
 Open access  Posted Content  DOI:10.1101/023911

Learning the human chromatin network from all ENCODE ChIP-seq data
— Source link 

Scott M. Lundberg, William B. Tu, Brian Raught, Linda Z. Penn ...+2 more authors

Institutions: University of Washington, University of Toronto, Princess Margaret Cancer Centre

Published on: 04 Aug 2015 - bioRxiv (bioRxiv)

Topics: Chromatin, ENCODE and Epigenome

Related papers:

 DeepCAGE: Incorporating Transcription Factors in Genome-wide Prediction of Chromatin Accessibility

 hiHMM: Bayesian non-parametric joint inference of chromatin state maps

 Fast detection of differential chromatin domains with SCIDDO.

 SignalSpider: probabilistic pattern discovery on multiple normalized ChIP-Seq signal profiles

 
circuitSNPs: Predicting genetic effects using a Neural Network to model regulatory modules of DNase-seq
footprints

Share this paper:    

View more about this paper here: https://typeset.io/papers/learning-the-human-chromatin-network-from-all-encode-chip-
1g7hf23e9o

https://typeset.io/
https://www.doi.org/10.1101/023911
https://typeset.io/papers/learning-the-human-chromatin-network-from-all-encode-chip-1g7hf23e9o
https://typeset.io/authors/scott-m-lundberg-bzu1xbri8v
https://typeset.io/authors/william-b-tu-3vcxm98566
https://typeset.io/authors/brian-raught-1r790n3w72
https://typeset.io/authors/linda-z-penn-2jo1d1ox7m
https://typeset.io/institutions/university-of-washington-2tqpyv72
https://typeset.io/institutions/university-of-toronto-3dwwuuvf
https://typeset.io/institutions/princess-margaret-cancer-centre-2v6n467p
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/chromatin-yg6hw80q
https://typeset.io/topics/encode-3kuesp41
https://typeset.io/topics/epigenome-2b66tgbm
https://typeset.io/papers/deepcage-incorporating-transcription-factors-in-genome-wide-txecvqkwct
https://typeset.io/papers/hihmm-bayesian-non-parametric-joint-inference-of-chromatin-4hrg0twmny
https://typeset.io/papers/fast-detection-of-differential-chromatin-domains-with-sciddo-3h65tmwfq7
https://typeset.io/papers/signalspider-probabilistic-pattern-discovery-on-multiple-2lavxoszn9
https://typeset.io/papers/circuitsnps-predicting-genetic-effects-using-a-neural-1vxvsj7awm
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/learning-the-human-chromatin-network-from-all-encode-chip-1g7hf23e9o
https://twitter.com/intent/tweet?text=Learning%20the%20human%20chromatin%20network%20from%20all%20ENCODE%20ChIP-seq%20data&url=https://typeset.io/papers/learning-the-human-chromatin-network-from-all-encode-chip-1g7hf23e9o
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/learning-the-human-chromatin-network-from-all-encode-chip-1g7hf23e9o
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/learning-the-human-chromatin-network-from-all-encode-chip-1g7hf23e9o
https://typeset.io/papers/learning-the-human-chromatin-network-from-all-encode-chip-1g7hf23e9o


Lundberg et al. Genome Biology  (2016) 17:82 

DOI 10.1186/s13059-016-0925-0

METHOD Open Access

ChromNet: Learning the human chromatin
network from all ENCODE ChIP-seq data
Scott M. Lundberg1, William B. Tu2,3, Brian Raught2,3, Linda Z. Penn2,3, Michael M. Hoffman2,3,4

and Su-In Lee1,5*

Abstract

A cell’s epigenome arises from interactions among regulatory factors—transcription factors and histone

modifications—co-localized at particular genomic regions. We developed a novel statistical method, ChromNet, to

infer a network of these interactions, the chromatin network, by inferring conditional-dependence relationships

among a large number of ChIP-seq data sets. We applied ChromNet to all available 1451 ChIP-seq data sets from the

ENCODE Project, and showed that ChromNet revealed previously known physical interactions better than alternative

approaches. We experimentally validated one of the previously unreported interactions, MYC–HCFC1. An interactive

visualization tool is available at http://chromnet.cs.washington.edu.

Introduction
Regulatory factors—such as transcription factors, histone

modifications, and other DNA-associated proteins—co-

localize in the genome and interact with each other to

regulate gene expression [14], the physical structure of

the genome [10], cell differentiation [5], and other cellu-

lar processes. Identifying the genomic co-localization in

this network among regulatory factors, which we termed

the chromatin network, is important for understanding

genome regulation and the function of each regulatory

factor [4, 55]. To identify the chromatin network, we can

use chromatin immunoprecipitation-sequencing (ChIP-

seq) to measure the genome-wide localization of regula-

tory factors, and then compare ChIP-seq data sets to find

regulatory factors that co-localize [11, 42]. Co-localization

may indicate that two factors interact physically, by form-

ing a complex, or functionally, by regulating similar DNA

targets.

However, identifying pairwise co-localization alone fails

to distinguish direct interactions from indirect interac-

tions. A direct interaction represents physical contact or

close functional coupling that requires spatial proxim-

ity. An indirect interaction is not from physical contact
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or direct functional coupling, but instead reflects the

transitive effect of other direct interactions. Consider a

simulated chromatin network among four factors, where

factor C recruits A and B, andA in turn recruitsD (Fig. 1a,

top). Because all pairs of ChIP-seq data sets are correlated

to each other (Fig. 1a, middle), a simple co-localization

method would incorrectly infer interactions among all the

factors (Fig. 1a, bottom left). In a conditional-dependence

network (Fig. 1a, bottom right), if two variables (here, fac-

tors) are conditionally dependent, then there is an edge

between them. The conditional dependence between two

factors measures their co-localization after accounting

for information provided by other factors. If we infer a

conditional-dependence network, we eliminate indirect

edges from the network, such as between factors A and

B, because their co-localization at peaks 3 and 5 can be

explained away by another factor C (C recruits A and

B). Hence, incorporating more ChIP-seq data sets allows

more indirect edges to be removed, resulting in a higher-

quality network.

Here we present ChromNet, an approach that esti-

mates the human chromatin network using a conditional-

dependence network among regulatory factors from

1451 human ENCODE ChIP-seq data sets (Additional

file 1: Table S1). Integrating all ENCODE data sets from

many cell types into a single network provides several

advantages. First, it enables the extraction of global pat-

terns in the conditional-dependence relationships among

regulatory factors in all cell types. Second, it provides a

© 2016 Lundberg et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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(A)

(C)

(B)

Fig. 1 a Top: Interaction network among four simulated regulatory factors.Middle: Binding activity from simulated ChIP-seq data sets, where each

peak represents a putative binding position of a protein. Bottom: Networks inferred from ChIP-seq data sets based on co-occurrence (left) or

conditional dependence (right). b Comparison of separate cell-type networks (top) with a single joint network (bottom). In a joint model, factors in

each cell type have opportunities to be connected with new regulatory factors in other cell types, as highlighted by the blue shaded region (bottom).

c Redundant information obscures conditional-dependence connections. Left:Without redundancy, standard methods robustly infer a

conditional-dependence network.Middle: Highly correlated variables (such as A and A′) are strongly connected with each other and lose their

connections with other variables. Right: A group graphical model (GroupGM) represents the conditional dependence between groups of correlated

variables, which restores the connection between A and B

flexible model that allows direct comparison of cell-type

specific sub-networks because factors are conditioned on

the same global set of ChIP-seq data sets across all cell

types. Finally, it greatly increases the number of edges to

consider by allowing edges connected to factors outside

a single cell type (Fig. 1b). We show that this leads to a

substantially increased fold enrichment for known protein

interactions.

