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Abstract The fundamental problem of protein biochemistry is to predict protein
structure from amino acid sequence. The inverse problem, predicting either entire
sequences or individual mutations that are consistent with a given protein structure,
has received much less attention even though it has important applications in both
protein engineering and evolutionary biology. Here, we ask whether 3D convolutional
neural networks (3D CNNs) can learn the local fitness landscape of protein structure
to reliably predict either the wild-type amino acid or the consensus in a multiple
sequence alignment from the local structural context surrounding a site of interest.
We find that the network can predict wild type with good accuracy, and that network
confidence is a reliable measure of whether a given prediction is likely going to be
correct or not. Predictions of consensus are less accurate, and are primarily driven
by whether or not the consensus matches the wild type. Our work suggests that high-
confidence mis-predictions of the wild type may identify sites that are primed for
mutation and likely targets for protein engineering.
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1 Introduction

Proteins are dynamic complex macromolecules that exist as an ensemble of confor-
mational substates (CS) on a fitness landscape [9]. The fitness landscape describes
the potential energy of the protein as a function of conformational coordinates [9]
and is used to study evolution, to identify proteins with new and useful properties, or
to quantify mutability [12]. A protein crystal structure, on the other hand, is a static
representation of a protein and is a single point within the energy landscape. This
single point is usually a local minimum on the energy landscape, i.e., a highly sta-
ble CS that predominates the population and enables crystallization. While a protein
crystal structure does not capture the functional and stochastic fluctuations required
to model the local energy landscape, sampling thousands of diverse protein crystal
structures provides a more global perspective of local energy minima dispersed across
the complex energy landscape of all proteins.

The modeling of the protein energy landscape has made significant progress
over the last 30 years [12]. Most recently, the application of deep learning to the
protein folding problem has shown tremendous success. In particular, Deepmind
demonstrated in CASP14 that their deep learning model, alphafold, is able to learn how
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Learning the local landscape of protein structures 3

to generate highly accurate protein structures solely from a protein’s primary sequence
and multiple sequence alignment, essentially properly placing a protein sequence in
the correct energetic minima [19]. While such great advancements are being made in
protein folding, the application of deep learning to the converse problem is lacking:
understanding how the structure constrains the amino acids that are allowed at a given
site. Prior work using conventional modeling has shown that this is a challenging
problem in general [7], and even just predicting whether a site is conserved or variable
over evolutionary time is not trivial [23,14,22,16]. Furthermore, the ability to predict
which amino acids are "allowed" at a site would limit the sampling of deleterious
mutations, accelerating targeted mutagenesis and protein engineering efforts.

Here, we investigate to what extent a 3D self-supervised convolutional neural
network (3D CNN) model trained on predicting a masked residue from its local
chemical environment–its microenvironment–can predict wild type residues [36,33]
and residues in evolutionarily diverged homologs. We show that the CNN model
primarily predicts the wild type residue, rather than the residues found in diverged,
homologous sequences. Furthermore, we correlate the predicted probability distri-
bution for each residue within the dataset with its observed natural variation in a
multiple sequence alignment to examine how much of the natural variation is cap-
tured by the 3D CNN model. We assess accuracy as a function of CNN confidence
and explore the distribution of amino acids predicted at high confidence. We find
that CNN confidence is a good measure of prediction accuracy and that hydrophobic
residues are more likely to be predicted with high confidence. Finally, we investigate
the impact of microenvironment volume on both the accuracy of predictions and their
correlation with natural variation by training several 3D CNN models with different
input volumes. Our results demonstrate that the first contact shell plays a crucial role
in predicting masked residues from their structural context. Our work may have appli-
cations to protein engineering, where sites at which the CNN confidently mis-predicts
the resident amino acid may be primed for gain-of-function and hence targets for
mutagenesis.

