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Abstract. We propose to harness Angluin’s L
∗ algorithm for learning

a deterministic finite automaton that describes the possible scenarios
under which a given program error occurs. The alphabet of this automa-
ton is given by the user (for instance, a subset of the function call sites or
branches), and hence the automaton describes a user-defined abstraction
of those scenarios. More generally, the same technique can be used for
visualising the behavior of a program or parts thereof. This can be used,
for example, for visually comparing different versions of a program, by
presenting an automaton for the behavior in the symmetric difference
between them, or for assisting in merging several development branches.
We present initial experiments that demonstrate the power of an abstract
visual representation of errors and of program segments.

1 Introduction

Many automated verification tools produce a counterexample trace when an
error is found. These traces are often unintelligible because they are too long
(an error triggered after a single second can correspond to a path with millions
of states), too low-level, or both. Moreover, a trace focuses on just one specific
scenario. Thus, error traces are frequently not general enough to help focus the
attention of the programmer on the root cause of the problem.

A variety of methods have been proposed for the explanation of counterex-
amples, such as finding similar paths that satisfy the property [16] and analysing
causality [8], but these focus on a single counterexample. The analysis of mul-
tiple counterexamples has been suggested in the hardware domain by Copty
et al. [13], who propose to compute all counterexamples and present those states
that occur in all of them to the user. Multiple counterexample analysis has
also been suggested in the context of a push-down automaton (PDA) (repre-
senting software) and a deterministic finite automaton (DFA) (representing a
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negated property) by Basu et al. [7], who describe the generation of all loop-free
counterexamples of a certain class, and the presentation of them to the user in
a tree-like structure. In software, another notable example is the model checker
MS-SLAM, which reports multiple counterexamples if they are believed to relate
to different causes [6], and each example is ‘localized’ by comparing it to a trace
that does not violate the property.

We believe that developers can benefit from seeing the multiple ways in which
a given assertion can fail, and that raw counterexamples quickly become unhelp-
ful. In this article we suggest that a user should be presented with a DFA that
summarizes all the ways (up to a given bound, as will be explained) in which an
assertion can fail. Furthermore, the alphabet of this automaton is user-defined,
e.g., the user can give some subset of the function calls in a program. We argue
that this combination of user-defined abstraction with a compact representa-
tion of multiple counterexamples addresses all three problems mentioned above.
Moreover, the same idea can be applied to describing a program or, more realis-
tically, parts of a program by adding an ‘assert(false)’ at the end of the sub-
program to be explained. Fig. 1, for instance, gives an automaton that describes
the operation of a merge-sort program in terms of its possible function calls.1

We obtained it by inserting such a statement at the end of the main function.

Fig. 1. An abstract description of a merge-sort program, where the letters are the
function calls.

Our method is based on Angluin’s L∗-learning algorithm [3]. L∗ is a frame-
work for learning a minimal DFA that captures the (regular) language of a model
U over a given alphabet Σ, the behavior of which is communicated to L∗ via an
interface called the ‘teacher’. L∗ asks the teacher membership queries over Σ,
namely whether w ∈ U , where w is a word and U is the language (the model),
and conjecture queries, namely whether for a given DFA A, L(A) = U . The
number of queries that the algorithm performs is polynomial in the size of the
alphabet, in the number of states of the resulting minimal DFA, and in the
length of the longest counterexample (feedback) to a conjecture query returned
by the oracle (see Sect. 2 for a more in-detail description).

The use of L∗ in the verification community, to the best of our knowledge, has
been restricted so far to the verification process itself: to model components in an
assume-guarantee framework, e.g., [15], or to model the input-output relation in
specific types of programs, in which that relation is sufficient for verifying certain
properties [11].