Learning a joint network among all available ENCODE

ChIP-seq data sets involves three key challenges. First,

learning a network among thousands of ChIP-seq data

sets based on millions of genomic regions is highly com-

putationally intensive. To solve this challenge, we utilized

an efficient approach that involves the computation of

an inverse correlation matrix, which does not require an

expensive iterative learning procedure. This is in contrast
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to some other methods, such as Bayesian networks [3, 57]

and Markov random fields [65], which face difficulties

in scaling up, making it infeasible to run them on all

1451 ChIP-seq data sets (Additional file 1: Supplementary

Note 1). Second, some regulatory factors are in the

same complexes, and factors are often measured in dif-

ferent labs, conditions, or cell types, which creates sig-

nificant correlations in the data. When some variables

are highly correlated with each other, standard meth-

ods often learn edges only among these variables and

disconnect them from the rest of the network (Fig. 1c,

middle) [2]. Incorporating more ChIP-seq data sets exac-

erbates this problem. To solve this challenge, we present

the group graphical model (GroupGM) representation

of a conditional-dependence network that expresses

conditional-dependence relationships among groups of

regulatory factors as well as individual factors (Fig. 1c,

right). We show that GroupGM improves the interpre-

tation of a conditional-dependence network by allow-

ing edges to connect groups of variables, which makes

the edges robust against data redundancy. Third, net-

work edges can be driven by interactions in specific

genomic contexts. To help understand these contexts, we

present an efficient method to estimate the impact of each

genomic position on an inferred GroupGM edge.

Previous work on learning interactions among regula-

tory factors from ChIP-seq data used much smaller data

collections. ENCODE identified conditional-dependence

relationships among groups of up to approximately 100

data sets in specific genomic contexts [20]. Other authors

used partial correlation on 21 data sets [32], Bayesian

networks for 38 data sets [34], and partial correla-

tion combined with penalized regression for 27 human

data sets [49] and for 139 mouse embryonic stem cell

data sets [25]. Still other authors used a Markov ran-

dom field with 73 data sets in D. melanogaster [65], a

Boltzmannmachine with 116 human transcription factors

[40], and bootstrapped Bayesian networks in 112 reg-

ulatory factors in D. melanogaster [3, 57]. Only other

approaches also based on linear dependence models, such

as the partial correlation used by Lasserre et al. [32],

scale to all ENCODE data sets [Partial correlation and

rank(Raw read pileup) in Additional file 1: Figure S1].

The ChromNet approach extends these methods in four

distinct ways:

1. We show that linear dependence models can directly

be applied to the genome-wide untransformed read

count data (Additional file 1: Figure S1).

2. ChromNet addresses a fundamental challenge in

network estimation when some of the variables are

highly correlated with each other (collinearity)

through a novel statistical method, the group

graphical model.

3. ChromNet uses a novel method to identify genomic

positions and genomic contexts that drive specific

network edges.

4. Jointly modeling multiple cell types leads to a more

informative network with a substantially higher

enrichment for known protein interactions.

Network inference has also been applied to gene expres-

sion data, but the number of available samples in expres-

sion data is much lower than that in ChIP-seq data sets,

which leads to different challenges.

ChromNet departs from previous approaches by

enabling the inclusion of all 1451 ENCODE ChIP-seq

data sets into a single joint conditional-dependence net-

work. GroupGM and an efficient learning algorithm allow

seamless integration of all data sets comprising 223 tran-

scription factors and 14 histone marks from 105 cell types

without requiring manual removal of potential redun-

dancies (Additional file 1: Table S1). We show that this

approach significantly increases the proportion of net-

work relationships among ChIP-seq data sets supported

by previously known protein–protein interactions com-

pared to other scalable methods (see “Results”). We also

demonstrate the potential of ChromNet to aid new dis-

coveries by experimentally validating a novel interaction.

Results
Uniformly processed data reduces noise when learning

conditional dependence

To ensure comparable signals across all ChIP-seq data

sets, we reprocessed raw ENCODE sequence data with a

uniform pipeline (Fig. 2a). We downloaded raw FASTQ

files from the ENCODE Data Coordination Center

[11, 15, 51] (Additional file 2) and mapped them using

Bowtie2 [31] to the human genome reference assem-

bly (build GRCh38/hg38) [19]. We binned mapped read

start sites into 1000–base-pair (bp) bins across the entire

genome, which results in a 3, 209, 287×1451 datamatrixX

where genomic positions are viewed as samples (Fig. 2a).

We compared several different data preprocessing meth-

ods and chose binned read counts for three reasons:

1. They allow easy integration of external ChIP-seq

experiments.

2. They do not require the determination of various

cut-offs in a peak calling algorithm.

3. A network inferred from read counts performs well,

revealing previously known protein–protein

interactions (Additional file 1: Figure S1).

A conditional-dependence network can be efficiently

learned from binned read count data

Learning a conditional-dependence network among thou-

sands of ChIP-seq data sets each containing millions

of samples (genomic positions) requires an efficient
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Fig. 2 a The uniform processing pipeline includes aligning sequences using Bowtie2, and then binning them into 1000–base-pair regions. bWe

inferred the GroupGM from all 1451 ChIP-seq data sets and integrated the model learned into a web interface to facilitate broad use. cWe evaluated

the model learned against known physical protein interactions (BioGRID), mapped global patterns through network embedding, and validated a

novel predicted MYC-HCFC1 interaction with the proximity ligation assay (PLA)

algorithm (Fig. 2b). It is well known that the nonzero pat-

tern of the inverse covariance matrix of Gaussian random

variables represents the conditional-dependence network

[33, 37]. The inverse correlation matrix, �−1, is a nor-

malized version of the inverse covariance matrix and

also represents conditional dependence. A zero ele-

ment (
{

�−1
}

ij
= 0) means that the ith and jth variables

are conditionally independent of each other given all other

variables—they are not connected by an edge.

While it is common practice to learn the conditional-

dependence network among continuous-valued variables

based on the estimation of �−1 [23], count data requires

more care. Distributions of counts in binned ChIP-seq

reads are often clearly truncated at zero, and also increase

in variance for high read counts. Multivariate distribu-

tions with count-valued marginal distributions are often

very restrictive (for example only allowing positive cor-

relations) or are infeasible to estimate for thousands of

dimensions [62]. An often employed alternative is to

use a multivariate Gaussian distribution after appropri-

ately transforming the count data, such as with the sqrt

or asinh function [9]. However, interestingly, our results

show that applying a linear Gaussian model directly to

the binned read counts of ENCODE ChIP-seq data better

recovers known protein–protein interactions than when

using standard normalizing data transforms (“Methods”

and Additional file 1: Figures S1 and S2). This leads to

an efficient and simple model formulation for ChromNet

applied directly to the mapped read counts, which is

relatively easier to obtain compared to other ChIP-seq

data preprocessing methods and does not require any

threshold.

ChromNet first computes the inverse sample correlation

matrix �̂−1 from the data matrix X of 1451 variables and

3,209,287 samples, and then uses a GroupGM approach

to interpret elements of �̂−1 as weights of network edges

(Fig. 2b).

Groupmodeling mitigates the effects of redundancy

Many ENCODE ChIP-seq data sets contain redun-

dant positional information. Conventional conditional-

dependence methods have a key limitation in modeling

redundant data. If data sets A and A′ are highly corre-

lated, a conventional method would connect A with A′

but connect A to the rest of the network only weakly

(Fig. 1c). Arbitrarily removing or merging redundant

data sets can hide or eliminate important information in

the data.

GroupGM overcomes challenges with redundant data

in conditional-dependence models by allowing edges that

connect groups of data sets (such as [A,A′] and [B,B′]).

A group edge weight represents the total dependence

between the variables in the two groups that the edge

connects, and is computed from �−1 as (“Methods”):

G[A,A′][B,B′] = �−1
AB + �−1

AB′ + �−1
A′B + �−1

A′B′ .



Lundberg et al. Genome Biology  (2016) 17:82 Page 5 of 19

An edge in a GroupGM model implies conditional

dependence between the linked groups, but does not spec-

ify the involvement of individual factors in each group.We

prove that GroupGM correctly reveals conditional depen-

dencies in the presence of redundancy (Additional file 1:

Supplementary Note 2).

A group is defined as a set of highly correlated vari-

ables whose individual conditional-dependence relation-

ships with other variables are not likely to be captured,

as illustrated in Fig. 1c. To obtain groups, we used com-

plete linkage hierarchical clustering, and restricted groups

to have a minimum pairwise correlation of ρ (= 0.8)

within each group. The choice of complete-linkage clus-

tering allows us to obtain groups where all the factors are

highly correlated. Because the complete-linkage distance

metric merges two clusters based on the minimum cor-

relation between any two variables in the groups, we can

stop merging when the minimum correlation becomes

less than or equal to ρ before creating all 2p − 1 groups,

where p = 1451.

