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Abstract: Viral mutation that escapes from human immunity remains a major obstacle to 

antiviral and vaccine development. While anticipating escape could aid rational therapeutic 

design, the complex rules governing viral escape are challenging to model. Here, we demonstrate 

an unprecedented ability to predict viral escape by using machine learning algorithms originally 

developed to model the complexity of human natural language. Our key conceptual advance is 

that predicting escape requires identifying mutations that preserve viral fitness, or 

“grammaticality,” and also induce high antigenic change, or “semantic change.” We develop 

viral language models for influenza hemagglutinin, HIV Env, and SARS-CoV-2 Spike that we 

use to construct antigenically meaningful semantic landscapes, perform completely unsupervised 

prediction of escape mutants, and learn structural escape patterns from sequence alone. More 

profoundly, we lay a promising conceptual bridge between natural language and viral evolution. 
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Introduction 1 

Viral mutation that escapes from recognition by neutralizing antibodies has prevented the 2 

development of a universal antibody-based vaccine for influenza (Eckert and Kim, 2001; Kim et 3 

al., 2018; Krammer, 2019; Kucharski et al., 2015) or human immunodeficiency virus (HIV) 4 

(Arrildt et al., 2012; Eckert and Kim, 2001; Richman et al., 2003; Root et al., 2001) and remains 5 

an active concern in the development of therapies for COVID-19 (Baum et al., 2020), caused by 6 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (Andersen et al., 7 

2020; Walls et al., 2020). Obtaining a better understanding of viral escape has motivated high-8 

throughput experimental techniques, such as deep mutational scans (DMS), that perform causal 9 

escape profiling of all single-residue mutations to a viral protein (Dingens et al., 2019; Doud et 10 

al., 2018; Lee et al., 2019). Such techniques, however, require substantial effort to profile even a 11 

single viral strain, so empirically testing the escape potential of all (combinatorial) mutations in 12 

all viral strains remains infeasible. 13 

 A more efficient model of viral escape could be achieved computationally. One of our 14 

key initial insights is that it may be possible to train an algorithm to learn to model escape from 15 

existing viral sequence data alone. Such an approach is not unlike recent algorithmic successes in 16 

learning properties of natural language from large text corpuses (Devlin et al., 2018; Peters et al., 17 

2018; Radford et al., 2019); like viral evolution, natural languages like English or Japanese use 18 

linear sequence to encode complex concepts (e.g., semantics) and are under complex constraints 19 

(e.g., grammar). We pursued the intuition that critical properties of a viral escape mutation have 20 

linguistic analogs: first, the mutation must preserve viability and infectivity, i.e., it must be 21 

grammatical; second, the mutation must be antigenically altered to evade immunity, i.e., it must 22 

have substantial semantic change. 23 
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Currently, computational models of viral protein evolution focus on viral fitness (Hopf et 24 

al., 2017; Louie et al., 2018) or on functional/antigenic similarity (Alley et al., 2019; Bepler and 25 

Berger, 2019; Meroz et al., 2011; Rao et al., 2019) alone. The novel concept critical to our study 26 

is that computationally predicting viral escape requires modeling both fitness and antigenicity 27 

(Figure 1A). Moreover, rather than developing two separate models of fitness and function, we 28 

reasoned that we could develop a single model that simultaneously achieves both these tasks. To 29 

do so, we leverage state-of-the-art machine learning algorithms (originally developed for natural 30 

language understanding) called language models (Devlin et al., 2018; Peters et al., 2018; Radford 31 

et al., 2019), which learn the probability of a token (e.g., an English word) given its sequence 32 

context (e.g., a sentence) (Figure 1B). As done in natural language tasks, we can use a hidden 33 

layer output within a neural language model as a semantic embedding (Peters et al., 2018) and 34 

the language model output to quantify mutational grammaticality (Figure 1B); moreover, the 35 

same principles used to train a language model on a sequence of English words can be used to 36 

train a language model on a sequence of amino acids. 37 

Our main hypothesis, therefore, is that (1) language model-encoded semantic change 38 

corresponds to antigenic change, (2) language model grammaticality captures viral fitness, and 39 

(3) both high semantic change and grammaticality help predict viral escape. Searching for 40 

mutations with both high grammaticality and high semantic change is a newly formulated task 41 

that we call constrained semantic change search (CSCS). For intuitive examples that illustrate the 42 

CSCS problem setting, Figure 1C contains real CSCS-proposed changes based on a language 43 

model trained on news headlines. Additional details of the CSCS problem setup are provided in 44 

the Methods section. 45 
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We propose, to our knowledge, the first general computational model of viral escape. 46 

Notably, our neural language model implementation of CSCS is based on sequence data alone 47 

(beneficial since sequence is easier to obtain than structure) and requires no explicit escape 48 

information (i.e., it is completely unsupervised), does not rely on multiple sequence alignment 49 

(MSA) preprocessing (i.e., it is alignment-free), and captures global relationships across an entire 50 

sequence (e.g., since word choice at the beginning of a sentence can influence word choice at the 51 

end). Additional algorithmic and implementation details are in the Methods section. 52 

Results 53 

 Throughout our experiments, we assess generality across viruses by analyzing three 54 

important proteins: influenza A hemagglutinin (HA), HIV-1 envelope glycoprotein (Env), and 55 

SARS-CoV-2 spike glycoprotein (Spike). All three are found on the viral surface, are responsible 56 

for binding host cells, are targeted by antibodies, and are important drug targets given their role 57 

in pandemic disease events and widespread human mortality (Andersen et al., 2020; Arrildt et 58 

al., 2012; Baum et al., 2020; Eckert and Kim, 2001; Kim et al., 2018; Krammer, 2019; Kucharski 59 

et al., 2015; Richman et al., 2003; Root et al., 2001; Walls et al., 2020). We trained a separate 60 

language model for each protein using a large corpus of virus-specific amino acid sequences 61 

(Methods). 62 

 We initially sought to investigate the first part of our hypothesis, namely that the 63 

semantic embeddings produced by a viral language model would be antigenically meaningful. 64 