2 Methods

2.1 Network Architecture

We constructed all convolutional neural network models using tensorflow (v2.4.0) [1].
The network architecture was adopted from the literature [36,33] and consisted of a
total of nine layers divided into two blocks: 1) feature extraction and 2) classification.
The feature extraction block consisted of six layers: two pairs of 3D convolutional
layers followed by a dimension reduction max pooling layer after each pair. The first
pair of convolutional layers used filters of size 3 × 3 × 3 and the second pair had
filters of size 2× 2× 2. Additionally, the Rectified Linearity Unit function (Relu) was
applied to the output of each of the four convolutional layers. The final feature maps
generated by the feature extraction block had dimensions of size 400 × 3 × 3 × 3.
These feature maps were flattened into a 1D vector of size 10, 800 × 1 before being
passed to the classification block. The classification block consisted of three fully
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4 Anastasiya V. Kulikova et al.

connected dense layers given dropout rates of 0.5, 0.2, and 0, respectively. Similar to
the feature extraction block, the output of the first two dense layers was transformed by
the Relu function. To obtain a vector of 20 probability scores representing the network
prediction for each of the amino acids, we applied a softmax activation function to the
output of the third dense layer. The full list of parameters for each layer in the CNN
is provided in Table S1 in Online Resource 1.

2.2 Data Generation and Training

To compile the training data, we started with a set of protein crystal structures utilized
in previous work [33]. This set provided us with 19,427 distinct protein data bank
(PDB) identifiers corresponding to structures with at least a 2.5 Å resolution. Next, we
filtered down our dataset by using a 50% sequence similarity threshold at the protein
chain level and removing structures where we could not add hydrogen atoms or partial
charges in an automated fashion with PDB2PQR (v3.1.0) [5]. Finally, we removed
any protein chains that had more than 50% sequence similarity to any structure in the
PSICOV dataset [18]. The PSICOV dataset contains 150 extensively studied protein
structures and we used it here as a hold-out test dataset to evaluate the CNN models
(see below). The final dataset used for training the CNN models consisted of 16,569
chains.

We randomly sampled residues from the protein dataset to create a dataset of
microenvironments that reflected the natural abundance of each amino acid. For each
protein chain, we sampled at most 100 residues and at most 50% of its residues,
whichever number was smaller. We stored the microenvironment dataset as a set of
meta-data, recording the specific residues being sampled by their PDB ID, chain ID,
residue sequence number, and the wild-type amino acid label. The final microenviron-
ment dataset consisted of 1,455,978 microenvironments. A 90:10 split was utilized
for training and validation, respectively. The same training and validation splits were
used for all CNN models.

All training instances and labels were generated just-in-time from their microen-
vironment meta-data, in a batch-wise fashion. With this meta-data, we generate a
voxelated representation (4D tensor) of the microenvironment centered at the U-
carbon of the specified residue, and oriented with respect to the backbone such that
the side chain is oriented along the +I axis. The voxelated representation had a 1 Å
resolution and consisted of 3D space (G, H, I) plus 7 auxiliary channels. The auxiliary
channels encoded information about the nature of the atom present in a voxel (C, H,
O, N, S) as well as partial charge and solvent accessible surface area.

We used PDB2PQR (v3.1.0) [5] to add hydrogen atoms to the protein structure and
to calculate the partial charges of each atom in the protein using the PARSE forcefield
[34]. We used FreeSASA (v2.0.3) [24] to obtain the solvent accessible surface area
of each atom in the protein structure. The spatial dimensions chosen (12 Å, 20 Å,
30 Å, 40 Å) dictated which atoms from the protein structure were included in the
voxelated representation of the microenvironments. All atoms of the centered residue
were excluded from the voxelated representation.
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Learning the local landscape of protein structures 5

The CNN models were trained on Radeon Instinct MI-50 accelerator GPUs.
All models were trained identically and with the same microenvironment dataset
so that model predictions would reflect the impact of modifying the volume of the
microenvironment. For each model, we used a batch size of 200 microenvironments
and trained for 5 epochs. The loss was calculated with stochastic gradient descent with
momentum (0.75) and an adaptive learning rate. The learning rate was initialized at
0.05 and was reduced by half if the validation accuracy did not increase by at least
0.1% every 2,000 batches.