Each variable (a ChIP-seq data set) can be in multi-

ple groups as long as it is highly correlated with at least

one other data set. This multi-scale nature of groups is

a unique feature of the group graphical model. It allows

us to capture multiple ways each factor can be connected

with other factors. Say that a data set for factor A forms

a group with another data set for factor B. In the group

graphical model, A can have connections specific to itself

and connections shared with B, and their edge weight

values would indicate which connections are statistically

robust. This allows us to reveal multiple kinds of interac-

tions A can have: specifically with itself and with A and B

as a complex. The latter may not be captured by a conven-

tional conditional-dependence network, such as inverse

correlation or partial correlation, if A and B are highly

correlated with one another.

The purpose of having a threshold for minimum pair-

wise correlation ρ is to identify sets of variables whose

high within-group correlation is likely to prevent them

from being connected to other variables in the network.

The threshold used in this paper ρ = 0.8 captures 53% of

all the multi-factor groups formed by hierarchical cluster-

ing, and was chosen so as to include strong groups while

still keeping the size of groups small enough to interpret

(Additional file 1: Figure S3).

Conditional dependence and joint groupmodeling

improve the recovery of known protein–protein

interactions

To evaluate how conditional dependence and group mod-

eling both contribute to the performance of ChromNet,

we estimated three networks among ChIP-seq data sets

using the following three methods, where each method

produces a set of weighted edges:

1. Correlation: We learned a naive co-occurrence

network, using a pairwise Pearson’s correlation

between all pairs of data sets.

2. Inverse correlation: We learned a

conditional-dependence network, by computing the

matrix inverse of the correlation matrix.

3. GroupGM: We learned a group

conditional-dependence network, which addresses

tight correlation among data sets by allowing edges

between groups of variables.

Partial correlation is similar to inverse correlation and

performs nearly as well (Additional file 1: Figure S4).

We did not include other previously described methods

because they do not scale to the large data collection

we used (Additional file 1: Supplementary Note 1 and

Figure S5).

To assess the quality of the estimated networks, we

identified the edges corresponding to published protein–

protein interactions. As ground truth, we used the

BioGRID database’s assessment of physical interactions

between human proteins from experiments deemed low

throughput [56]. For evaluation, we excluded edges con-

necting the same regulatory factor even when measured

in different labs, cell types, or treatment conditions. These

edges were excluded from evaluation to prevent them

from artificially inflating the accuracy of the methods. We

also excluded edges involving a histone mark because they

do not exist in BioGRID. For these edges, we ran a separate

evaluation using the HIstome database [26] and showed

that the group graphical model shows higher enrichment

than the alternative methods (Additional file 1: Figure S6).

When we measured the conditional dependence between

a pair of ChIP-seq data sets in GroupGM, to avoid the

inclusion of many redundant edges, for each pair of data

sets, we picked the maximum edge weight out of all net-

work edges connecting groups, each of which contains

one of the corresponding data sets. This way, we consider

exactly the same number of data set pairs for evalua-

tion across all three methods. We only scored edges from

groups containing a single type of factor (about half of the

groups; see Additional file 1: Figure S3), because if a group

contains more than one factor, there is no clear way to

characterize such an edge as true or false from BioGRID,

or match it with an edge from competing methods for

comparison.

Groupmodeling improves the recovery of interactions within

and between cell types

We compared the performance of the three methods

described above across a range of prediction thresholds.

For each network, we varied the number of evaluated

edges N from 1 to the total number of edges. For each

value ofN, we identified the set ofN edges with the largest
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weights.We also randomly pickedN edges without regard

to weight rank as a background set. We then calculated

how many edges in each set matched known protein–

protein interactions from BioGRID. We computed fold

enrichment by dividing the number of matched edges in

the prediction set by the expectation of the number in the

background set. Since 8.4% of data set pairs in the same

cell type are supported by a BioGRID physical interaction,

an enrichment fold of 1 corresponds to 8.4% of recovered

edges matching prior knowledge. Enrichment fold cap-

tures the effect of both type I and type II error rates (see

“Methods”).

We first measured performance within all cell types,

excluding edges between data sets in different cell

types (Fig. 3a top). Since the limited number of anno-

tations in BioGRID imperfectly represents the human

chromatin network, one cannot draw strong conclusions

about absolute performance from this benchmark. The

relative performance of the methods, however, is clear;

inverse correlation performs better than correlation, and

GroupGM outperforms inverse correlation. This supports

the idea that better resolution of direct versus indi-

rect interactions contributes to improved performance of

inverse correlation over correlation, while greater robust-

ness against redundancy likely contributes to improved

performance of GroupGM over inverse correlation. The

value of conditional dependence and group modeling is

also further supported by specific examples in the network

(Fig. 4; Additional file 1: Figures S7 and S8), and by the fact

that GroupGM still outperforms inverse correlation even

after attempting to remove the strongest redundancies by

merging data sets from different labs targeting the same

factor in the same cell type/condition (Additional file 1:

Figure S9).

To assess the variability of the enrichment estimate,

we performed bootstrap resampling of regulatory factor

targets (Fig. 3a, b, light curves). All data sets with the

same factor are sampled together, leading to a conserva-

tive (high) estimated variability (“Methods”). GroupGM

showed a statistically significant improvement over both

correlation (P = 0.0004) and inverse correlation (P =

0.0036) for edges within cell types (Additional file 1:

Figure S10).

To assess variability over cell types, we estimated enrich-

ment separately for each cell type with 25 or more

BioGRID-supported edges. In each cell type, we identified

the number N of BioGRID-supported edges in that cell

type. Then, we calculated the enrichment for BioGRID-

supported edges among the top N edges in that cell

type (Fig. 3c). GroupGM performed consistently better

than correlation or inverse correlation in individual cell

types (Additional file 1: Figure S11).

We also generated a simulated data set meant to

mirror the characteristics of real ChIP-seq data sets

(Additional file 1: Figure S12). Using this simulated data,

we found a similar relative performance of various meth-

ods, with GroupGM recovering the most true network

edges (Additional file 1: Figure S13 and “Methods”).

To assess how well a joint model can recover relation-

ships between factors measured in different cell types, we

checked edges between different cell types for enrichment

in known protein–protein interactions (Fig. 3a bottom).

The GroupGM network showed a clear enrichment for

known interactions above random (P = 0.0095), and also

outperformed inverse correlation (P = 0.0174) and cor-

relation (P = 0.0282) (Additional file 1: Figure S14 and

“Methods”). This implies that information about many

physical protein interactions can be recovered even from

data sets in different cell types.

Comparison between a joint model of all cell types and

cell-type specific models

Integrating ChIP-seq data sets from multiple cell types

into a single network model provides the following three

advantages. First, we can capture high-level patterns in

the joint chromatin network that would not otherwise be

visible. Second, a joint model allows the direct compari-

son of cell-type specific sub-networks because factors are

conditioned on the same global set of ChIP-seq data sets

across all cell types. Finally, a data set for a regulatory fac-

tor in one cell type can serve as a proxy for a missing

data set for that factor in another cell type, if the factor’s

localization in the genome is conserved between the cell

types (Additional file 1: Figure S15). This greatly expands

potential chromatin network edges to include the union of

regulatory factors measured in any cell type. This global

network contains both conserved and cell-type specific

sub-networks, and proves useful in analyzing data from

ENCODE, which only measures a few factors in some cell

types.

To compare directly a joint model across all cell types

with cell-type specific models for each cell type separately,

we focused on the four best characterized ENCODE cell

types and compared enrichment of BioGRID-supported

edges (Fig. 3b). By varying the number of edges in

the networks, we find that the joint model consistently

identifies interactions with higher fold enrichment for

known interactions. In addition, a joint model also iden-

tifies more unique BioGRID supported protein–protein

interactions than cell-type specific models (Additional

file 1: Figure S16).