We computed the semantic embedding for each sequence in the influenza, HIV, and coronavirus 65 

corpuses; we then visualized the semantic landscape by learning a two-dimensional 66 

approximation of the high-dimensional semantic embedding space using Uniform Manifold 67 

Approximation and Projection (UMAP) (McInnes and Healy, 2018). The semantic landscape of 68 
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each protein shows clear clustering patterns corresponding to subtype, host species, or both 69 

(Figure 2), suggesting that the model was able to learn functionally meaningful patterns from 70 

raw sequence alone. 71 

 We can quantify these clear clustering patterns, which are visually enriched for particular 72 

subtypes or hosts, by using Louvain clustering (Blondel et al., 2008) to group sequences based 73 

on their semantic embeddings (Figure S1), followed by measuring the clustering purity based on 74 

the percent composition of the most represented metadata category (sequence subtype or host 75 

species) within each cluster (Methods). Average cluster purities for HA subtype, HA host 76 

species, and Env subtype are 99%, 96%, and 95%, respectively, which are comparable to or 77 

higher than the clustering purities obtained by more traditional MSA-based phylogenetic 78 

reconstruction (Balaban et al., 2019; Katoh and Standley, 2013) (Figures 2D and 2F). 79 

 Within the HA landscape, clustering patterns suggest interspecies transmissibility. 80 

Interestingly, the sequence for 1918 H1N1 pandemic influenza belongs to the main avian H1 81 

cluster, containing sequences from the avian reservoir for 2009 H1N1 pandemic influenza 82 

(Figures 2C and S1). Our model’s suggested antigenic similarity between H1 HA from 1918 and 83 

2009, though nearly a century apart, has well-established structural and functional support (Wei 84 

et al., 2010; Xu et al., 2010). Within the HIV Env landscape, unlike in HA, clusters 85 

corresponding to a few subtypes dominate the landscape (Figure 2E), perhaps due to the absence 86 

of vaccine pressure leading to abundant representation of similar viral strains. Within the 87 

landscape of SARS-CoV-2 Spike and homologous proteins, clustering proximity is consistent 88 

with the suggested zoonotic origin of several human coronaviruses (Figure 2G), including bat 89 

and civet for SARS-CoV (Wang and Eaton, 2007); camel for Middle East respiratory syndrome-90 

related coronavirus (MERS-CoV) (Chu et al., 2014); and bat and pangolin for SARS-CoV-2 91 
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(Andersen et al., 2020). Analysis of these semantic landscapes strengthens our hypothesis that 92 

our viral sequence embeddings encode functional and antigenic variation. 93 

 Not only does escape prediction stand to benefit from modeling antigenic change, but 94 

from modeling viral fitness as well. Therefore, in line with the second part of our hypothesis, we 95 

assessed the relationship between viral fitness and language model grammaticality using high-96 

throughput DMS characterization of hundreds or thousands of mutants to a given viral protein. 97 

We obtained datasets measuring replication fitness of all single-residue mutations to 98 

A/WSN/1933 (WSN33) HA H1 (Doud and Bloom, 2016), combinatorial mutations to antigenic 99 

site B in six HA H3 strains (Wu et al., 2020), or all single-residue mutations to BG505 and 100 

BF520 HIV Env (Haddox et al., 2018), as well as a dataset measuring the dissociation constant 101 

(Kd) between combinatorial mutations to SARS-CoV-2 Spike and human ACE2 (Starr et al., 102 

2020), which we use to approximate the fitness of Spike. 103 

 We found that language model grammaticality was significantly correlated with viral 104 

fitness consistently across all viral strains and across studies that performed single or 105 

combinatorial mutations (Figure 3A and Table S1), even though our language models were not 106 

given any explicit fitness-related information and were not trained on the DMS mutants. 107 

Strikingly, when we instead compared viral fitness to the magnitude of mutant semantic change 108 

(rather than grammaticality), we observed significant negative correlation in nine out of ten 109 

strains tested (Figure 3A and Table S1). This makes sense biologically, since a mutation with a 110 

large effect on function is on average more likely to be deleterious and result in a loss of fitness. 111 

These results suggest that, as hypothesized, grammatical “validity” of a given mutation captures 112 

fitness information, and adds an additional dimension to our understanding of how semantic 113 

change encodes perturbed protein function. 114 
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 Based on these promising analyses of viral semantics and grammaticality, we therefore 115 

sought to test the third part of our hypothesis, namely that combining semantic change and 116 

grammaticality enables escape mutation prediction. Our experimental setup initially involves 117 

making, in silico, all possible single-residue mutations to a given viral protein sequence; then, 118 

each mutant is ranked according to the CSCS objective that combines semantic change and 119 

grammaticality. We validate this ranking based on enriched CSCS acquisition of experimentally 120 

verified mutants that causally induce escape from neutralizing antibodies. Three of these causal 121 

escape datasets used DMS followed by antibody selection to identify escape mutants to WSN33 122 

HA H1 (Doud et al., 2018), A/Perth/16/2009 (Perth09) HA H3 (Lee et al., 2019), and BG505 123 

Env (Dingens et al., 2019). The fourth identified escape mutants to Spike based on natural 124 

replication error after two in vitro passages under antibody selection (Baum et al., 2020), in 125 

contrast to a more exhaustive DMS. 126 

 To quantify enrichment of CSCS-acquired escapes, we compute the area under the curve 127 

(AUC) of the number of acquired escape mutations versus the total acquired mutations, 128 

normalized to be between 0 and 1, where a value of 0.5 indicates random guessing and higher 129 

values indicate greater enrichment. In all four cases, escape prediction with CSCS results in both 130 

statistically significant and strong AUCs of 0.834, 0.771, 0.692, and 0.856 for H1 WSN33, H3 131 