1 Source code for all the programs mentioned in this article is available online from [1].
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Trivially, the language that describes a part of a program, or the behaviors
that fail an assertion, is neither finite nor regular in the general case. We therefore
bound the length of the traces we consider by a constant, and thereby obtain a
finite set of finite words. The automaton that we learn may accept unbounded
words, but our guarantee to the user is limited: any word in L(A), up to the
given bound, corresponds to a real trace in the program. We will formalize
this concept in Sect. 3. The fact that A may have loops has both advantages
and disadvantages. Consider, for example, the program in Fig. 2 (left). Suppose
that Σ is the set of functions that are called. With a small bound on the word
length we may get the automaton in Fig. 2 (right), which among others, accepts
the word g120 · f . The bound is not long enough to exclude this word. On the
other hand, if g had no effect on the reachability of f , then the automaton
would capture the language of error precisely, despite the fact that we are only
examining bounded traces.

Fig. 2. A program and an automaton that we learn from it when using a low bound
(< 100) on the word length.

We note that the automaton we generate is conceptually different from a
control-flow graph (CFG) of a program mapped on a set of interesting events.
This is because a CFG is based on the structure of a program, whereas the
automaton generated by L∗ is based on the actual executions, and in general,
cannot be deduced from the CFG.

In the next sections, we briefly describe the L∗ algorithm and define the
language we learn precisely. We follow with a detailed description of our method,
which is based on the L∗ algorithm, using it mostly as a black box. We describe
various aspects of our system and our empirical evaluation of it in Sect. 6, and
conclude with some ideas for future research in Sect. 7. More examples can be
found on the project’s website [1].

2 Preliminaries – the L
∗ Algorithm

We start by revisiting the well-known definition of deterministic finite automata
(cf. [18]).
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Definition 1 (Determinisic Finite Automaton). A deterministic finite
automaton (DFA) A is a 5 tuple 〈S, init,Σ, δ, F 〉, where S is a finite set of
states, init ∈ S is the initial state, Σ is the alphabet, δ : S × Σ → S is the
transition function, and F ⊆ S is the set of accepting states. We denote by L(A)
the language accepted by the automaton A.

The complement operation on DFA A is naturally defined as Ā =
〈S, init,Σ, δ, S \ F 〉, that is, an automaton in which the accepting and non-
accepting states are switched. A complement automaton accepts a complement
language: L(Ā) = Σ∗ \ L(A).

The intersection operation A1 ∩ A2, where A1 = 〈S1, init1, Σ, δ1, F1〉 and
A2 = 〈S2, init2, Σ, δ2, F2〉, assuming the same alphabet, results in the automaton
A = 〈S, init,Σ, δ, F 〉, with the set of states S being a cross-product S1×S2 of the
sets of states of A1 and A2, and the transition relation following the same letter
on both parts of the state-pair. The initial state init is defined as init1 × init2,
and the set of accepting states F is F1 × F2 (that is, both A1 and A2 need
to accept in order for A to accept). The language L(A) is the intersection of
languages L(A1) ∩ L(A2).

The difference operation between two languages of DFA, L(A1) \ L(A2), is
computed as the language of A1 ∩ Ā2, that is, an intersection of A1 with the
complement of A2. The symmetric difference between A1 and A2 is computed as
the union of L(A1) \ L(A2) and L(A2) \ L(A1). In understanding the behavior
of programs, we find that it is easier to analyze both sides of the difference
separately, hence we do not produce the automaton for the union of differences
(though it can easily be done).

The L∗ algorithm, developed by Angluin [3], introduces a framework for
iterative learning of DFA. Essentially, L∗ learns an unknown regular language
U by iteratively constructing a minimal DFA A such that L(A) = U . The algo-
rithm includes two types of queries: membership queries and conjecture queries.
Angluin’s original description of the entities that answer the two queries uses the
terms ‘teacher’ and ‘oracle’; for simplicity we unify them here under the name
‘teacher’. Figure 3 describes the interaction of L∗ with the teacher. L∗ learns U ,
by querying the teacher with two types of questions:

– membership queries (top arrow), namely whether for a given word w ∈ Σ∗,
w ∈ U , and

– conjecture queries (third arrow from top), namely whether a given conjectured
automaton A has the property L(A) = U . If the answer is yes, L∗ terminates
with A as the answer. Otherwise it expects the teacher to provide a coun-
terexample string σ such that σ ∈ U \ L(A) or σ ∈ L(A) \ U . In the first case,
we call σ positive feedback, because it should be added to L(A). In the second
case, we call σ negative feedback since it should be removed from L(A). Based
on the counterexample, L∗ initiates a new series of queries, until it converges
on a DFA A such that L(A) = U .