We show as well that the large increase in potential

edges from a joint model does not introduce spurious

associations among edges within a cell type. When we

excluded all cross-cell-type edges from the joint model,

the joint model still marginally outperforms cell-type spe-

cific models (P = 0.0672; Additional file 1: Figure S17).
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(A) (B)

(C)

Fig. 3 Enrichment of BioGRID-supported edges between transcription factors in networks estimated by correlation (yellow), inverse correlation (red),

and GroupGM (blue). In (a) and (b), light lines represent bootstrap resampling variability, and dark lines represent average performance over all

resampled networks. a Fold enrichment for BioGRID-supported edges against a varying number of evaluated network edges. Top: Excluding edges

between different cell types. Bottom: Only including edges between different cell types. b Enrichment against a varying number of evaluated

network edges. Here, we compared between a joint model and a cell-type specific model in four different cell types. c Enrichment within cell types

that have 25 supported edges or more, where the network density was set to match the number of BioGRID-supported edges in each cell type.

Beneath each cell-type name is the number of data sets in that cell type

An example of the importance of conditional dependence:

SMC3 separates RAD21 andMXI1

A specific example illustrates how conditional depen-

dence reveals experimentally supported direct inter-

actions better than pairwise correlation (Fig. 4a). In

the correlation network among RAD21, SMC3, and

MXI1, the three factors were tightly connected with

one another in HeLa-S3 cervical carcinoma cells. The

conditional-dependence network, however, separated

RAD21 and MXI1. This separation arose from the abil-

ity of SMC3 to explain away the correlation between

RAD21 and MXI1. The factor pairs left connected in the

conditional-dependence network, RAD21–SMC3 and

SMC3–MXI1, have physical interactions described in

BioGRID [21, 36]. BioGRID lacks any direct connec-

tion between RAD21 and MXI1. Panigrahi et al. discov-

ered more than 200 RAD21 interactors using yeast two-

hybrid screening, immunoprecipitation–coupled mass

spectrometry, and affinity pull-down assays [44]. They did

not identify a RAD21–MXI1 interaction, which implies

that RAD21 may not directly interact with MXI1.

To focus on the comparison between conditional depen-

dence and correlation, we have not displayed the group

that contains SMC3 and RAD21. This grouping reflects
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(A) (C)

(B)

Fig. 4 a Left: RAD21, MXI1, and SMC3 co-localize with one another, suggesting that they may all interact with each other. Right: ChromNet reveals

that the co-localization of RAD21 and MXI1 was largely mediated by the presence of SMC3. b GroupGM overcomes edge instability between tight

clusters of H3K27me3 (blue) and H3K4me3 (red) data sets in H7-hESC measured at different differentiation time points. Edge darkness indicates the

strength of the connection; dashed lines indicate negative interactions. We have removed within-group edges for clarity. Left: Correlation.

Middle: Inverse correlation. Right: GroupGM. c The part of the ChromNet network that interacts with EZH2 in H1-hESC embryonic stem cells. This is a

screen capture from our web interface with a search for “EZH2 H1-hESC.” Shaded regions represent the GroupGM groups learned by hierarchical

clustering; darker regions represent tighter clusters. We set the edge threshold to capture the six strongest edges connected to EZH2

their common role in the cohesion complex and is present

in many cell types. We also note that Fig. 4a is only a small

part of the full ChromNet network and considering more

factors reveals additional relationships that involve CTCF

and ZNF143, which is consistent with prior knowledge

[67] (Additional file 1: Figure S18).

An example of the importance of group dependency:

recovering a connection between H3K27me3 and

H3K4me3

Another specific example shows how GroupGMmitigates

the effect of redundancy on conventional conditional-

dependence models. We examined edges between mul-

tiple H3K27me3 and H3K4me3 data sets from H7-hESC

embryonic stem cells, collected at different time points

in differentiation [43]. H3K27me3 is a repressive mark

and H3K4me3 is an activating mark. Since the data sets

represent different portions of the differentiation process,

one should not average them or pick a reference data

set arbitrarily. However, the H3K27me3 data sets are

correlated highly enough with one another to form a

group, and so are the four H3K4me3 data sets. This

implies that conventional conditional-dependence meth-

ods would identify edges between the two histone marks

incorrectly.

Edges estimated using correlation indicate that the

ChIP-seq data sets targeting H3K27me3 and those tar-

geting H3K4me3 are positively correlated. However,

H3K27me3 is associated with repressed genomic regions

while H3K4me3 is associated with actively transcribed

regions [66]. Since a minority of promoters in embryonic

stem cells are bivalently marked, these two marks should

not have an overall positive association [5, 66]. In fact,

most ChIP-seq data sets are positively correlated with

each other (Additional file 1: Figure S15), which is induced

by mappability and many regions that are transcription-

ally silent or active. Resolving this problem by removing

some of these regions is unlikely to be successful, because

it is not clear what criteria we need to exclude regions.

In conditional-dependence models, such as inverse cor-

relation and the group graphical model, by conditioning

on many other variables, these global confounding effects

are naturally removed. Edges estimated by inverse corre-

lation account for these confounders but become weak

and unstable showing a mixture of positive and negative

associations (Fig. 4b, middle). By allowing group edges,

GroupGM has power to recover the negative association

between H3K27me3 and H3K4me3 (Fig. 4b, right), which

is consistent with prior knowledge [5, 66].

An example of learning genomic context: ZNF143

mediates the conditional-dependence relationship

between CTCF and SIX5

Many relationships between regulatory factors only occur

in a particular genomic context. This raises the question

of how, or whether, this context specificity is encoded in

ChromNet. We can gain insight into this by considering

what it means for one factor to mediate the relationship

between two other factors, such as A mediating the rela-

tionship between C and D in Fig. 1a. When this occurs,

it means that the connection between C and D can be

explained by their co-occurrence with A. In other words,

A is the context in which the relationship between C and

D occurs.
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A practical example of this is found in the relation-

ships between SIX5, ZNF143, and CTCF in the K562

cell type. Simple correlation connects all three factors

together with positive edges, but GroupGM shows that

ZNF143 actually mediates the relationship between SIX5

and CTCF (Additional file 1: Figures S7 and S8). This

means that the association of SIX5 with CTCF primarily

occurs in the presence of ZNF143, the CTCF–SIX5 rela-

tionship is context-specific, and ZNF143 is the context.

More generally, when an association between two fac-

tors, C and D, is specific to a certain genomic context

and that context is well represented by a third factor,

A, then A would mediate C and D. This gives the con-

nections C–A–D in the conditional-dependence network;

thus context-specific relationships, such as the relation-

ship between CTCF and SIX5 in the presence of ZNF143,

are captured in a GroupGM network, if all three factors

are present.

It is important to understand the genomic context in

which any given edge occurs regardless of whether that

context is well represented by another factor in the net-

work. Even if A is not observed, we want to be able to infer

the genomic context of the interaction between C and D.

To address this need, we designed an efficient method

to label every genomic position with its influence on a

group network edge (“Methods”). Using CTCF–ZNF143–

SIX5 as an example, we removed all ZNF143 experiments

from ChromNet and then computed the genomic con-

text of the edge between CTCF and SIX5. To validate this

genomic context, we took the top 1000 bins (1, 000, 000

bp) and intersected them with the top 1000 bins from

all other experiments in K562, including ZNF143. Even

though ZNF143was not present in themodel and ZNF143

data sets were not used when inferring the genomic con-

text, it had the highest overlap of any experiment with the

context driving the CTCF–SIX5 edge, even higher than

the CTCF and SIX5 experiments themselves (Additional

file 1: Figure S19).

An example of network accuracy: recovered interactions

with EZH2 in H1-hESC recapitulate known functions

As an example illustrating the utility of ChromNet in

revealing the potential interactors of a specific regulatory

factor, we examined a small portion of the network asso-

ciated with the well-characterized protein EZH2 (Fig. 4c).

We focused on the H1-hESC cell type because it hadmany

strong EZH2 connections in ChromNet. Examining con-

nections to EZH2 in H1-hESC highlighted several known

interactions, which we discuss in decreasing order of edge

strength. The strongest connection is from H3K27me3,

and EZH2 is a methyltransferase involved in H3K27me3

maintenance [1]. The next strongest connections are

with SUZ12, which is an essential part of the Polycomb

repressive complex 2 (PRC2), and is required for EZH2’s

methyltransferase activity [8, 13]. The next connection to

CTBP2 is supported by this co-repressor’s possible role in

deacetylation of H3K27 in preparation for PRC2-mediated

methylation [28]. H3K4me3 is well known to be present

in active regions of the genome, so a negative relationship

with EZH2 (represented by a dashed line) that deposits the

repressive H3K27me3 mark is expected. SP1 is a poten-

tially novel interactor of EZH2, while TCF12 is known

to co-immunoprecipitate with EZH2, which suggests that

TCF12 interacts with PRC2 [35]. In summary, most of the

strongest interactions with EZH2 have support in the lit-

erature. We found this mixture of interactions supported

by the literature and potential novel connections in many

parts of the network.