Perth09, Env BG505, and Spike, respectively (one-sided permutation-based P < 1 × 10-5 in all 132 

cases) (Figure 3B and Table S2). We emphasize that none of the escape mutants are present in 133 

the training data, and we did not provide the model with any explicit information on escape, a 134 

challenging problem setup in machine learning referred to as “zero-shot prediction” (Radford et 135 

al., 2019). 136 
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Crucially, in support of our hypothesis, the escape AUC strictly decreases when ignoring 137 

either grammaticality or semantic change, evidence that both are useful in predicting escape 138 

(Figures 3C and S2, Table S2). Note that while semantic change is negatively correlated with 139 

fitness, it is positively predictive (along with grammaticality) of escape (Table S2); the 140 

analogous biological interpretation is that functional mutations are often deleterious but, when 141 

fitness is preserved, they are associated with antigenic change and subsequent escape from 142 

immunity. 143 

For a benchmark comparison, we also tested how well alternative models of fitness (each 144 

requiring MSA preprocessing) or of semantic change (pretrained on generic protein sequence) 145 

predict escape, noting that these models were not explicitly designed for escape prediction. We 146 

found that CSCS with our viral language models was substantially more predictive of causal 147 

escape mutants in all four viral proteins (Figure 3B). Moreover, the individual grammaticality or 148 

semantic change components of our language models often outperformed the corresponding 149 

benchmark models (Table S2), demonstrating the value of nonlinear, high-capacity fitness 150 

models or of virus-specific, finetuned semantic embedding models, respectively. In total, our 151 

results provide strong empirical support for the hypothesis that both semantic change and 152 

grammaticality are useful for escape prediction. 153 

 A notable aspect of our results is that, though viral escape is mechanistically linked to a 154 

viral protein’s structure (Dingens et al., 2019; Doud et al., 2018; Lee et al., 2019), our models are 155 

trained entirely from sequence and bypass explicit structural information altogether (which is 156 

often difficult to obtain). Given our validated escape prediction capabilities, we wanted to look at 157 

our model’s escape predictions in the context of three-dimensional protein structure to see if our 158 

model was able to learn structurally relevant patterns from sequence alone. We used CSCS to 159 
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score each residue based on predicted escape potential, from which we could visualize escape 160 

potential across the protein structure and quantify significant enrichment or depletion of escape 161 

potential (Methods). 162 

 For both HA H1 and H3, we found that escape potential is significantly enriched in the 163 

HA head and significantly depleted in the HA stalk (Figures 4A, 4B, and S3; Table S3), 164 

consistent with existing literature on HA mutation rates and supported by the successful 165 

development of anti-stalk broadly neutralizing antibodies (Ekiert et al., 2009; Kallewaard et al., 166 

2016). Also consistent with existing knowledge is the significant enrichment of escape mutations 167 

in the V1/V2 hypervariable regions of Env (Figures 4C, 4D, and S3; Table S3) (Sagar et al., 168 

2006); interestingly, our model also associates significant antigenic change with the gp120 inner 169 

domain. An important point is that our model only learns escape patterns that can be linked to 170 

mutations, rather than post-translational changes like glycosylation that contribute to HIV escape 171 

(Wei et al., 2003), which may explain the lack of statistically significant escape potential 172 

assigned to Env glycosylation sites (Figure 4C and Table S3).  173 

 Interestingly, the escape potential within SARS-CoV-2 Spike is significantly enriched in 174 

both the receptor binding domain (RBD) and N-terminal domain, while escape potential is 175 

significantly depleted in the S2 subunit (Figures 4E, 4F, and S3; Table S3), results which are 176 

further supported by greater evolutionary conservation at S2 antigenic sites (Ravichandran et al., 177 

2020). Our model of Spike escape therefore suggests that immunodominant antigenic sites in S2 178 

(Baum et al., 2020; Ravichandran et al., 2020) may be more stable target epitopes for antibody-179 

based neutralization and underscores the need for more exhaustive causal escape profiling of 180 

Spike, especially in regions aside from the RBD. 181 
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Predicted escape potential is therefore highly specific to particular regions of protein 182 

structure even when (as in the HA stalk domain) these structures correspond to non-contiguous 183 

regions of protein sequence. Our language models therefore learn structurally-relevant patterns, 184 

as well as information on how this structure interacts with its environment, from sequence alone. 185 

Discussion 186 

 Our study offers strong evidence that viral language models provide a new and rich 187 

analytic strategy to be used alongside traditional tools based on sequence alignment and 188 

phylogeny. Continuous embeddings of antigenic semantics could have a number of downstream 189 

applications, such as leveraging diversity-preserving subsampling techniques (Hie et al., 2019) to 190 

select components of a multivalent or mosaic vaccine (Barouch et al., 2018; Boyoglu-Barnum et 191 

al., 2020). CSCS could also be applied to other problems, such as drug resistance, in which a 192 

combination of grammaticality and semantic change would be valuable. A more profound 193 

implication is that the “distributional hypothesis” from linguistics (Harris, 1954), in which co-194 

occurrence patterns can model complex concepts and on which language models are based, can 195 

be extended to viral evolution, establishing a hopefully productive dialogue between two 196 

disparate fields.197 
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Figures 

 

Figure 1: Modeling viral escape requires characterizing semantic change and 

grammaticality 

(A) Constrained semantic change search (CSCS) for viral escape prediction is designed to search 

for mutations to a viral sequence that preserve fitness while being antigenically different. This 

corresponds to a mutant sequence that is grammatical but has high semantic change with respect 

to the original (e.g., wildtype) sequence. (B) A neural language model with a bidirectional long 

short-term memory (BiLSTM) architecture is used to learn both semantics (as a hidden layer 

output) and grammaticality (as the language model output). CSCS combines semantic change 

and grammaticality to predict escape (Methods). (C) CSCS-proposed mutations to a news 

headline (implemented using a neural language model trained on English news headlines) make 

large changes to the overall semantic meaning of a sentence or to the part-of-speech structure. 

The semantically closest mutation according to the same model is largely synonymous with the 

original headline.  