L∗ maintains a table (called an ‘observation table’) that records transitions and
states, and is used to construct the resulting automaton A = 〈S, init,Σ, δ, F 〉.
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Fig. 3. The input and output of L
∗, and its interaction with the teacher.

The states are defined by the prefixes they accept, and for each state s and each
letter σ, the table defines whether δ(s, σ) ∈ F . Let S′ be a set of states currently
in this table. A table is said to be closed if ∀s ∈ S′. ∀σ ∈ Σ. δ(s, σ) ∈ S′.

In other words, the table is closed when it represents a complete transition
function. To close its table, L∗ asks the teacher multiple membership queries.
By construction, once the table is closed it represents a DFA. L∗ presents this
DFA as a conjecture query to the teacher. If the answer to the query is ‘no’, it
analyzes the counterexample σ and adds states and transitions to accommodate
it, which makes the table ‘open’ again. This leads to additional membership
queries, and the process continues.

The underlying principle ensuring the convergence of the L∗ algorithm is
the Myhill-Nerode theorem [18], which provides a sufficient and necessary con-
dition for a language to be regular. Since we assume that U is regular, L∗ uses
the Myhill-Nerode theorem to compute the equivalence classes of U , which are
mapped to the states of the final DFA. The number of queries is bounded by
O(km2n3), where k is the size of the alphabet, n is the number of states of the
resulting (minimal) DFA, and m is the length of the longest feedback (coun-
terexample).2

3 The Language We Learn

Our learning scheme is based on user-defined events, which are whatever a user
chooses as their atoms for describing the behaviors that lead to an assertion
violation. At source level, events are identified by instrumenting the code with
a Learn(id) instruction at the desired position, where id is an identifier of the
event. Typical locations for such instrumentation are at the entry to functions
and branches, both of which can be done automatically by our tool. Each location
obtains its own unique id.

The set of event identifiers constitutes the alphabet Σ of the automaton A
that we construct. A sequence of events is a Σ-word that may or may not be
in L(A), the language of A. For an instrumented program P , a trace π of P

2 This is a simplified upper bound of the complexity of the L
∗ algorithm.
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(further denoted as π ∈ P ) induces a Σ-word, which we denote by α(π). The
language of such a program, denoted L(P ), is defined naturally by

L(P )
.
= {α(π) | π ∈ P}. (1)

Recall that our goal is to obtain a representation over Σ of P ’s traces that
violate a given assertion. Let ϕ be that assertion, and denote by π 	|= ϕ the fact
that a given trace violates ϕ. We now define

Fail(P )
.
= {α(π) | π ∈ P ∧ π 	|= ϕ}. (2)

In general, this set is irregular and incomputable and, even in cases in which it is
computable, it is likely to contain too much information to be useful. However,
if we bound the loops and recursion in P , this set becomes finite, and hence
regular and computable. Let b be such a bound, and let

Fail(P, b)
.
= {α(π) | π ∈ P ∧ |π| ≤ b ∧ π 	|= ϕ}, (3)

where |π| denotes the maximal number of loop iterations or recursive calls made
along π. Restricting the set of paths this way implicitly restricts the length of
the abstract traces that we consider, i.e., |α(π)| ≤ b′, where b′ can be computed
from P and b. We also allow users to bound the word length |α(π)| directly
with another value bwl. In Sect. 6 we will describe strategies for obtaining such
bounds automatically. Based on these bounds we define

Fail(P, b, bwl)
.
= {α(π) | π ∈ P ∧ |π| ≤ b ∧ |α(π)| ≤ bwl ∧ π 	|= ϕ}. (4)

The DFA, A, that we learn and present to the user has the following property
for all π ∈ P :

|π| ≤ b ∧ |α(π)| ≤ bwl ∧ α(π) ∈ L(A) ⇐⇒ α(π) ∈ Fail(P, b, bwl). (5)

4 L
∗ and the Queries

g, f, assertConsider the automaton in Fig. 2, which is learned by our system
from the program on the left of the same figure, when b = bwl = 4.
This automaton is the second conjecture of L∗. Let us briefly review
the steps L∗ follows that lead to this conjecture. Initially it has
a single state with no transitions. Then it asks the teacher three single-letter
membership queries: whether f, g and assert are in U . The answer is ‘no’ to all
three since, e.g., we cannot reach an assertion failure on a path hitting f alone
(in fact the first two are trivially false because they do not end with assert).