An example of cross-cell-type comparison:

enhancer-associated regulatory factors

Learning a conditional-dependence network for all

ENCODE cell types allows the comparison of within

cell type connections across different cell types. Active

enhancers are known to be flanked by a combination of

the histone marks, H3K27ac and H3K4me1 [53]. To quan-

tify how strongly different transcription factors associate

with active enhancers in different cell types, we calculated

the sum of the group edges between each regulatory fac-

tor (except histone marks) and H3K27ac and H3K4me1

measured in that cell type. This provides a score for each

factor in each cell type. Seven ENCODE cell types with 20

or more data sets contain both H3K27ac and H3K4me1,

while also containing EP300, which is known to bind

active enhancers [53]. We focused on these seven cell

types and ranked the factors in each cell type by their asso-

ciation with H3K27ac and H3K4me1. Additional file 1:

Table S2 lists the top ten factors in each cell type most

associated with active enhancers. EP300 can be consid-

ered a validation for the list and is highly ranked in all

seven cell types (P < 10−5). Interestingly, even more

highly ranked than EP300 is POLR2A. This association is

likely because active enhancers are in close proximity to

active transcription start sites in promoters in 3D space,

due to the looping mechanisms for enhancer–promoter

communication. The influence that 3D conformation can

have on measures of co-localization in the genome is

important to bear in mind when analyzing the edges in

ChromNet. Other factors that are consistently associated

with enhancers across cell types are shown in red, while

cell-type specific associations are in black (Additional

file 1: Table S2).

An example of a novel protein interaction: experimental

validation of an interaction between MYC and HCFC1

The c-MYC (MYC) transcription factor is frequently

deregulated in a large number and wide variety of cancers
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[38, 47]. It heterodimerizes with its partner protein MAX

to bind an estimated 10–15% of the genome to reg-

ulate the gene expression programs of many biological

processes, including cell growth, cell cycle progression,

and oncogenesis [6, 38, 47]. The mechanisms by which

MYC regulates these specific biological and oncogenic

outcomes are not well understood. Interactions with

additional co-regulators are thought to modulate MYC’s

binding specificity and transcriptional activity [22, 58];

however, only a few MYC interactors have been evaluated

on a genome-wide level. Analysis of the large number

of ENCODE ChIP-seq data sets can therefore further

elucidate MYC interactions at the chromatin level.

ChromNet showed that MAX is the strongest inter-

actor of MYC across multiple cell types (Additional

file 1: Table S3), highlighting the ubiquitous nature of

this interaction. Top-scoring ChromNet connections also

included other known MYC interactors, for example,

components of the RNA polymerase II complex such

as POLR2A and chromatin-modifying proteins such as

EP300 (Additional file 1: Table S3). This shows how

ChromNet can help identify protein complexes and

interactions.

In addition to the known interactors described above,

ChromNet also revealed previously uncharacterized,

high-scoring interactions, including the transcriptional

regulator Host Cell Factor C1 (HCFC1) (Additional file 1:

Table S3). HCFC1 binds largely to active promoters [39]

and is involved in biological processes, such as cell cycle

progression [46, 50] and oncogenesis [12, 45, 48]. This fur-

ther supports its possible role as an interactor of MYC

in regulating these activities. To validate the novel MYC–

HCFC1 interaction, we performed a proximity ligation

assay (PLA) in MCF10A mammary epithelial cells. This

technique detects endogenous protein–protein interac-

tions in intact cells [54] and has been used to vali-

date novel interactors of MYC [18]. When two proteins

that are probed with specific antibodies are within close

proximity of each other, fluorescence signals are pro-

duced that are measured and quantified using fluores-

cence microscopy. We saw only background fluorescence

when incubating with an antibody against MYC (Fig. 5a,

top) or HCFC1 (Fig. 5a, middle) alone. Incubation with

both MYC and HCFC1 antibodies yielded a significant

increase in the fluorescence signal in the nuclear com-

partment (Fig. 5a, bottom, Fig. 5b and Additional file 1:

Figure S20). This suggests that MYC and HCFC1 interact

in the nucleus, and HCFC1 may be a novel co-regulator

of MYC. Future investigation will reveal the impor-

tance of HCFC1 in regulating the biological functions

of MYC, such as cell cycle progression and oncogenesis.

This discovery illustrates how ChromNet can sug-

gest novel protein–protein interactions within chromatin

complexes.

Spatial embedding reveals global patterns in the human

chromatin network

By integrating all ENCODE data sets from many cell

types into a single network, ChromNet enables extrac-

tion of global patterns in the relationships among regu-

latory factors. We used multidimensional scaling [7] to

embed the entire network into a 2D layout (Fig. 6 and

“Methods”). In this embedding, the spatial proximity of

two nodes is designed to reflect their distance in the net-

work, where positive edges pull nodes closer together and

negative edges push them father apart. Nodes for the

same regulatory factor in different cell types form a cluster

when that factor’s genomic position is conserved across

cell types. For example, CTCF forms a clear cluster in this

manner (Fig. 6a). Relationships between regulatory factors

are represented by their proximity in the embedding. For

example, MYC and MAX nodes are located in the same

region; so are CTCF and RAD21. In contrast to the joint

network, relationships in individual cell-type-specific net-

works (Fig. 1b top) are much less distinct (Additional

file 1: Figure S21).

The relative positions of regulatory factors in the

embedded graph highlight important aspects of biology.

This is especially apparent among histone marks, where

there is a clear separation between activating marks such

as H3K4me3 and H3K27ac on the lower right and repres-

sive marks such as H3K27me3 and H3K9me3 on the

upper left (Fig. 6a). H3K27me3 and H3K9me3 are both

repressive marks, but form distinct clusters because they

target distinct regions of the genome. H3K27me3 marks

facultative heterochromatin, thought to regulate tempo-

rary repression of gene-rich regions [27]. H3K9me3marks

constitutive heterochromatin, and acts as a more perma-

nent repressor [30]. Between the active and repressive

marks, we find H3K36me3 and H3K79me2. H3K36me3

is closer to the inactive marks and is implicated in

restricting the spread of H3K27me3 [63]. H3K79me2

varies with the cell cycle and is associated with repli-

cation initiation sites [17]. The relative position of his-

tones and protein factors is also interesting. ZNF274 has

been implicated in the recruitment of methyltransferases

for H3K9me3 and is found nearby in the network [16].

EZH2 is involved in the deposition of H3K27me3 and is

found between the H3K27me3 cluster and the rest of the

network [61].

The positions of regulatory factor data sets reflect

both their cell-type identities and association with chro-

matin states. Highlighting the three tier 1 ENCODE cell

types shows a weak clustering of regulatory factor data

sets by cell type (Fig. 6b). K562 and GM12878 are both

derived from blood cell lines and overlap spatially with

one another in the network more than with the H1-

hESC human embryonic stem cells. Coloring the network

by correlation with chromatin state also reveals spatial
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Fig. 5 a Proximity ligation assay showing MYC and HCFC1 interaction in the nucleus. Representative micrographs show DAPI nuclear staining (left),

proximity ligation signal (middle), and overlay (right) at 20× magnification, with insets at 100× magnification. Top: Cells probed with MYC antibody

alone.Middle: Cells probed with HCFC1 antibody alone. Bottom: Cells probed with both antibodies. b Proximity ligation assay signal quantified as

number of foci per nucleus, with 254, 293, and 381 nuclei quantified for the MYC antibody alone, the HCFC1 antibody alone, and both antibodies

together, respectively. Individual values (gray dots) and mean ± standard deviation black bars from three biological replicates are shown; ****

p < 0.0001, one-way analysis of variance with Bonferroni post test. Quantifications for each independent replicate are shown in Additional file 1:

Figure S20. PLA proximity ligation assay
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(A) (B)

(C)

Fig. 6 2D embedding of the entire human chromatin network estimated by ChromNet. The spatial proximity of nodes and node groups reflects the

strength of their inferred edge weights. In three views of this embedding, we have highlighted three different aspects: a Specific regulatory factors

discussed in this article. b Data sets from the three ENCODE tier 1 cell types, showing a separation of data sets by cell type. c Correlation with five

Segway genome annotation labels. We only colored the data sets from cell types where the Ensembl Regulatory Build had a corresponding Segway

annotation. Node size represents correlation with a label, in comparison to all other nodes assigned to that label

patterns. We chose five (out of seven) Segway [24, 64]

annotation labels that highlight distinct areas of the net-

work (Fig. 6c), illustrating a clear separation between

active and inactive regions of the genome, and that chro-

matin domains are reflected in the interactions of the

chromatin network. Spatially embedding regulatory fac-

tor data sets using the ChromNet network simultaneously

captures many important aspects of their function, such

as chromatin state, cell lineage, and known factor–factor

interactions.