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.08.193946doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.193946
http://creativecommons.org/licenses/by/4.0/


20 

 

 

Figure 2: Semantic embedding landscape is antigenically meaningful 

(A, B) UMAP visualization of the high-dimensional semantic embedding landscape of influenza 

HA shows clustering structure consistent with subtype and host species. (C) A cluster consisting 

of avian sequences from the 2009 flu season onwards also contains the 1918 pandemic flu 

sequence, consistent with known antigenic similarity (Wei et al., 2010; Xu et al., 2010). (D) 

Louvain clusters of the HA semantic embeddings have similar purity with respect to subtype or 

host species compared to a phylogenetic sequence clustering method (Phylo). (E, F) The HIV 

Env semantic landscape shows subtype-related distributional structure, which is supported with 

high Louvain clustering purity. (G) Sequence proximity in the semantic landscape of coronavirus 

spike proteins is consistent with the possible zoonotic origin of SARS-CoV, MERS-CoV, and 

SARS-CoV-2. 
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Figure 3: Biological interpretation of language model semantics and grammaticality 

enables escape prediction 

(A) While grammaticality is positively correlated with the results of DMS viral fitness 

measurements, semantic change is negatively correlated with fitness, suggesting that most 

semantically altered proteins lose fitness. Influenza strains are A/WSN/1933 (WSN33), A/Hong 

Kong/1/1968 (HK68), A/Bangkok/1/1979 (Bk79), A/Beijing/353/1989 (Bei89), 

A/Moscow/10/1999 (Mos99), A/Brisbane/10/2007 (Bris07), and A/North Dakota/26/2016 

(NDako16). (B, C) However, when a mutation is ensured to have both high semantic change and 

high grammaticality, it is more likely to induce escape. Considering both semantic change and 

grammaticality enables enriched acquisition of escape mutants that is consistently higher than 

that of previous fitness models or generic functional embedding models.   
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Figure 4: Structural localization of predicted escape potential 

(A, B) HA trimer colored by escape potential. Escape potential is significantly enriched in the 

HA head but significantly depleted in the HA stalk. (C) Escape potential in HIV Env is 

significantly enriched in the V1 and V2 hypervariable regions and in the inner domain of gp120; 

gray dashed line indicates statistical significance threshold. (D) The Env trimer colored by 

escape potential, oriented to show the V1/V2 regions. (E) Potential for escape in SARS-CoV-2 

Spike is significantly enriched at the N-terminal domain and receptor binding domain (RBD) and 

significantly depleted at multiple regions in the S2 subunit; gray dashed line indicates statistical 

significance threshold. (F) The Spike trimer colored by escape potential, oriented to show the 

RBD (left) and S2 (right). 
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Methods 

CSCS: Problem Formulation 

 Intuitively, our goal is to identify mutations that induce high semantic change (e.g., a 

large impact on biological function) while being grammatically acceptable (e.g, biologically 

viable). More precisely, we are given a sequence of tokens defined as 𝐱 ≝ (𝑥1, … , 𝑥𝑁) such that 𝑥𝑖 ∈ 𝒳, 𝑖 ∈ [𝑁], where 𝒳 is a finite alphabet. Let �̃�𝑖 denote a mutation at position 𝑖 and the 

mutated sequence as 𝐱[�̃�𝑖] ≝ (… , 𝑥𝑖−1, �̃�𝑖, 𝑥𝑖+1, … ). 

 We first require a semantic embedding 𝐳 ≝ 𝑓𝑠(𝐱), where 𝑓𝑠 ∶ 𝒳𝑁 → ℝ𝐾 embeds discrete-

alphabet sequences into a 𝐾-dimensional continuous space, where closeness in embedding space 

corresponds to semantic similarity. We denote semantic change as the distance in embedding 

space, i.e., Δ𝐳[�̃�𝑖] ≝ ‖𝐳 − 𝐳[�̃�𝑖]‖ = ‖𝑓𝑠(𝐱) − 𝑓𝑠(𝐱[�̃�𝑖])‖ (1) 

where ‖∙‖ denotes a vector norm. The grammaticality of a mutation is described by 𝑝(�̃�𝑖 | 𝐱) (2) 

which takes values close to zero if 𝐱[�̃�𝑖] is not grammatical and close to one if it is grammatical. 

 Our objective combines semantic change and grammaticality. Taking inspiration from 

upper confidence bound acquisition functions in Bayesian optimization (Auer, 2003), which 

additively weigh a predicted value with its uncertainty, we can combine terms (1) and (2) with a 

weight parameter 𝛽 ∈ [0, ∞) above to compute 𝑎(�̃�𝑖; 𝐱) ≝  Δ𝐳[�̃�𝑖] + 𝛽𝑝(�̃�𝑖 | 𝐱) 

for each possible mutation �̃�𝑖. 𝑝(�̃�𝑖 | 𝐱) can be interpreted as the “uncertainty” associated with a 

given semantic shift Δ𝐳[�̃�𝑖]. Mutations �̃�𝑖 are prioritized based on 𝑎(�̃�𝑖; 𝐱); we refer to this 

ranking of mutations based on semantic change and grammaticality as CSCS. 
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CSCS: Algorithms 

 Algorithms for CSCS could potentially take many forms; for example, separate 

algorithms could be used to compute Δ𝐳[�̃�𝑖] and 𝑝(�̃�𝑖 | 𝐱) independently, or a two-step approach 

might be possible that computes one of the terms based on the value of the other. 