2.3 Generating Predictions and Assessing Accuracy

To verify the network performance on an independent dataset, we used the PSICOV
dataset [18] as our final test dataset. Each of the PSICOV protein structure PDB files
came with multiple sequence alignments (MSAs) ranging from 10 – 60,000 sequences
per protein. The PSICOV dataset contained 150 structures, but we discarded 20 of
them because either we were unable to add hydrogen atoms or calculate partial charges
with PDB2PQR, or the MSAs did not properly align with the sequence in the protein
structure. All PSICOV protein structure PDB files and multiple sequence alignments
were downloaded from the following archive at Zenodo: https://dx.doi.org/10.
5281/zenodo.2552779.

For each of the remaining 130 protein structures, we made boxes around each
residue. The size of each box corresponded to the box size with which the network
was trained. These boxes were then used as input for the respective trained network,
and the network output was a vector of 20 probabilities corresponding to the 20 amino
acids for every position in the protein. After generating predictions for each position,
the amino acid with the highest probability was identified as the predicted amino acid.
These predicted amino acids were compared to the residues from the PSICOV protein
structures, referred to as the wild type residues.

To assess the ability of the network to predict the wild type amino acid, we
calculated prediction accuracy separately for each protein as the percentage of wild
type predictions (i.e., sites where the wild type amino acid is correctly predicted)
among the total number of predictions for the protein. To calculate the network
accuracy for predicting the amino acid class, individual amino acids were divided into
six classes (Table 1) and accuracy calculations previously performed at the level of
individual amino acids were repeated at the level of amino acid classes. Finally, to
determine whether CNN confidence is a reliable measure of prediction accuracy, we
calculated prediction accuracy within probability bins spanning the values of (0–0.2],
(0.2–0.4], (0.4–0.6], (0.6–0.8], and (0.8–1.0]. Each bin contained only the positions
that were predicted within the specified probability range, and accuracy was again
calculated as the percentage of wild type predictions among those positions.

2.4 Comparing Predictions to Sequence Alignments

To compare network predictions to natural sequence alignments, we first found the
consensus amino acid for each position in the alignments. We defined the consensus
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Table 1 Amino acids grouped by class.

class included amino acids

aliphatic Methionine (M), Leucine (L), Inosine (I), Valine (V), Alanine (A)

small polar Cysteine (C), Serine (S), Threonine (T), Asparagine (N), Glutamine (Q)

negative Aspartic Acid (D), Glutamic acid (E)

positive Arginine (R), Lysine (K)

aromatic Histidine (H), Tyrosine (Y), Phenylalanine (F), Tryptophan (W)

unique Proline (P), Glycine (G)

as the amino acid with the highest occurrence at each position in a multiple sequence
alignment. In case of ties, we arbitrarily chose one of the tied amino acids as the
consensus amino acid at that position. There were only a total 43 ties among ∼ 21, 000
positions analyzed.

To determine average sequence divergence of a multiple sequence alignment
(MSA) from its reference wild-type sequence, we first calculated the percent similarity
of each sequence in the MSA to the wild-type sequence and then averaged over all
sequences in the alignment. The percent similarity was calculated by counting the total
number of amino acids matching the wild type sequence and dividing by the length
of the wild type sequence. In this calculation, gaps in the alignment were treated as
mismatches.

To control for sequence divergence, the original PSICOV alignments were divided
into five sub-alignment groups based on percent similarity to the wild type sequence.
The groups were evenly spaced from 0% similarity to 100% similarity in steps of 20
percentage points. Proteins that did not have 10 or more sequences in their alignments
were removed from a group unless they were part of the lowest or highest similarity
group (i.e., (0–20%] or (80–100%]).