After answering these queries, L∗ has a closed table corresponding to the
automaton on the right: an automaton with one non-accepting state. It poses
this automaton as a conjecture to the teacher, which answers ‘no’ and returns
σ = f · assert as positive feedback, i.e., this word should be added to L(A).
Now L∗ poses 12 more membership queries and conjectures the automaton in
Fig. 2. The teacher answers ‘yes’, which terminates the algorithm. ⊓⊔
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We continue by describing the teacher in our case, namely how we answer
those queries. The source code of P is instrumented with two functions:
Learn(id) at a location of each Σ-event (recall that id is the identifier of
the event), and Learn Assert at the location of the assertion that is being
investigated. The implementation of these functions depends on whether we are
checking a membership or a conjecture query, as we will now show.

4.1 Membership Queries

A membership query is as follows: “given a word w, is there a π ∈ P such
that α(π) = w and π 	|= ϕ?” Fig. 4 gives sample code that we generate for a
membership query — in this case for the word (3 · 3 · 6 · 2 · 0). The letter ‘0’
always symbolizes an assertion failure event, and indeed queries that do not
end with ‘0’ are trivially rejected. This code, which is an implementation of
the instrumented functions mentioned above, is added to P , and the combined
code is then checked with the Bounded Model Checker for software CBMC [12].
CBMC supports ‘assume(pred)’ statements, which block any path that does not
satisfy the predicate pred. In lines 4–5 we use this feature to block paths that
are not compatible with w.

Learn Assert is called when the path arrives at the checked assertion, and
declares the membership to be true (i.e., w ∈ L(A)) if the assertion fails exactly
at the end of the word.

Fig. 4. Sample (pseudo) code generated for a particular membership query.

Optimisations. We bypass a CBMC call and answer ‘no’ to a membership
query if one of the following holds:

– The query does not end with a call to assert,
– The query contains more than one call to assert,
– w is incompatible with the control-flow graph.
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4.2 Conjecture Queries

A conjecture query is: “given a DFA A, is there a π ∈ P such that

– α(π) ∈ L(A) ∧ π |= ϕ, or
– α(π) 	∈ L(A) ∧ π 	|= ϕ ?”

The two cases correspond to negative and positive feedback to L∗, respectively.
Figure 5 presents the code that we add to P when checking a conjecture query.

The candidate A is given in a two-dimensional array, A, and the accepting states
of A are given in an array accepting (both are not shown here). path is an array
that captures the abstract path, as can be seen in the implementation of learn.
Learn Assert simulates the path accumulated so far (lines 6–7) on A in order
to find the current state. It then aborts if one of the two conditions above holds.
In both cases the path path serves as the feedback to L∗.

Fig. 5. Code added to P for checking conjecture queries.

Eliminating Spurious Words. The conjecture-query mechanism described
above only applies to paths ending with Learn Assert. Other paths should
be rejected, and for this we add a ‘trap’ at the exit points of the program. The
implementation of this function appears in Fig. 6. It ends with negative feedback
if the current path is a prefix of a path that a) reaches an accepting state in A
(line 6), and b) was not marked earlier as belonging to L(A) (line 7). The reason
for this filtering is that the same abstract path (word) can belong to both a real
abstract path p ∈ P and to a path p′ 	∈ P that we chose nondeterministically in
this function (see line 9). For example, a path p = 1 ·1 ·2 ·0 can exist in P (recall
that the ‘0’ at the end of this path means that it violates the assertion), but
there is another path p′ that does not go via any of these locations and reaches
Learn Trap, which nondeterministically chooses this path.