 Instead, we reasoned that a single approach could compute both terms simultaneously, 

based on learned language models that learn the probability distribution of a word given its 

context (Dai and Le, 2015; Devlin et al., 2018; Mikolov et al., 2013; Peters et al., 2018; Radford 

et al., 2019). The language model we use throughout our experiments considers the full sequence 

context of a word and learns a latent variable probability distribution �̂� and function 𝑓𝑠 over all 𝑖 ∈ [𝑁] where �̂�(𝑥𝑖  | 𝐱[𝑁]∖{𝑖}, �̂�𝑖) = �̂�(𝑥𝑖  | �̂�𝑖)          and          �̂�𝑖 = 𝑓𝑠(𝐱[𝑁]∖{𝑖}), 
i.e., latent variable �̂�𝑖 encodes the sequence context 𝐱[𝑁]∖{𝑖} ≝ (… , 𝑥𝑖−1, 𝑥𝑖+1, … ) such that 𝑥𝑖 is 

conditionally independent of its context given the value of �̂�𝑖. 
 We use different aspects of the language model to describe semantic change and 

grammaticality by setting terms (1) and (2) as Δ𝐳[�̃�𝑖] ≔ ‖�̂� − �̂�[�̃�𝑖]‖1          and          𝑝(�̃�𝑖 | 𝐱) ≔ �̂�(�̃�𝑖 | �̂�𝑖) 

Where �̂� ≝ 1𝑁 ∑ �̂�𝑖𝑁𝑖=1  is the average embedding across all positions, �̂�[�̃�𝑖] is defined similarly but 

for the mutated sequence, and ‖∙‖1 is the ℓ1 norm. Effectively, distances in embedding space 

encode semantic change and the emitted probability encodes grammaticality. 

 Based on the success of recurrent architectures for protein-sequence representation 

learning (Alley et al., 2019; Bepler and Berger, 2019; Rao et al., 2019), we use similar encoder 

models for viral protein sequences (Figure 1B). Our model passes the full context sequence into 

BiLSTM hidden layers. Null character pre-padding was used to handle variable-length 
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sequences. We used the concatenated output of the final LSTM layers as the semantic 

embedding, i.e., 

�̂�𝑖 ≔ [LSTM𝑓 (𝑔𝑓(𝑥1, … , 𝑥𝑖−1))T ⋯ LSTM𝑟(𝑔𝑟(𝑥𝑖+1, … , 𝑥𝑁))T]T
 

Where 𝑔𝑓 is the output of the preceding forward-directed layer, LSTM𝑓 is the final forward-

directed LSTM layer, and 𝑔𝑟 and LSTM𝑟 are the corresponding reverse-directed components. 

The final output probability is a softmax-transformed linear transformation of �̂�𝑖, i.e., �̂�(𝑥𝑖 | 𝐱[𝑁]∖{𝑖}) ≝ softmax(𝐖�̂�𝑖 + 𝐛) 

for some learned model parameters 𝐖 and 𝐛. In our experiments, we used a 20-dimensional 

learned dense embedding for each element in the alphabet 𝒳, two BiLSTM layers with 512 

units, and categorical cross entropy loss optimized by Adam with a learning rate of 0.001, 𝛽1 = 

0.9, and 𝛽2 = 0.999. Hyperparameters and architecture were selected based on a small-scale grid 

search as described below. 

 Rather than acquiring mutations based on raw semantic change and grammaticality 

values, which may be on very different scales, we find that calibrating 𝛽 is much easier in 

practice when first rank-transforming the semantic change and grammaticality terms, i.e., 

acquiring based on 𝑎′(�̃�𝑖; 𝐱) ≝ rank(Δ𝐳[�̃�𝑖]) + 𝛽rank(𝑝(�̃�𝑖 | 𝐱)) 

All possible mutations �̃�𝑖 are then given priority based on the corresponding values of 𝑎′(�̃�𝑖; 𝐱), 

from highest to lowest. Our empirical results seem consistently well-calibrated around 𝛽 = 1 

(equally weighting both terms), which we used in all of our experiments. 

CSCS: Extension to combinatorial mutations 
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 The above exposition is limited to the setting in which mutations are assumed to be 

single-token. We perform a simple extension to handle combinatorial mutations. We denote such 

a mutant sequence as �̃� = (�̃�1, … , �̃�𝑁), which has the same length as 𝐱, where the set of 

mutations consists of the tokens in �̃� that disagree with those at the same position in 𝐱, which we 

denote ℳ(𝐱, �̃�) ≝ {�̃�𝑖 | �̃�𝑖 ≠ 𝑥𝑖}. 
The semantic embedding can simply be computed as 𝑓𝑠(�̃�) from which semantic change can be 

computed as above. For the grammaticality score, we make a simple modeling assumption and 

compute grammaticality as ∏ 𝑝(�̃�𝑖 | 𝐱)�̃�𝑖∈ℳ(𝐱,�̃�) , 
i.e., the product of the probabilities of the individual point-mutations. We note that this works 

well empirically in the combinatorial fitness datasets that we test, even when the number of 

mutations is not fixed as in the SARS-CoV-2 DMS Kd dataset. Other ways of estimating joint, 

combinatorial grammaticality terms while preserving efficient inference are also worth 

considering in future work. 

 While we do not consider insertions or deletions in this study, we do note that, in viral 

sequences, insertions and deletions are rarer than substitutions by a factor of four or more 

(Sanjuán et al., 2010) and the viral mutation datasets that we considered exclusively profiled 

substitution mutations alone. Extending our algorithms to compute semantic change of sequences 

with insertions or deletions would be essentially unchanged from above. The more difficult task 

is in reasoning about and modeling the grammaticality of an insertion or a deletion. While 

various grammaticality heuristics based on the language model output may be possible, this is 

also an interesting area for further methodological development.  
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Language model selection and training details 

 To select the model architecture described above, we performed a small-scale grid search 

using categorical cross entropy loss on the influenza dataset described below. We evaluated 

language model performance with a test set of held-out HA sequences where the first recorded 

date was before 1990 or after 2017, yielding a test set of 7,497 out of 44,999 sequences (about 

17%). Hyperparameter search ranges were influenced by previous applications of recurrent 

architectures to protein sequence representation learning (Bepler and Berger, 2019). We tested 

hidden unit dimensions of 128, 256, and 512. We tested architectures with one or two hidden 

layers. We tested three hidden-layer architectures: a densely connected neural network with 

access to both left and right sequence contexts, an LSTM with access to only the left context, and 

a BiLSTM with access to both left and right sequence contexts. We tested two Adam learning 

rates (0.01 and 0.001). All other architecture details were fixed to reasonable defaults. In total, 

we tested 36 conditions, and ultimately used a BiLSTM architecture with two hidden layers of 

512 hidden units each, with an Adam learning rate of 0.001. We used the same architecture for 

all experiments. We train the language model to predict the observed amino acid residue at all 

positions in each sequence, using the remaining sequence as the input; one training epoch is 

completed when the model has considered all positions in all sequences in the training corpus. 

