one class. To this end, we posited that if both classes (public,

private) contained class-specific sequence features, neither public

nor private repertoires should be indistinguishable from their

randomized counterparts (public versus public randomized, pri-

vate versus private randomized; randomization was performed

by nucleotide sequence shuffling of the N1–D–N2 region, V

and J region were left nonrandomized). However, for all samples

tested (nBCs, Dataset 1), public and private repertoires could

be discriminated from randomized repertoires (prediction accu-

racy $ 90%, Fig. 6C). Thus, public and private repertoires

contain nonrandom class-specific sequence features. In contrast,

public-randomized versus private-randomized repertoires were

nearly indistinguishable from one another (prediction accuracy =

63%, nonrandomized V and J still contain class-specific infor-

mation leading to a prediction accuracy � 50%).

To visualize prediction weight distribution from the above

simulations, we again constructed prediction profiles (Fig. 6D). We

found that classification involving randomized repertoires (col-

umns 1–3, Fig. 6D) led to more even prediction weight distribu-

tions in the N1–D–N2 region of randomized repertoires, which, in

addition, was mostly uncorrelated with the (non)randomized

counterpart. In contrast, when classifying nonrandomized public

and private repertoires (column 4, Fig. 6D), the distribution of

prediction weights across subregions was skewed, correlated, and

independent in magnitude with respect to the D region, which

FIGURE 5. Validation of robustness of sequence-based SVM public/private clone classifier. (A) SVM-based discrimination of randomized public and

private CDR3 sequences (Dataset 1). CDR3 sequences were randomized by nucleotide/amino acid shuffling. SVM was performed as described for Fig. 4A.

(B) SVM-based discrimination performed on a nBC sample (murine, Dataset 1) of which the labels (public, private) were randomly shuffled (label

shuffling). SVM was performed as described for Fig. 4A. (C) Validation that public/private clone BACC is independent of public clone definition (Dataset

1). In contrast to the default public clone definition (public: sharing among two individuals), public clones were defined as those clones that were shared

among all mice of a given cohort and B cell population (size of CDR3 length–equilibrated SVM datasets: 4682 6 657 [preBCs, mean 6 SD], 28,249 6

6,736 [nBCs]). Subsequently, SVM-based discrimination of public and private amino acid was carried out analogously to that described for Fig. 4A. (D)

SVM-based discrimination of public versus public and private versus private clones of different samples (Dataset 1) to confirm that public and private

clones of different individuals are indistinguishable from one another and, thus, possess a common sequence signature. SVM was performed as described

for Fig. 4A. (E) Public and private clone prediction accuracy as a function of dataset size. From the largest murine nBC repertoire (Dataset 1), 100–234,126

CDR3 sequences were drawn randomly 100 times to subsequently perform SVM-based prediction of public and private clones (analogously to Fig. 4A). For

each randomly drawn dataset, the number of public and private clones was kept equal. Bar graphs show mean 6 SEM across samples.

The Journal of Immunology 2993

 b
y
 g

u
est o

n
 M

ay
 3

0
, 2

0
2
2

h
ttp

://w
w

w
.jim

m
u
n
o
l.o

rg
/

D
o
w

n
lo

ad
ed

 fro
m

 

http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1700594/-/DCSupplemental
http://www.jimmunol.org/


makes up the largest part of the N1–D–N2 region (Fig. 3A). The

higher N1, D, and N2 diversity of private repertoires (Fig. 3D)

translates into a higher proportion of sequence positions required

to define the private class (column 4, Fig. 6D). To summarize, our

results indicate that the N1, D, and N2 subregions of public and

private clone sequences contain class-specific stereotypic predic-

tive signatures (accumulation of k-mers) that enable the prediction

of their status (public, private).