We now show that the above implementation indeed guarantees the proper-
ties described in Eq. (5):

Theorem 1. The implementations of Figs. 5 and 6 ensure that for all π ∈ P :

|π| ≤ b ∧ |α(π)| ≤ bwl ∧ α(π) ∈ L(A) ⇐⇒ α(π) ∈ Fail(P, b, bwl) .
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Fig. 6. Learn trap is called at P ’s exit points. It gives negative feedback to conjecture
queries in which ∃w ∈ L(A) such that w does not correspond to any path in P .

Proof. ⇒ We need to show that for all π ∈ P

|π| ≤ b ∧ |α(π)| ≤ bwl ∧ α(π) ∈ L(A) ⇒ |π| ≤ b ∧ |α(π)| ≤ bwl ∧ π 	|= ϕ

The first two conjuncts are trivially true. We prove the third by contradiction.
Thus assume that π |= ϕ. We separate the discussion to two cases:

• α(π) ends with a Learn Assert statement. In the (last) conjecture query π

calls that function, which appears in Fig. 5. Since π |= ϕ the guard in line 4 is
false. In line 7 state, in the last iteration of the for loop, is accepting, because
we know from the premise that α(π) ∈ L(A). This fails the assertion in line 8,
and the conjecture is rejected. Contradiction.

• Otherwise, in the (last) conjecture query, π calls the trap function of Fig. 6.
In line 5 state, in the end of the for loop, is accepting, again because we
know from the premise that α(π) ∈ L(A). The condition in line 7 is false,
and the assert(0) in the following line is reached. The conjecture is rejected.
Contradiction.

⇐ We need to show that for all π ∈ P

|π| ≤ b ∧ |α(π)| ≤ bwl ∧ α(π) ∈ L(A) ⇐ |π| ≤ b ∧ |α(π)| ≤ bwl ∧ π 	|= ϕ

Again, the first two conjuncts are trivially true, and we prove the third by
contradiction: assume that α(π) 	∈ L(A). Since π 	|= ϕ, π must end with a call
to Learn Assert. Hence in the (last) conjecture query π calls that function,
which appears in Fig. 5. By our premise, the state is not accepting. Hence the
condition in line 9 is met, and α(π) is returned as a positive feedback to L∗,
which adds it to A. Contradiction. ⊓⊔

The trap function has an additional benefit: it brings us close to the following
desired property for every word w ∈ Σ∗:

w ∈ L(A) ∧ |w| ≤ bwl =⇒ ∃π ∈ P. α(π) = w . (6)

That is, ideally we should exclude from L(A) any word w, |w| ≤ bwl that does
not correspond to a path in P . The reason that this trap function does not
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guarantee (6) is that it only catches a word w ∈ L(A) if there is a path π ∈ P to
an exit point, such that α(π) is a prefix of w. In other cases, the user can check
the legality of w ∈ L(A) either manually or with a membership query.

Optimisation. We can bypass a CBMC call in the following case: consider an
automaton Acfg in which the states and transitions are identical to those of the
control-flow graph (CFG) of P , and every state is accepting. Since the elements
of Σ correspond to locations in the program we can associate them with nodes in
the CFG. Hence, we can define LΣ(Acfg), the language of Acfg projected to Σ.
Then if L(A) 	⊆ LΣ(Acfg), return ‘no’, with an element of L(A) \ LΣ(Acfg) as
the negative feedback.

5 Usage Scenarios for the Learning Framework

The framework presented in the paper is constructed in order to understand the
language of software errors. That is, given a program with errors reported from
the verification process, applying the learning algorithm results in a DFA that
presents an abstraction of the bounded language of error traces of the program
to important events, as defined in Theorem 1. The automaton represents the
set of error traces in a concise and compact way and is amenable to standard
analyses on DFAs, such as the computation of dominators and doomed states
and transitions. These analyses aid in understanding the root cause of errors.