We trained each model until convergence of cross entropy loss across one training epoch.  

News headline data, model training, and CSCS 

  Preprocessed headlines (stripped of punctuation, space-delimited, and lower-cased) from 

the Australian Broadcasting Corporation (early-2013 through the end of 2019) were obtained 

from https://www.kaggle.com/therohk/million-headlines. We trained a word-level BiLSTM 

language model. Semantic embeddings and grammaticality were quantified as described above. 
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To obtain CSCS-proposed headline mutations, we considered all possible single-word mutations 

and acquired the top according to the CSCS objective. For comparison, we also acquired the 

single-word mutated headline with the closest embedding vector to the original headline as the 

“semantically closest” mutation. 

Viral protein sequence datasets and model training 

 We trained three separate language models for influenza HA, HIV Env, and SARS-CoV-

2 Spike using the model architecture described above. One training epoch consisted of predicting 

each token over all sequences in the training set. 

 Influenza HA amino acid sequences were downloaded from the “Protein Sequence 

Search'” section of https://www.fludb.org. We only considered complete hemagglutinin 

sequences from virus type A. We trained an amino acid residue-level language model on a total 

of 44,851 unique influenza A hemagglutinin (HA) amino acid sequences observed in animal 

hosts from 1908 through 2019. 

 HIV Env protein sequences were downloaded from the “Sequence Search Interface'” at 

the Los Alamos National Laboratory (LANL) HIV database (https://www.hiv.lanl.gov) (Foley et 

al., 2018). All complete HIV-1 Env sequences were downloaded from the database, excluding 

sequences that the database had labeled as “problematic.” We additionally only considered 

sequences that had length between 800 and 900 amino acid residues, inclusive. We trained an 

amino acid residue-level language model on a total of 57,730 unique Env sequences. 

Coronavidae spike glycoprotein sequences were obtained from the Gene/Protein Search 

portal of the ViPR database (https://www.viprbrc.org/brc/home.spg?decorator=corona) across 

the entire Coronavidae family. We only included amino acid sequences with “spike” gene 

products. SARS-CoV-2 Spike sequences were obtained from the Severe acute respiratory 
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syndrome coronavirus 2 datahub at NCBI Virus (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/). 

Betacoronavirus spike sequences from GISAID also used in Starr et al.’s analysis (Starr et al., 

2020) were obtained from https://github.com/jbloomlab/SARS-CoV-2-

RBD_DMS/blob/master/data/alignments/Spike_GISAID/spike_GISAID_aligned.fasta. Across 

all coronavirus datasets, we furthermore excluded sequences with a protein sequence length of 

less than 1,000 amino acid residues. We trained an amino acid residue-level language model on a 

total of 4,172 unique Spike (and homologous protein) sequences. 

Semantic embedding landscape visualization, clustering, and quantification 

 We used the language models for HA, Env, and Spike to produce semantic embeddings 

for sequences within each language model’s respective training corpus, where the semantic 

embedding procedure is described above. We used the UMAP (McInnes and Healy, 2018) 

Python implementation (https://github.com/lmcinnes/umap) as wrapped by the Scanpy version 

1.4.5 Python package (Wolf et al., 2018) (https://scanpy.readthedocs.io/) using the 100-nearest 

neighbors graph for influenza and HIV and the 20-nearest neighbors graph for coronavirus and 

with a minimum distance parameter of 1 for all embeddings. 

 We used Louvain clustering (Blondel et al., 2008) with a resolution parameter of 1, also 

using the implementation wrapped by Scanpy, to cluster sequences within each viral corpus 

based on the same nearest neighbors graph used to compute the UMAP embedding. Louvain 

cluster purity was evaluated with respect to a metadata class (e.g., host species or subtype) by 

first calculating the percent composition of each metadata class label within a given cluster and 

using the maximum composition over all class labels as the purity percentage; we calculated this 

purity percentage for each Louvain cluster. 
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 To compare Louvain clustering purities to a more traditional sequence clustering strategy, 

we used MAFFT version 7.453 (Katoh and Standley, 2013) 

(https://mafft.cbrc.jp/alignment/software/) to construct a phylogenetic tree of the respective viral 

sequence corpus. We then use TreeCluster (Balaban et al., 2019) 

(https://github.com/niemasd/TreeCluster) to group sequences based on the MAFFT tree. We 

performed a range search of the TreeCluster threshold parameter to ensure that the number of 

returned clusters was equal to the number of clusters returned by the Louvain clustering of the 

same sequence corpus; all other parameters were set to the defaults. Using the cluster labels 

returned by TreeCluster, we computed cluster purities using the same procedure described for 

Louvain clustering above. 

Fitness validation 

We obtained mutational fitness preference scores for HA H1 WSN33 mutants from Doud 

and Bloom (Doud and Bloom, 2016), preference scores for antigenic site B mutants in six HA 

H3 strains (Bei89, Bk79, Bris07, HK68, Mos99, NDako16) from Wu et al. (Wu et al., 2020), 

preference scores for Env BF520 and BG505 mutants from Haddox et al. (Haddox et al., 2018), 

and Kd binding affinities between SARS-CoV-2 mutants and ACE2 from Starr et al. (Starr et al., 

2020). For the replication fitness DMS data, we used the preference scores averaged across 

technical replicates (as done within each study). For the ACE2 DMS data, if a sequence had 

more than one measured Kd, we took the median Kd as the representative fitness score for that 

sequence. 