Discussion
We have performed a comprehensive immunogenomic decom-

position of public and private immune repertoires that led us to

conclude that low-dimensional features (Figs. 2, 3), including

CDR3 subregion length, germline gene usage, and amino acid

usage, were insufficient in detecting the immunogenomic shift

between public and private clonal repertoires. In contrast, a

high-dimensional sequence decomposition (sequence kernel) approach

could predict the public and private status of Ab clones with 80%

accuracy. We excluded the possibility that high predictive per-

formance was achieved as the result of trivially high sequence

similarity among public clones by showing that public and private

clones were of similar average similarity (Supplemental Figs. 1B,

3C–D). We validated the robustness of the sequence-based SVM

approach across species and mouse strains, B and T cells, naive

and Ag-experienced (somatically mutated) B cells, individuals,

library-preparation methods, public clone definitions, and various

simulation and randomization controls (Figs. 4–6, Supplemental

Fig. 4).

The high computational scalability of our machine learning

approach, tested with as many as 33 106 public and private clonal

sequences (Fig. 4D), allowed us to establish that dataset size is

decisive for achieving high prediction accuracy (34). In simula-

FIGURE 6. N1, D, and N2 CDR3 subregions dominate the public/private clone classification accuracy. (A) Public/private clone discrimination based on

(combinations of) CDR3 subregions using sequence kernel-based SVM analysis of nucleotide sequences (Dataset 1). For each combination of CDR3

subregion, gappy pair kernel parameters (k, m, C) were determined by cross-validation. (B) Exemplary visualization of prediction profiles of one test dataset

(nBC, Dataset 1) of CDR3s (rows) of length 39 nt. Prediction profiles were computed as means of feature weights at each CDR3 position (1–39 bp) and

indicate the importance of each CDR3 sequence position/subregion for public/private clone classification (see Materials and Methods). Positions colored

red (,0) count toward “public” prediction of the respective CDR3s, whereas black-colored ones (.0) bias prediction toward the “private” clone status. Bar

graphs indicate the percentage of private (black) or public predicting weights at each of the 39 positions. Horizontal colored bars at the bottom indicate the

median length of V (red), N1 (orange), D (gray), N2 (purple), and J (blue) subregions (see Fig. 3A). (C) SVM-based classification (nucleotide level) of

various combinations of public and private repertoires and their randomized counterparts (“rand.”). For all results shown, murine naive B cell repertoires

(Dataset 1) were used. Nucleotide sequence randomization was performed as described for Fig. 5A (but only for N1, D, and N2; V and J CDR3 subregions

were left nonrandomized), and SVM was performed as described for Fig. 4A. (D) For classification scenarios shown in (C), the percentage of class 1–

predicting SVM weights for class 1 and the percentage of class 2–predicting weights for class 2 were determined by CDR3 subregion (V, N1, D, N2, J). For

example, class 1 in columns 1 and 3 is Private and Public_rand., respectively. Bar graphs show mean 6 SEM across samples.
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tions, prediction accuracy increased by ∼25 percentage points

when increasing the dataset size by four orders of magnitude from

∼101–2 to ∼105 clonal sequences (Fig. 5E). In experimental data,

increasing training dataset size by one to two orders of magnitude

(sequence data generated in a different laboratory using different

experimental library-preparation methods) increased prediction

accuracy by up to 7 percentage points, suggesting that large-scale

cross-study detection of public clones is possible (Fig. 4E). Ad-

ditionally, the higher prediction accuracy of human public and

private memory B cell clones (Fig. 4B) suggested that the lower

accuracy of PC (IgG) repertoires (Fig. 4A) may be due to small

dataset size (Table I) rather than Ag-specific effects. In the future,

it may be of interest to investigate the differences in naive and Ag-

driven public clonal sequence signatures (17, 18, 55–62).

Because several definitions for public clones have recently been

used, and a single accepted definition has not yet reached general

agreement (5), we validated SVM analyses with two different

definitions, which encompassed a definition range from lenient to

stringent (Figs. 4A, 5C) (5, 23, 63). The fact that our SVM ap-

proach is robust to several public clone definitions suggests that

the need for a consensus definition might be secondary. Never-

theless, once single-cell sequencing has reached the depth of bulk

sequencing, we will be able to investigate to what extent paired

chain information (H/C, a/b, g/d) influences public/private clone

prediction (64–67).