Discussion
Characterizing the chromatin network, the network of

interactions among regulatory factors, is a key part of

understanding gene regulation. ChromNet provides a

new way to learn the chromatin network from ChIP-

seq data. ChromNet addresses key problems encountered

when learning a joint conditional-dependence network

from a large number of ChIP-seq data sets, such as the

need to distinguish direct from indirect regulatory fac-

tor interactions while remaining robust to data redun-

dancy. ChromNet also provides an efficient method to

learn the genomic context driving an edge, which allows a

more comprehensive understanding of the inferred inter-

actions. We demonstrated that ChromNet’s GroupGM

network infers known protein–protein interactions in

the joint chromatin network more accurately than other

methods. Unlike many previous methods, ChromNet is

also efficient enough to integrate thousands of genome-

wide ChIP-seq data sets into a single joint network. To

our knowledge, this study represents the first construc-

tion of an interaction network from all 1451 ENCODE

ChIP-seq data sets. ChromNet already scales to the

number of data sets necessary to represent all 1400–

1900 human transcription factors [60], once such data

is available.

ChromNet provides a general computational frame-

work to identify a joint dependence network from many

ChIP-seq data sets. It can build a custom joint dependence

network by incorporating user-provided ChIP-seq data

sets or a combination of the ENCODE ChIP-seq data sets

and user-provided data sets. To allow easier exploration

of regulatory factor interactions and to facilitate gener-

ation of novel hypotheses, we have created a dynamic

search and visualization web interface for both the

ENCODE network and networks built from custom data
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sets (http://chromnet.cs.washington.edu). By building a

large model and allowing easy inspection of small sub-

networks, ChromNet combines a large-scale conditional-

dependence model with practical accessibility.

To demonstrate ChromNet’s ability to reveal novel regu-

latory factor interactions, we experimentally validated the

interaction between the MYC and HCFC1 proteins. The

biological functions of the MYC oncoprotein are com-

plex and dependent on its protein–protein interactions.

Uncovering these interactions will provide insights into

MYC transcriptional complexes involved in the onco-

genic process and may also reveal potential targets for

anti-cancer therapies. While this manuscript was under

review, the MYC–HCFC1 interaction was independently

described by Thomas et al. [59], further strengthening our

validation of the interaction discovered through Chrom-

Net and establishing HCFC1 as a bona fide interactor of

MYC. Through ChromNet, we identified HCFC1 as a

novel interactor of MYC that may be involved in regulat-

ing biological and oncogenic functions of MYC.

We envision several future extensions to the approach

described in this article. First, while we have demon-

strated the utility of applying ChromNet to ChIP-seq data

alone, we plan to incorporate other data types into the

network. RNA-seq expression data sets could resolve reg-

ulatory factor relationships that occur as a consequence

of mutual involvement in gene expression. Incorporating

feature annotations such as gene models could highlight

direct interactions between factors and genomic regions

of interest. The human genome’s billions of base pairs

provide a large sample size that allows joint comparisons

of many genome-wide signals in a single model. Robust

conditional-dependence networks provide a benefit that

is likely not limited to ChIP-seq data. Second, we plan

to consider relationships between regulatory factors at

genomic position offsets. Here, we considered only co-

occurrence relationships within the same 1000-bp region.

Tomodel positional ordering constraints, we can also con-

sider relationships between a factor in one region and

another factor in an adjacent or nearby region. This would

allow us to learn phenomena such as promoter-associated

factors preceding gene-body–associated factors. Third,

just as the co-occurrence of different regulatory factors

has been used to annotate the genome automatically, vari-

ations in the chromatin network at different positions may

also prove useful to annotate functional genomic regions.

This would also provide insight into the biological mech-

anisms behind specific regulatory factor interactions and

the chromatin states in which they occur.

Methods
Data processing

ENCODE has the largest collection of high-quality ChIP-

seq data sets [11], and continues depositing new data sets.

ENCODE has processedmany ChIP-seq data sets through

a uniform pipeline. However, we reprocessed all the data

sets from raw ChIP-seq reads (Fig. 2) for two reasons.

First, this allowed us to incorporate data sets not available

yet through ENCODE’s uniform pipeline. Second, speci-

fying our own pipeline makes it easier to process external

users’ data in an identical way. This facilitates adding

ChIP-seq data sets that are not from the ENCODE project

to the ChromNet network.

We aligned reads from 3574 FASTQ files to

GRCh38/hg38 [19] using Bowtie2 [31]. We grouped BAM

files by data set using metadata from the ENCODE web

site [15]. Then, we pooled and processed BAM files using

a custom binning method that counts the number of

read starts in each of 3,209,287 1000-bp bins covering

all contigs in GRCh38/hg38. Binning all count data sets

yielded a X ∈ Z
3,209,287×1451
∗ count-valued data matrix.

Each bin has a corresponding row in the matrix. We

interpreted each of the 3,209,287 rows as a sample from a

set X = {X1, . . . ,Xp} of p = 1451 count-valued random

variables representing occupancy of each regulatory

factor at a given position. Using this interpretation, we

computed a sample correlation matrix �̂ ∈ R
p×p among

the standardized variables in X . To create the correlation

network, we set the weight of every edge between two

data sets i and j equal to the corresponding entry �̂i,j in

the sample correlation matrix. This captures the pairwise

linear dependence between two data sets (Fig. 1a, bottom

left).

Generation of simulated data

A large-scale simulated data set was generated to vali-

date the ability of ChromNet to recover interactions from

raw count data. Representing the conditional dependence

among large numbers of count variables for the purpose

of simulation is not trivial. It is important that the model

is not overly simplistic, but also still interpretable. Here

we use a multivariate Gaussian distribution to represent

themeans of marginal Poisson distributions, threshold the

values when they fall below zero, and add additional nega-

tive binomial distributed noise to represent random reads

unrelated to regulatory factor localization.

In this model the count for a ChIP-seq data set j, cj, at a

given position is described by

cj = vj + ǫj, (1)

where vj ∼ Poisson(ratej), ratej = max(0, sj), and ǫj ∼

NegativeBinomial(r, p). The signal follows a thresholded

normal distribution sj ∼ max(N(μ,�), 0). The back-

ground noise (r = 25, p = 0.9) and the parameters of the

normal distribution are all fixed during the course of the

simulation.�−1 represents the structure of the underlying

conditional-dependence network.

http://chromnet.cs.washington.edu
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The inverse covariance matrix of the simulated data

�−1 was randomly generated with a sparsity of 10%.

In addition, data sets were grouped into complexes of

size one (60%), two (20%), or three (20%) to represent

the type of close coupling observed in real data among

some factors. The correlation within complexes was set

to be between 0.8 and 0.9 to match the magnitudes of

high correlations observed in real data (Additional file 1:

Figure S3). A total of 80 complexes were simulated across

200,000 positional samples. This results in 126 experi-

ments and 200,000 samples. To model the complexities

found in real data sets better, we added dependency

between nearby samples by replacing each ratej with

1

20
ratej−1 +

9

10
ratej +

1

20
ratej+1.

This caused nearby bins to be more similar to each

other and thus the samples are not independently and

identically distributed. Since larger correlations between

regions of the genome are also present due to batch effects

or other confounding factors, we added one of eight dif-

ferent random genome-wide batch effects to each of the

126 data sets.