Using the corresponding pretrained viral fitness model, we computed the grammaticality 

score and semantic change (with respect to the original wildtype sequence) for each mutant 

sequence produced in each of the above studies. We computed the Spearman correlation between 
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fitness preference or binding Kd with either the grammaticality score or the semantic change. We 

used the implementation provided in the scipy version 1.3.1 Python package 

(https://www.scipy.org/) to compute Spearman correlation coefficients and corresponding P 

values. 

Escape prediction validation 

We obtained experimentally validated causal escape mutants to HA H1 WSN33 from 

Doud et al. (Doud et al., 2018), HA H3 Perth09 from Lee et al. (Lee et al., 2019), Env BG505 

from Dingens et al. (Dingens et al., 2019), and Spike from Baum et al. (Baum et al., 2020). We 

then made, in silico, all possible single-residue mutations to H1 WSN33, H3 Perth09, Env 

BG505, and Spike. For each of these mutations, we computed semantic change and 

grammaticality and combined these scores using the CSCS rank-based acquisition function. For 

a given viral protein, the value of the CSCS acquisition function was used to rank all possible 

mutants. To assess enrichment of acquired escape mutants, we constructed a curve that plotted 

the top n CSCS-acquired mutants on the x-axis and the corresponding number of these mutants 

that were also causal escape mutations on the y-axis; the area under this curve, normalized to the 

total possible area, resulted in our normalized AUC metric for evaluating escape enrichment. 

We computed a permutation-based P value to assess the statistical significance of the 

enrichment of a given CSCS ranking. To do so, we constructed a null distribution by randomly 

sampling (without replacement) a subset of mutants as a “null escape” set, controlling for the 

number of mutants by ensuring that the null escape mutant set was the same size as the true 

escape mutant set, and recalculating the normalized AUC accordingly (essentially “permuting” 

the escape versus non-escape labels). We repeated this for 100,000 permutations. Bonferroni-

corrected P values were considered statistically significant if they were below 0.05. 
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Escape prediction benchmarking 

 We wanted to benchmark our ability to predict escape, which is based on combining 

grammaticality and semantic change, based on previous methods that assess either viral fitness 

(which we conceptually link to grammaticality) or learn functional representations (which we 

conceptually link to semantics) alone. 

 For our first fitness model, we use MAFFT to obtain an MSA separately for each viral 

sequence corpus (the same corpuses used to train our language models). We then compute the 

mutational frequency independently at each residue position, with respect to the wildtype 

sequence. To ensure high quality sequence alignments, we also restrict this computation to 

aligned sequences with a limited number of gap characters relative to the wildtype (0 gap 

characters for the influenza and coronavirus proteins and 15 gap characters for HIV Env). The 

mutational frequency for each amino acid at each residue was used as the measure of viral fitness 

for escape acquisition (acquiring mutants with higher observed frequency). 

 For our second fitness model, we use the EVcouplings framework (Hopf et al., 2017, 

2019) (https://github.com/debbiemarkslab/EVcouplings), which leverages HMMER software for 

sequence alignment (Eddy, 2008) (http://hmmer.org/), to estimate the predicted fitness using 

both the independent and epistatic models. We train the EVcouplings models using the same 

sequence corpuses that we used for training our language models. We acquired mutants based on 

higher predicted fitness scores obtained from the independent or the epistatic model. The 

epistatic model incorporates pairwise residue information by learning a probabilistic model in 

which each residue position corresponds to a random variable over an amino acid alphabet and 

pairwise information potentials can encode epistatic relationships. 
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 We use a number of pretrained protein sequence embedding models to assess the ability 

for generic protein embedding models to capture antigenic information. We use the pretrained 

soft symmetric alignment model with multitask structural training information from Bepler and 

Berger (Bepler and Berger, 2019) (https://github.com/tbepler/protein-sequence-embedding-

iclr2019). We also use the TAPE pretrained transformer model (Rao et al., 2019) and the UniRep 

pretrained model (Alley et al., 2019), both from the TAPE repository 

(https://github.com/songlab-cal/tape). Using each pretrained model, we computed an embedding 

for the wildtype sequence and for each single-residue mutant. We used the ℓ1 distance between 

the wildtype and mutant embeddings as the semantic change score. We acquired mutants 

favoring higher semantic change. 

Protein structure preprocessing and visualization 

 We calculated the escape potential at each position within a given viral sequence by 

summing the value of the CSCS rank-based acquisition function, i.e., 𝑎′(�̃�𝑖; 𝐱), across all amino 

acids. We then mapped these scores from our protein sequences of interest (used in the escape 

prediction validation experiments) to three-dimensional structural loci. As in Doud et al. (Doud 

et al., 2018), we mapped the positions from WSN33 to the structure of HA H1 A/Puerto 

Rico/8/1934 (PDB: 1RVX) (Gamblin et al., 2004). As in Lee et al. (Lee et al., 2019), we mapped 

the positions from Perth09 to the structure of HA H3 A/Victoria/361/2011 (PDB: 4O5N) (Lee et 

al., 2014). As in Dingens et al. (Dingens et al., 2019), we used the structure of BG505 SOSIP 

(PDB: 5FYL) (Stewart-Jones et al., 2016). We used the structure of the closed-state Spike 

ectodomain (PDB: 6VXX) (Walls et al., 2020). Escape potential across each of the structures 

was colored using a custom generated PyMOL script and visualized with PyMOL version 2.3.3 

(https://pymol.org/2/). 
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Protein structure regional enrichment and depletion quantification 

 We quantified the enrichment or depletion of escape prediction scores within a given 

region of a protein sequence. We define a region as a (potentially non-contiguous) set of 

positions; regions of each viral protein that we considered are provided in table S3. Head and 

stalk regions for HA were determined based on the coordinates used by Kirkpatrick et al. 

(Kirkpatrick et al., 2018). Region positions for Env were determined using the annotation 

provided by UniProt (ID: QN0S5) and hypervariable loops were determined as defined by the 

HIV LANL database 

(https://www.hiv.lanl.gov/content/sequence/VAR_REG_CHAR/variable_region_characterizatio

n_explanation.html). Region positions for SARS-CoV-2 were determined using the annotation 

provided by UniProt (ID: P0DTC2). 