Technologically, we speculate that the prediction accuracies

reported in this article merely represent lower bounds; future

studies that combine standardized (http://www.airr-community.

org) advanced experimental and computational error correction

methodologies (e.g., single-cell sequencing, unique molecular

identifiers, replicate sequencing, construction of individual

germline gene databases) (67–73), high sampling and sequencing

depth (1), and novel sequence-based deep learning (neural net-

works) approaches accounting for long-range sequence interac-

tions (74–77) may lead to even higher prediction accuracies.

Biologically, sequence kernel-based machine learning analysis

revealed stereotypical and predictive high-dimensional immuno-

genomic composition biases (high-dimensional fingerprints) in the

N1–D–N2 CDR3 subregions of public and private clones (Fig. 6).

Although the relative size of the human CDR3 N1–D–N2 subre-

gion is larger than that of mice [∼65 (78) versus 42% in mice,

Fig. 3A] (9, 26), identical feature space sizes (SVM parameters)

for both species led to highly similar prediction accuracies

(Fig. 4B). Thus, species-specific differences in clonal sequence

length and diversity did not impact prediction accuracy. Not only

is it remarkable that a feature space of dimension , 104 suffices

for detecting subrepertoire clonal expansion, as well as Ag-driven

changes in individuals of different immunological status as pre-

viously shown (30, 48, 54), it also provides ample flexibility for

defining fingerprints that discriminate whole-repertoire properties

(public, private) within a .1013 dimensional space (9, 11). This

may point to evolutionarily conserved traces in the immunoge-

nome; indeed, we found that murine B cell public clones were

enriched in natural Ab specificities (Supplemental Fig. 1D), which

is in line with previous public T cell repertoire studies (18, 79).

Previous probabilistic work on modeling repertoire diversity

revealed a broad range of clonal sequence-generation probabilities,

with (B/T cell) public clones suggested to be biased toward higher

generation probabilities (25). Corroborating these observations,

we found that B cell public clones are more likely to have higher

clonal abundance (Supplemental Fig. 1C). In general, however,

public clones were distributed throughout the entire frequency

spectrum from high to very low clonal frequency, suggesting that

clonal frequency is not a reliable predictor of public status (53).

Instead of attributing a generation probability to each clonal se-

quence, our work complements previous probabilistic work by

leveraging a high-dimensional repertoire-level trained classifier

for binary classification on a per-sequence basis. Thus, the unique

advantage of sequence-based machine learning, as opposed to

probabilistic approaches for inference of generation probabilities

(11, 25, 26, 56), is the detection of predictive class-determining

sequence signatures. Specifically, sequence composition–based

machine learning led to the unexpected finding that private clones,

which were thought to be mostly stochastically generated, also

possess a high-dimensional fingerprint (predictive immunoge-

nomic features [Figs. 1 and 6]).

To conclude, the existence of high-dimensional immunogenomic

rules shaping immune repertoire diversity in a predictable fashion

provides further insight into the hitherto insufficiently understood

mechanisms of repertoire predetermination (17, 25, 26, 80, 81).

Furthermore, we note that mouse and human trained SVM clas-

sifiers may be applied to experimental data, as well as to synthetic

repertoire data (82), which could pave the way toward the con-

struction of a comprehensive atlas of human and mouse public

clones with possible applications in predictive immunotherapeutic

targeting of clones that have desirable sequence features or occur

often within a population (rational vaccine design) (17, 24, 53, 83,

84). Finally, we believe that our study represents a proof-of-

principle for large-scale and high-dimensional machine learning

on immune repertoire sequence data, serving as a guideline for

important future studies, such as the dissection of public and

private Ag-associated signatures (30, 60–62, 64, 85–88).

Acknowledgments
We thank Dr. Christian Beisel, Manuel Kohler, Ina Nissen, and Elodie

Burcklen (Genomics Facility Basel, Eidgenössische Technische Hochschule
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