The resulting marginal count distributions from this

model are visually similar to those observed in real data

(Additional file 1: Figure S12). Because we based the cor-

relations between data sets on a (largely transformed)

multivariate normal distribution, we can treat data sets

connected in the underlying generative model as true con-

nections and seek to recover them using a variety of meth-

ods. The results of this analysis are shown in Additional

file 1: Figure S13, which is consistent with Fig. 3, where

the group graphical model performs better than alterna-

tive approaches including correlation, inverse correlation,

and partial correlation.

Efficient estimation of conditional dependence from count

data

Given data sets drawn from a set X of count-valued

random variables, learning an exact joint model that cap-

tures the dependency structure of these data sets could

be challenging. Although there are a variety of multivari-

ate count distributions, all are either overly restrictive

or challenging to estimate for large numbers of vari-

ables [62]. A common alternative is to use a multivariate

Gaussian distribution and some type of transform on the

marginals to make them more Gaussian, such as sqrt or

asinh. Since count data are often heteroscedastic, where

variance increases with higher counts, these transforms

squash higher values, making the distribution more sym-

metric. This causes the least-squares error term to focus

less on high-valued samples and proportionately more on

lower values. Interestingly, for ChIP-seq data sets, this

is not desirable because higher values are more likely to

represent a strong signal while lower values aremore likely

driven by noise.

Because of its efficiency and interpretability, we used a

multivariate Gaussian approximation to the count data for

ChromNet. We also chose to use untransformed raw read

counts in the model. This choice was based on observing

a clear decrease in performance when using transforms

designed to mitigate heteroscedasticity (Additional file 1:

Figure S1). An additional benefit of using a multivariate

Gaussian is that it can also serve as a reasonable approx-

imation to a Markov random field distribution. This

allows a comparison with other methods designed to work

strictly with binary data (Additional file 1: Figures S22, S23

and Supplementary Note 3).

To create the inverse correlation network (Fig. 3), we

began by inverting the sample correlation matrix �̂ to get

an inverse sample correlation matrix �̂−1 [33, 37]. We

then set the weight of every edge between two data sets

i and j equal to the corresponding entry {�̂−1}i,j. This

inverse correlation network captures the pairwise linear

dependence between two data sets when conditioned on

all other variables in the network.

Note that partial correlation is very similar to inverse

correlation and has been used before by Lasserre et

al. to model connections between histone marks from

human ChIP-seq data effectively (using rank-transformed

data from gene start sites) [32]. The matrix of partial

correlations, P, is a renormalization of inverse corre-

lation P = −D−1/2 × �−1 × D−1/2 where D is the

diagonal matrix of �−1. A direct application of partial

correlation to all ENCODE data suffers from the same

issues as inverse correlation, performing slightly worse

in the recovery of known protein–protein interactions

(Additional file 1: Figure S4). We chose to use inverse cor-

relation as the foundation of the group graphical model

(GroupGM) because the proof that GroupGM recovers

the correct edge weights in the presence of near per-

fect redundancy does not hold when applied to the par-

tial correlation matrix (Additional file 1: Supplementary

Note 2).

One additional concern when applying a Gaussian

graphical model to ChIP-seq data is that the values at

each 1000-bp bin in the genome are not independent of

each other. Fortunately, while this may reduce the power

of the model (i.e., it will need more samples), it does

not bias the model. This is because the edges of a Gaus-

sian graphical model can be interpreted in terms of linear

regression coefficients. Standard linear regression coeffi-

cients are unbiased even when samples are not statistically

independent when the data follows a linear relationship.

To validate this on ChIP-seq data and to confirm that

any loss of power is unimportant, we evenly subsampled

the data at progressively larger intervals. We found that

performance when recovering known protein–protein
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interactions does not degrade until we subsample 100-fold

(Additional file 1: Figure S24).

Group graphical model

To create the group graphical model (GroupGM) net-

work, we beganwith the inverse correlationmatrix created

above. We extended the idea of pairwise relationships to

groups of data sets by considering a set G of q groups cho-

sen by hierarchical clustering (see below). This effectively

allows edges to express relationships between groups of

variables. We let Ĝ ∈ R
q×q represent pairwise interac-

tion strengths between all groups in the model. For any

two groups i and j in the model, their weight is given by

the sum of entries between them in the inverse correlation

matrix (Fig. 1c):

Ĝi,j =
∑

k∈Gi,l∈Gj

�̂−1
k,l . (2)

We prove that Eq. 2 correctly maintains the original edge

magnitude when there is redundancy (Additional file 1:

Supplementary Note 2).

To select the set G of groups, we used complete-linkage

hierarchical agglomerative clustering of the correlation

matrix [23]. This clustering method starts by merging the

two groups with the smallest maximum correlation dis-

tance between their data sets, then continues recursively

until all groups have been merged. The use of hierarchical

clustering eliminates the need to choose a fixed arbitrary

number of clusters in advance. From the clustering results,

we chose all the leaf and internal nodes from the cluster-

ing algorithm as groups G. Then,G became a q× qmatrix

filled according to Eq. 2, where q = 2p − 1 (the total

number of internal and leaf nodes). This method avoids

comparing all possible subsets of data sets, which would

make calculating G prohibitively expensive. Since groups

with low correlation are less likely to cause the collinearity

problem (Fig. 1c), we only consider groups with a cor-

relation greater than 0.8, which captures 53% of all the

multi-factor groups formed by the hierarchical clustering

(Additional file 1: Figure S3).

Since GroupGM uses the cluster assignments to mit-

igate strong redundancy, clustering accuracy is most

important for tightly correlated data sets. When two data

sets are highly correlated, it is important to group them

together to mitigate the outcome of correlated data sets

in network inference. When two data sets are only mildly

correlated, the effects of their redundancy will also be

mild, so it is less important to group them together. Hier-

archical clustering is an attractive choice because it starts

by creating groups among the most correlated data sets.

Computing the genomic context that drives a network

edge

The conditional-dependence relationships represented by

an edge in ChromNet can occur primarily in certain

genomic regions. Here we seek to identify what parts of

the genome (i.e., samples) drove the creation of an edge in

ChromNet. Understanding what positions in the genome

caused ChromNet to estimate a network edge provides

insight into the genomic regions driving the relationship.

The most natural way to define the influence of a

genomic position (i.e., sample) on an edge is as the differ-

ence in edge value between when we observe a position

and when we do not observe a position in the genome. If

implemented directly, this could easily become computa-

tionally intractable since it involves relearning the entire

model for every position in the genome. For a highly opti-

mized implementation on 16 cores, computing the corre-

lation matrix takes approximately 2 minutes, which would

lead to a run time of over 12 years for 3,209,287 binned

genomic positions. This can be sped up dramatically by

using rank-1 matrix updates to avoid recalculating most

of the correlation matrix. This results in a much faster

method, where the slowest step is the inversion of the

correlation matrix. However, computing this inversion for

each genomic sample still leads to over 4 days of computa-

tion on recent high-performance servers. Pre-computing

this information is also undesirable, since it would cre-

ate 54 TB of largely incompressible data for all group

edges. Below we show that for the ChromNet model, the

calculation of a genomic position’s impact on an edge

can be made extremely efficient. The ideas are similar

to those used in efficient leave-one-out cross-validation

implementations for linear models.

Removing a genomic position and computing the new

inverse correlation matrix can be written in terms of a

rank-1 update and the inverse correlation matrix before

the position (sample) is removed. This equation holds

under the assumption that removing the sample does not

change the mean of the data. Let � be the correlation

matrix of all the data, and �̄ be the correlation matrix

with the sample removed. Let u be the column vector

representing the sample to be removed (alreadymean cen-

tered). Letting D be a normalizing diagonal matrix Di,i =
√

1 − u2i , we get:

�̄ = (D−1(� − uuT)D−1)−1 (3)

= D(� − uuT)−1D (4)

= D(� + uBuT)−1D (B = −1) (5)

= D(�−1 − �−1u(B−1 + uT�−1u)−1uT�−1)D

(Woodbury formula) (6)

= D(�−1 − �−1u(−1 + uT�−1u)−1uT�−1)D (7)

= D(�−1 − v(−1 + uTv)−1vT)D (�−1u = v) (8)

= D

(

�−1 −
vvT

uTv − 1

)

D. (9)
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Included in the ChromNet software release is an opti-

mized implementation utilizing the above inverse rank-1

update formulation. It can solve 40,000 model updates to

the full joint chromatin network per second, which leads

to a run time of just over 1 minute for a single-group

edge over the human genome. The output is the effect

each genomic position has on an edge when that posi-

tion is added to the data set. This information can be used

to examine the highest impact positions and determine

the genomic context driving an edge (Additional file 1:

Figure S19).