2.5 Site-Specific Variability

For each position in the multiple sequence alignments, we calculated the effective
number of amino acids (=eff) as a measure of site-specific variability. The =eff at site 8
is defined as

=eff (8) = exp(−
∑

? 98 ln ? 98), (1)

where ? 98 is the relative frequency of amino acid 9 at site 8 in the alignment. =eff is a
number between one and 20, where one indicates that exactly one amino acid is seen
at this site and 20 indicates that all twenty amino acids are seen at equal frequencies.
Similarly, we calculated an =eff corresponding to the neural network predictions, by
using the network’s predicted probabilities as the values for ? 98 in the above equation.

To compare the variation in the predicted amino acid distributions to the site-
specific variation in alignments, we correlated the vector of =eff values obtained from
the CNN predictions with the vector of =eff values calculated from the MSAs separately
for each protein. Similarly, when we binned sequences into five sub-alignments based
on percent similarity to the wild type sequence, the =eff was calculated for each
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Learning the local landscape of protein structures 7

position in the sub-alignments. For analysis of sub-alignments, we removed all protein
structures that did not appear across all 5 similarity bins.

For all correlation coefficients, we assessed statistical significance by calculating
? values, which we corrected for multiple testing by applying the false-discovery-rate
correction [3].

2.6 Comparing Amino Acid Distributions

To identify which amino acid types the network is most likely to predict with high
confidence, we calculated the frequency with which each amino acid was predicted at
a confidence between 80–100%. As a baseline reference, we also calculated the amino
acid frequencies in the training data. Finally, to compare the distribution of amino
acids that are predicted with high confidence to amino acids that tend to dominate
at positions across homologs, we performed similar calculations using the MSAs by
calculating the amino acid frequencies at positions where a single residue appears in
80–100% of the sequences in an MSA.

2.7 Data availability

Final data analysis and figure production was performed in R [28], making ex-
tensive use of the tidyverse family of packages [38]. Analysis scripts and pro-
cessed data are available on GitHub: https://github.com/akulikova64/CNN_
protein_landscape. Trained neural networks and the training set protein chains
and microenvironments have been deposited at the Texas Data Repository and are
available at: https://doi.org/10.18738/T8/8HJEF9.

3 Results

3.1 A convolutional neural network predicts wild-type and consensus amino acids
with good accuracy

We trained a self-supervised 3D convolutional neural network (3D CNN) to predict
the masked amino acid at the center of a chemical environment (microenvironment)
extracted from a protein structure. Specifically, the input data to the network consists
of a cube with a 1 Å resolution representing all amino-acid atoms surrounding a
specific residue (wild-type amino acid), where the specific residue itself has been
deleted. Based on this input, the model outputs a discrete probability distribution
describing the likelihood of each amino acid being the wild-type amino acid for the
given microenvironment. The amino acid with the highest probability is taken as
the network’s prediction for the wild-type amino acid at the site. We evaluated the
performance of the trained network on an independent dataset of 130 structures (the
PSICOV dataset, [18]). All sequences in the training dataset differed by at least 50%
from each other and from all sequences in the PSICOV dataset.
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We first assessed how well the network could predict a resident amino acid in
a protein structure. We refer to the sequence of the PDB structure as the wild type
sequence. We found that prediction accuracy for the wild type sequence was generally
high, around 60% on average (Figure 1a). In other words, for approximately 60% of all
sites in the PSICOV dataset, we could predict the wild-type amino acid from its local
chemical environment. We also assessed prediction accuracy at the level of amino-acid
classes, where we grouped biochemically similar amino acids into groups (Table 1).
We found that our ability to predict amino acid classes was slightly higher than our
ability to predict specific amino acids, averaging at approximately 71% (Figure 1a).