Beyond the language of software errors, our framework can be applied, with-
out changes, to the task of program explanation. As illustrated by the Docking
software example in Sect. 6.2, modern-day programs are often very difficult to
understand. This is either because of the sheer complexity of the implementa-
tion, because of a change in ownership of the code, or because the program was,
at least in part, generated automatically. By adding a failing assertion to the exit
point of the program, our framework produces a DFA that represents a bounded
regular abstraction of the program behavior with respect to important events
(as defined by the user or defined automatically).

Finally, we extend our framework to assist in merging several software devel-
opment branches. In this common scenario, several developers make changes to
different branches of the same (version controlled) source code. Often, when the
developers attempt to merge their changes back into the parent branch, auto-
matic merging is performed by the version control system. This can introduce
unexpected behavior. For example, consider the source code in Fig. 7, repre-
senting an original program, its two branches developed independently, and the
result of a widely used automatic merge (this example is taken from [20]). Note
that the merge operation creates an unexpected behavior, where functionZ()

calls functionC(), despite this not being either developer’s intent.
Using our framework, both versions and the merged program are represented

as DFAs, and the difference between the merged program and each branch is
computed as a difference between automata (see Sect. 2). Figures 8 and 9 draw
attention to the new behavior introduced by the automatic merge.
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Fig. 7. The effects of automatic merge in a version control system.

Fig. 8. Behavior not in Branch A Fig. 9. Behavior not in Branch B

The changes are easy to see in small examples; in arbitrarily large programs,
however, the issues introduced by an automatic merge could be hard to identify.
Moreover, this behavior in larger programs might be difficult to understand
due to a lack of single ownership over the code. This mechanism can also be
applied to merge conflicts (i.e., when different versions of code cannot be merged
automatically), in order to visually display differences between branches, rather
than annotating the repository code directly with conflict markers.

6 System Description and Empirical Evaluation

In this section, we discuss the possible optimisations of the algorithm and present
experimental results of executing our framework on standard benchmarks.

6.1 Optimisations

Determining the Bounds. The automatic estimation of suitable values for
both the loop bound b and the word length bwl contributes significantly to the
usability of our framework. Our strategy for this is illustrated in Fig. 10. We
let b range between 1 and bmax, where bmax is relatively small (4 in our default
configuration). This reflects the fact that higher values of b may have a negative
impact on performance, and that in practice, with CBMC low values of b are
sufficient for triggering the error. As an initial value for bwl (bwl

min), we take a
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Fig. 10. The autonomous discovery of the appropriate bounds.

conservative estimation of the shortest word possible, according to a light-weight
analysis of the control-flow graph of P . We increase the value of bwl up to a
maximum of bwl

max, which is user-defined. The value of bwl
max reflects an estimation

of how long these words can be before the explanation becomes unintelligible.
Recall that the value of b implies a bound on the word length (we denoted it

b′ in Sect. 3), and hence for a given b, increasing the explicit bound on the word
length bwl beyond a certain value is meaningless. In other words, for a given b,
the process of increasing bwl converges. Until convergence, the number of states
of A can both increase and decrease as a result of increasing bwl (it can decrease
because paths not belonging to the language are caught in the conjecture query,
which may lead to a smaller automaton).

Fig. 11. Size of A (bubble sort
example).

Figure 11 demonstrates this fact for one
of the benchmarks (bubble sort with b = 2).
We are not aware of a way to detect conver-
gence in Ptime, so in practice we terminate
when two conditions hold (see line 5): a) A
has not changed from the previous iteration,
and b) A does not contain edges leaving an
accepting state (‘back edges’). Recall that a
failing assertion aborts execution, and hence
no path can continue beyond it. Therefore,
the existence of such edges in A indicates
that increasing b, bwl or both should even-
tually remove them.

Incrementality. The incremental nature of LearnUptoBound is exploited
by our system for improving performance. We maintain a cache of words that
have already been proven to be in U , and consult it as the first step of answer-
ing membership queries. Negative results from membership queries can only be
cached and reused if this result does not depend on the bound. For example, the
optimisation mentioned in Sect. 4, by which we reject words that are not com-
patible with the control-flow graph, does not depend on the bound and hence
can be cached and reused. In our experiments caching reduces the number of
membership queries sent to CBMC by an average of 32 %.
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Post-processing. Our system performs the following post-processing on A in
order to assist the user:

– Marking dominating edges: edges that represent events that must occur in
order to reach the accepting state. In order to detect these edges, we remove
each event in turn (recall that the same event can label more than one edge),
and check whether the accepting state is still reachable from the root.