Visualization of the hierarchical chromatin network

To enable exploration of the chromatin network, we

built an interactive visualization tool (http://chromnet.

cs.washington.edu). This tool displays the nodes and

edges of the chromatin network using a real-time force

model (Fig. 4c). The tool’s responsive interface lets users

control which nodes and edges it displays. It immedi-

ately changes its display after a user types a search term

to restrict displayed nodes. It also immediately changes

its display when a user moves a slider that controls the

minimum strength of a displayed edge. Our visualization

tool facilitates exploring the chromatin network without

excessive visual distraction.

The ChromNet visualization tool displays hierarchical

groups from GroupGM by shading areas that enclose a

group’s members. It shades these areas with some amount

of transparency. It displays the strongest groups with the

highest opacity. The parents of two connected groups in

the GroupGM hierarchy are themselves very likely con-

nected. Therefore, for clarity we hide redundant parental

edges.

To find a reasonable lower bound for the user-defined

strength threshold, we examined the relationship between

edge magnitude and known physical interactions. Within

cell type, edges from all cell types were sorted by mag-

nitude and then binned. For each bin, we computed the

number of edges matching low-throughput physical inter-

actions in BioGRID and plotted how this varied over the

bins. This enrichment curve suggested a lower bound of

0.2 to capture only edges enriched for known interactions

(Additional file 1: Figure S25).

Fold enrichment reflects both type I and type II error rates

The fold enrichment is a single quantity that captures the

effects of both type I and type II error rates. This can be

seen from the definition of fold enrichment:

fold enrichment

=
# of correct edges

# of randomly correct edges

(10)

=
TP

(

# network edge predictions
)

× (# BioGRID interactions) /N

(11)

=
TP × N

(TP + FP) × (TP + FN)
(12)

where N is the total number of possible edges, and TP, FP,

and FN refer to the number of true positives, false pos-

itives, and false negatives, respectively. The fold enrich-

ment is inversely proportional to the number of false

positives (type I error) and number of false negatives (type

II error). The type I error rate is equal to (type I error)

/(total number of BioGRID interactions), and the type II

error rate is equal to (type II error)/(total number of inter-

actions − number of BioGRID interactions). Since the

denominators of the type I and type II error rates are fixed

numbers, we can say that the fold enrichment is inversely

proportional to the type I and type II error rates.

A conservative bootstrap estimate of protein–protein

interaction enrichment variability

We estimated the variability of enrichment for known

protein–protein interactions in the chromatin net-

work (Fig. 3) using bootstrap resampling over regulatory

factors.We performed resampling over regulatory factors,

and not over edges or individual data sets, because valid

bootstrap resampling assumes independent and identi-

cally distributed samples. If we had resampled over the

edges, we would have estimated a much smaller variabil-

ity. This is because edges do not vary independently, and

changes in a single data set can affect all edges connected

to that data set. Variation specific to a single regulatory

factor would affect all data sets measuring that factor.

Those individual data sets, therefore, lack the indepen-

dence assumed by the bootstrap sampling.

Under a regulatory factor bootstrap, we might sample

a widely measured regulatory factor a number of times.

For example, ChromNet contains 130 CTCF data sets.

Every time we sample CTCF, we add all 130 of these

columns (where a column represents a variable in the data

matrix X) to the bootstrap data matrix. Adding many data

sets in unison greatly increases variability in the resam-

pled data matrix. This yields conservative high variability

estimates, ensuring that enrichment performance is not

solely due to a few commonly measured factors. Using

these bootstrap samples, we compared the area under the

enrichment rank curves (Fig. 3a, b) between methods.

The statistical significance of GroupGM’s improvement

was quantified as the fraction of bootstrap samples where

GroupGM outperformed the other methods (Additional

file 1: Figures S10 and S14).

Proximity ligation assay

We seeded 2.5 × 104 MCF10A cells (a kind gift from

S. Muthuswamy, Princess Margaret Cancer Centre) onto

http://chromnet.cs.washington.edu
http://chromnet.cs.washington.edu
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glass cover slips. After 1 day, we fixed cells in 2%

paraformaldehyde, permeabilized the cells, and blocked

them with bovine serum albumin. We then incubated the

cells overnight with a mouse monoclonal antibody against

MYC (1:25; C-33, Santa Cruz Biotechnology, Dallas, TX)

and a rabbit polyclonal antibody against HCFC1 (1:50;

A301-400, Bethyl Laboratories, Montgomery, TX). Then,

we incubated cells with Duolink In Situ PLA anti-mouse

MINUS and anti-rabbit PLUS probes (Sigma-Aldrich,

St. Louis, MO). We processed cells using Duolink In

Situ Detection Reagents Red following the manufacturer’s

instructions (Sigma-Aldrich, St. Louis, MO). We imaged

six fields of view per slide with a LSM700 confocal fluo-

rescence microscope (Zeiss, Oberkochen, Germany). We

unbiasedly quantified the PLA signal per nucleus (as

defined by DAPI staining) using the software ImageJ [52].

Embedding the full chromatin network into a single plot

Embedding a graph into a space involves defining dis-

tances between all nodes in the graph. Because GroupGM

is inherently multi-scale, we sought a distance metric that

accurately represented forces between individual nodes,

and between all possible node groupings. In GroupGM,

the edge weight between two groups is the sum of the

conditional-dependence weights between all the individ-

ual data sets of those groups.

A common method of computing graph distances that

accounts for the total effect of all edges between two

groups is the resistance distance [29]. The name is derived

from an interpretation of the distance as the electrical

resistance between two nodes in the graph where edges

are viewed as wires. This can be computed as:

�i,j = Ŵi,i + Ŵj,j − Ŵi,j − Ŵj,i,

where Ŵ is the inverse of the graph Laplacian. While

at first glance the resistance distance may seem like an

arbitrary metric to use for node distances, upon closer

inspection we find striking parallels between it and Gaus-

sian graphical models. First, note that the weighted graph

Laplacian [41], L, is defined as:

L = W ⊗ (D − A),

where D is a diagonal matrix of edge degrees, A is the

binary adjacency matrix of the graph, W is a matrix

of positive edge weights, and ⊗ represents element-wise

multiplication. A general Gaussian graphical model has a

complete graph, so A will be all ones, and D will be con-

stant on the diagonal. The edge weights will be symmetric

and can be positive or negative. Positive edge weights will

lead to negative off-diagonal entries in L, just as posi-

tive connections in the GroupGM will lead to negative

off-diagonal entries in � = �−1. So by allowing W to

contain negative entries, we can view � as a type of graph

Laplacian.

Viewing � as a type of graph Laplacian allows us to

compute the resistance distance by setting Ŵ = �−1.

Simplifying gives �i,j = 1 − �−1
i,j .

So, the resistance distance is just a constant offset of the

correlation matrix of the network. This means that if we

are trying to compute distances between nodes in a graph

represented by the inverse correlation matrix, correlation

is a very natural distance measure. We note, however, that

unlike the original data correlation matrix, this matrix is

computed from the inverse of the edge weights matrix.

This causes a difference because we threshold small edge

values that are likely to represent only noise.We chose this

threshold to maximize the visual clarity of the network,

which led to a threshold of 0.01.

We overlaid chromatin state annotation on the graph

embedding by computing the correlation between each

data set and each Segway [24] region from the Ensembl

Regulatory Build for GRCh38/hg38 [64]. We drew a sep-

arate network labeling for each region by sizing each data

set node by its correlation with that Segway region. We

normalized the size of the largest node in each network

to a constant value and overlaid three of these network

colorings (Fig. 6c).

Availability of supporting data
ChromNet is freely available as a ready-to-use package

under an Apache license at https://github.com/slundberg/

ChromNet.jl. Supporting data including a preprocessed

data matrix from all human ENCODE ChIP-seq data

are linked from the code repository and at http://dx.doi.

org/10.5281/zenodo.45900. The microscopy data that we

used for validation of the MYC–HCFC1 interaction are

available at http://dx.doi.org/10.5281/zenodo.45768.
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