We next asked how well the network could predict the consensus amino acid at
a site in a multiple-sequence alignment (MSA). To what extent such a prediction
is possible depends on how conserved the microenvironment around a given site
is in homologous structures. If biochemical constraints are mostly conserved over
evolutionary time, then the network should reliably predict consensus amino acids.
By contrast, if the constraints change rapidly as proteins diverge, then the model
will poorly predict the consensus amino acid. We found that we could predict the
consensus amino acid with approximately 40% accuracy and the consensus class with
approximately 55% accuracy (Figure 1b). Notably, nearly all (87%) of the sites where
we correctly predicted the consensus amino acid corresponded to sites where the
consensus amino acid is identical to the wild-type amino acid (Figure 1c). In other
words, the network performs well at predicting the wild-type amino acid, and that
extends to the consensus amino acid when it is the same as the wild-type amino acid.

Fig. 1 Overall performance of CNN predictions for 20 Å box. The black points and bars represent the
means and 95% confidence intervals, respectively. If no bars are visible, the 95% confidence intervals are
smaller than the points indicating the location of the means. (a) Prediction accuracy compared to the wild
type sequence. Individual amino acids were predicted with a 59.2% mean accuracy and amino acid classes
were predicted with 71.3% mean accuracy. (b) Prediction accuracy compared to the alignment consensus.
Individual amino acids were predicted with 38.3% mean accuracy and amino acid classes were predicted
with 55.2% mean accuracy. (c) The frequency at which the predicted consensus is the wild type. Bars
represent the proportion of amino acids (purple) and amino acid classes (yellow) out of all successful
consensus predictions that match with the wild type. 86.7% of predicted residues that match the consensus
are identical to the wild type and 90.4% of successful consensus amino acid class predictions also match
the wild type.
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Learning the local landscape of protein structures 9

Fig. 2 20 Å box CNN predictions of alignment consensus by alignment similarity. The black points and bars
represent the means and 95% confidence intervals, respectively. If no bars are visible, the 95% confidence
intervals are smaller than the points indicating the location of the means. The percent similarity is the
similarity of each alignment sequence to the wild type sequence, the structure of which is used to generate
predictions. (a) Percent accuracy of predicting the alignment consensus amino acid. The red dashed line
shows the mean accuracy of predicting the wild type residue for comparison (59.2%). (b) Percent accuracy
of predicting the alignment consensus class. The red dashed line shows the mean accuracy of predicting
the wild type class for comparison (71%).

To further elaborate how prediction of the consensus amino acid depends on
sequence divergence among homologs, we subdivided alignments into groups with
similar sequence similarity to the wild type, calculated the consensus for these sim-
ilarity groups, and then assessed prediction accuracy for the consensus (Figure 2).
As expected, we observed a systematic, linear decline in prediction accuracy with
decreasing sequence similarity. For the most diverged sequences (0–20% similarity
to wild type), prediction accuracy was below 30%, whereas for the least diverged
sequences (80–100% similarity to wild type), accuracy was virtually the same as for
predicting wild type (Figure 2a). Results were similar for amino acid classes (Fig-
ure 2b). One caveat to this analysis is that homologs were not evenly distributed across
the different groups; on average, for each protein, the 80–100% sequence similarity
group contained only ∼150 sequences whereas the 0–20% similarity group contained
∼60,000 sequences (Figure S1 in Online Resource 1). Across all groups, the average
number of sequences per protein was ∼1,000.

3.2 Network confidence reflects prediction accuracy

Next, we tested whether prediction accuracy was related to CNN confidence. Confi-
dence is defined as the probability with which an amino acid is predicted by the model
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10 Anastasiya V. Kulikova et al.

Fig. 3 Prediction accuracy as a function of CNN confidence. The black points and bars represent the means
and 95% confidence intervals, respectively. If no bars are visible, the 95% confidence intervals are smaller
than the points indicating the location of the means. (a) Accuracy of predicting the wild type residue. (b)
Accuracy of predicting the consensus residue.