– Marking doomed states : states such that the accepting state is inevitable [17].
– Removing the (non-accepting) sink state and its incoming edges: Such a state

always exists, because the outgoing edges of the accepting state must tran-
sition to it (because, recall, an assertion failure corresponds to aborting the
execution). Missing transitions, then, are interpreted as rejection.

6.2 Implementation and Evaluation

Our implementation of the learning framework is based on the automata library
libalf [10] as the L∗ component and the bounded software model-checker for C
CBMC [12] as the ‘teacher’ component and includes the optimisations described
in Sect. 6.1. The modular implementation allows to replace both the L∗ and the
teacher component with other alternatives, which we discuss in Sect. 7.

We applied our framework to learn the language of error associated with
a set of software verification benchmarks (that are relatively easy as verifica-
tion targets for CBMC) drawn from three sources: the Competition on Software
Verification [9], the Software-artifact Infrastructure Repository3, and a ‘dock-
ing’ program: a program describing the behavior of a space shuttle as it docks
with the International Space Station (an open-source version of the NASA sys-
tem Docking Approach). Each of these programs contain a single instrumented
assertion. Whilst learning, we record our estimated bwl

min, and when LearnUp-
toBound terminates we record the values of bwl, the number of iterations, b,
the total CPU time in seconds, the number of states and edges in A, the number
of calls to CBMC as a percentage of the total membership queries, and the total
number of conjecture queries. All experiments were conducted on a computer
with a 3.2 GHz quad-core processor and 6 GB of DDR3 RAM. The results are
summarized in Table 1. We also tested a strategy by which we do not return at
line 5 of Fig. 10 (recall that the condition there does not guarantee convergence),
and rather only print A. The multiple entries of bwl and b for the same example
in Table 1 reflect this.

Next, we present several examples of A from this benchmark set. Bold edges
in our figures indicate dominating events, e.g., the function inspect in Fig. 12 is
marked as dominating because a path to the error must call it. Doomed states
are labelled with ‘D’. (In this and later examples all states have paths to the
non-accepting sink-state which we remove in post-processing, as explained above.
Hence only the accepting state is marked doomed).

Figures 12 and 13 give A in the bubble sort example with bounds (b, bwl) =
(2, 12) and (b, bwl) = (3, 15) respectively. The example constructs a linked list

3 http://sir.unl.edu/.

http://sir.unl.edu/
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Table 1. Experimental results. b
wl

min is our initial bound estimation. b
wl, It., b and

Time pertain to the process in LearnUptoBound, which produces A. We give the
number of states and edges of A. We also list the percentage of membership queries
made to CBMC, and the total number of conjecture queries.

Time C BMC Queries

Target b
wl

min b
wl

It. b [sec] States Edges memb. conj.