To assess statistical significance, we construct a null distribution using a permutation-

based procedure. We “permute” the labels corresponding to the region of interest by randomly 

selecting (without replacement) a set of positions that has an equal size as the region of interest; 

we then compute the average escape potential over this randomly selected set of positions, 

repeating for 100,000 permutations. We compute a P value by determining the average escape 

potential for the true region of interest and comparing it to the null distribution, where we test for 

both enrichment or depletion of escape potential. Enrichment or depletion is considered 

statistically significant if its Bonferroni-corrected P value is less than 0.05. 

Computational resources and hardware 

 Models were trained and evaluated with tensorflow 2.2.0 and Python 3.7 on Ubuntu 

18.04, with access to a Nvidia Tesla V100 PCIe GPU (32GB RAM) and an Intel Xeon Gold 

6130 CPU (2.10GHz, 768GB of RAM). Using CUDA-based GPU acceleration, training on the 
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influenza HA corpus required approximately 72 hours (all times are wall time) and evaluating all 

possible single-residue mutant sequences for a single strain required approximately 35 minutes. 

Training on the HIV Env corpus required approximately 80 hours and evaluating all possible 

single-residue mutant sequences required approximately 90 minutes. Training on the coronavirus 

spike corpus required approximately 20 hours and evaluating all possible single-residue mutant 

sequences required approximately 10 hours.  
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Figure S1: Visualization of semantic landscape Louvain clustering 

Louvain cluster labels, used to evaluate cluster purity of HA subtype, HA host species, and HIV 

subtype, are visualized with the same UMAP coordinates as in Figure 2. Part of HA cluster 30 

was highlighted in Figure 2C. Coronavirus Louvain clusters 0 and 2 were highlighted in Figure 

2G. 
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Figure S2: Escape mutations occupy regions of both high semantic change and 

grammaticality 

Each point in the scatter plot corresponds to a single-residue mutation of the indicated viral 

protein. Points are colored by CSCS acquisition priority (Methods) and a red X is additionally 

drawn over the points that correspond to escape mutations. 
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 Figure S3: Additional protein structure visualizations 

Cartoon illustration of HA H1 and HA H3; view of HIV Env as cartoon and surface oriented to 

illustrate the semantically important inner domain; and views of SARS-CoV-2 Spike in 

monomeric (surface) and trimeric form (cartoon) illustrating S2 escape depletion. 
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Table S1: Fitness correlation and P values 

Values indicate Spearman correlation and corresponding P values between fitness and either semantic change or grammaticality. A P 

value of <1E-308 indicates a value that was below the floating-point precision of our computer. 

Model WSN33 Bei89 Bk79 Bris07L194 HK68 Mos99 NDako16 BF520 BG505 Spike 

Semantic change 

(Spearman r) 
-0.1175 -0.1653 -0.4040 -0.0051 -0.2549 -0.2097 -0.0711 -0.1024 -0.1101 -0.4421 

Grammaticality 

(Spearman r) 
0.2789 0.1876 0.4274 0.4021 0.5396 0.2854 0.3508 0.2063 0.2684 0.4852 

Semantic change 

(P value) 
2.94E-34 6.69E-05 5.02E-24 0.9034 5.38E-10 3.80E-07 0.08842 1.20E-30 1.16E-35 <1E-308 

Grammaticality 

(P value) 
1.08E-190 5.81E-06 5.55E-27 8.47E-24 7.97E-45 2.96E-12 4.02E-18 6.54E-121 4.85E-209 <1E-308 
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Model HA H1 HA H3 Env BG505 Spike 

MAFFT 0.697 0.598 0.523 0.571 

EVcouplings (ind.) 0.706 0.691 0.536 0.674 

EVcouplings (epi.) 0.726 0.687 0.552 0.696 

Grammaticality 

(our model) 
0.820 0.684 0.667 0.826 

Bepler 0.660 0.644 0.561 0.513 

TAPE transformer 0.584 0.526 0.574 0.634 

UniRep 0.482 0.452 0.534 0.740 

Semantic change 

(our model) 
0.664 0.709 0.622 0.653 

CSCS 

(our model) 
0.834 0.771 0.692 0.856 

 

Table S2: Escape prediction normalized AUC values 

Normalized AUC values for escape prediction as plotted in Figure 3B, as well as separate AUCs 

for grammaticality and semantic change alone (this information is combined, as described in the 

Methods section, for our model’s full CSCS acquisition). Rows involving our model are 

highlighted in blue. 
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Virus Region name Region positions 

H1 WSN33 
Head 59 – 291 

Stalk 18 – 58, 292 – 528  

H3 Perth09 
Head 68 – 293  

Stalk 17 – 67, 294 – 530  

Env BG505 

V1 loop 130 – 148  

V2 loop 149 – 195  

V3 loop 295 – 329  

V4 loop 383 – 415  

V5 loop 458 – 468  

CD4 binding loop 362 – 372  

Fusion peptide 509 – 529  

Immunosuppression 571 – 589  

MPER 659 – 680  

gp120 A 33 – 139  

gp120 B 144 – 508  

gp41  527 – 716  

Glycosylation  

87, 132, 136, 147, 151, 196, 233, 

261, 275, 294, 300, 337, 353, 361, 

384, 390, 445, 608, 615, 634 

Spike 

S1 NTD 13 – 303 

RBD 319 – 541  

Fusion peptide 788 – 806  

HR1 920 – 970  

HR2 1163 – 1202 

S2 686 – 1273 

Glycosylation 

17, 61, 74, 122, 149, 165, 234, 

282, 331, 343, 603, 616, 657, 709, 

717, 801, 1074, 1098, 1134, 1158, 

1173, 1194 

Table S3: Escape potential regions of interest 

Residue positions corresponding to the regions of interest tested for enrichment or depletion of 

escape potential in Figure 4. All ranges are inclusive. 
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