tcas 3 17 14 1 7.76 25 28 0.51 % 34

bubble sort 8 16 8 2 1.61 10 10 0.17 % 66

bubble sort 8 19 19 3 4.24 19 21 0.13 % 96

merge sort 4 8 4 1 0.13 4 3 0.92 % 12

merge sort 4 12 12 2 0.74 7 9 2.90 % 40

sll to dll rev 8 28 20 1 2.83 14 13 0.18 % 39

sll to dll rev 8 28 40 2 7.28 17 19 0.15 % 78

defroster 25 29 4 1 32.92 14 18 0.01 % 26

docking 5 8 3 1 0.49 7 6 0.86 % 9

docking 5 8 6 2 0.72 7 6 0.86 % 18

docking 5 11 12 2 1.65 11 11 1.04 % 27

of non-deterministic size and contains a bug where the root node linkage is not
initialized correctly. The bug can thus occur after an arbitrary amount of node
insertions by the gl insert operation. Using Fig. 12 we can conjecture that the
bug either occurs after one or two insertions. In Fig. 13 L∗ then correctly conjec-
tures a loop and represents the whole nature of the bug with bwl = 15. Whether
L∗ is able to conjecture a loop is dependent on multiple factors, but ultimately
linked to the word length bound bwl. Our membership query oracle will reject
any word which is longer than bwl. However, this limitation does not apply in the
conjecture oracle. Since L∗ at bwl = 15 does not pose any membership queries
exceeding this limit, the result in Fig. 13 ensues. The membership query list
posed by L∗ is dependent on the counter-examples provided by CBMC, which
vary for different values of b and bwl.

Fig. 12. Automaton produced for the ‘bubble sort’ example. b
wl = 12. b = 2.

Figure 14 shows the ‘docking’ benchmark, with b = 4, bwl = 15. This automa-
ton is an example of a program explanation usage scenario. The C source code of
the program was automatically generated from an existing MatLab module and is
thus not optimized for readability. Furthermore, the original MatLab model may
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Fig. 13. Automaton produced for
the‘bubble sort’ example. b

wl =
15. b = 3.

Fig. 14. Automaton produced for the ‘dock-
ing’ benchmark. b

wl = 15. b = 4.

not accurately describe how the respective program semantics was mapped to C.
The automaton in Fig. 14 can explain the core behavior of the mapped program.
It consists of a stepwise main simulation loop in which the logic of all mission-
related phases is handled in the operation MissionPhaseStat. The source code
and the learned automata of all our benchmarks are available online [1], where
the reader may observe the effect of an interactive change of bounds.

7 Conclusions and Future Work

Our definition of Fail(P ) in (2) captures the ‘language of error’, but this lan-
guage is, in the general case, not computable. We have presented a method for
automatically learning a DFA, A, that captures a well-defined subset of this
language (see Theorem 1), for the purpose of assisting the user in understand-
ing the cause of the error. More generally, the same technique can be used for
visualising the behavior of a program or parts thereof, hence aiding in program
understanding – a direction that becomes especially relevant when the software
in question is prohibitively large to be examined manually, or when the code
owner is not available (or, as in our docking software example, the software was
generated automatically). We demonstrated that the same technique can also
be used for visually comparing different versions of a program (by presenting
an automaton that captures the behavior in the symmetric difference between
them), or for assisting in merging several development branches.

A possible extension is to adapt the framework to learn ω-regular languages,
represented by Büchi automata (see [4,14] for the extension of L∗ to ω-regular
languages). This extension would enable the learning of behaviors that violate
the liveness properties of non-terminating programs.

Another future direction is learning non-regular languages, as it will enable
the learning of richer abstract representations of the language of error for a
given program. Context-free grammars are of particular interest because of the
natural connection between context-free grammars and the syntax of program-
ming languages; some subclasses of context-free grammars have been shown to
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be learnable, such as k-bounded context free grammars [2], (though in general,
the class of context-free grammars is not believed to be learnable [5]), providing
us with the possibility of harnessing these algorithms in our framework.

As mentioned in Sect. 6.2, the modularity of our implementation allows us to
replace CBMC with another component, acting as a ‘teacher’ in our framework.
In particular, we can use a software testing tool as a ‘teacher’, thus potentially
improving the scalability of the framework. The learned language, however, will
likely differ from the one in Theorem 1 if the answers to queries are based on
the results of software testing.

One of the main goals of our framework is to present the language of error
(or interesting behavior) in a compact, easy to analyze and understandable way.
Hence, small automata are preferable, at least for manual analysis. Even for
a given alphabet Σ, we believe it should be possible to reduce the size of the
learned DFA A, based on the observation that we do not care whether a word
w such that ∀π ∈ P.|π| ≤ b ∧ |α(π)| ≤ bwl ⇒ α(π) 	= w is accepted or rejected
by the automaton. Adding a ‘don’t care’ value to the learning scheme requires
a learning mechanism that can recognize three-valued answers (see [19] for a
learning algorithm with inconclusive answers).
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