(i.e., the highest probability in the predicted distribution of all amino acids). We first
binned the predicted probabilities into five confidence bins, spanning a range of 0.2
units each, and we then calculated the accuracy of predicting either the wild-type
or the consensus amino acid within each confidence bin. We found that the network
confidence was an excellent measure of prediction accuracy for wild-type residues
(Figure 3a). Mean accuracy almost perfectly matched the CNN confidence for each
confidence bin. Similarly, mean accuracy of predicting the consensus residue was con-
sistently at a frequency of 0.1–0.2 below the CNN confidence (Figure 3b). Overall,
CNN confidence was a very good measure of prediction accuracy.

We then wanted to see if high network confidence also implied that all 20 amino
acids were predicted with equal likelihood. We selected the positions in the highest
predicted probability bin (0.8–1.0] and calculated the frequency with which each
amino acid was predicted within this bin. We found that the network predicted the
unique and aliphatic (hydrophobic) amino acids with the highest frequencies (Fig-
ure 4a). This pattern could be partially explained by the amino acid composition in the
training dataset (Figure 4b): The two sets of frequencies were correlated (A = 0.658,
? = 0.002), so approximately 43% of the variation in which amino acids were pre-
dicted with high confidence could be explained by the composition of the training
dataset. However, by calculating the ratios between these two sets of frequencies, we
could confirm that the network trains best on hydrophobic residues (Figure S2 in On-
line Resource 1). We can speculate that this is because hydrophobic amino acids tend
to be found in the core of the protein, where the CNN has more chemical context for
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Fig. 4 Distributions of amino acid types across predicted, training, and natural datasets. (a) The relative
frequency of each amino acid predicted with a confidence of 80–100%. (b) The relative frequency of each
amino acid type in the CNN training data. The correlation between predicted and training frequencies was
0.658 (? = 0.002) (c) The distribution of highly conserved amino acids. These amino acids are found at
frequencies > 80% at individual positions in the MSA. The correlation between predicted and conserved
amino acid frequencies was 0.826 (? = 0.002).

generating predictions. By contrast, positive (charged) amino acids were least likely
to be predicted with high confidence; these amino acids are more commonly found on
the periphery of the protein structure, where the partially empty microenvironment
box provides less context for prediction. This finding is consistent with prior studies
where a similar network performed poorly on surface residues [33].

We also tested whether the same amino acids that tended to receive the highest
CNN confidence scores were also the most likely to be conserved in multiple sequence
alignments. We extracted positions in the MSAs where the consensus was found in 80–
100% of homologs and calculated the consensus amino acid frequency at these sites
(Figure 4c). Interestingly, there was a stronger correlation between the most accurately
predicted amino acids and the most conserved ones (A = 0.826, ? = 0.002). The most
conserved amino acids tend to be the most easily predicted by the network.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.19.456994doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.19.456994
http://creativecommons.org/licenses/by/4.0/


12 Anastasiya V. Kulikova et al.

Fig. 5 20 Å box CNN prediction frequencies across all amino acids and amino acid classes. (a) Amino acid
substitutions relative to wt predictions. (b) Class substitutions relative to wt class predictions. (c) Amino
acid substitutions relative to alignment consensus predictions. (d) Class substitutions relative to alignment
consensus class predictions.

3.3 Mis-predictions depend weakly on amino acid biochemistry

We explored the distribution of mis-predictions, predictions that did not match the
residue in the wild type structures, by calculating confusion matrices. We calculated
confusion matrices at the levels of both individual amino acids and amino acid classes,
for both wild-type predictions and consensus predictions (Figure 5). We found some
preference of the network to make mis-predictions within the same amino acid class.
However, this preference was weak at the level of wild-type predictions (Figure 5a)
and only a little more pronounced at the level of consensus predictions (Figure 5c).

We then looked only at the network’s mis-predictions and asked if a residue’s
predicted probability was related to its abundance at the corresponding position in
the MSA. We expected to see that the amino acid substitutions suggested by the CNN
model would be found more frequently in nature with increasing CNN confidence.
However, we found that the mean natural frequency increased between increasing
confidence bins only at a rate of about 2 percentage points. Furthermore, we directly
correlated the frequency with which the non-wild-type amino acid is found in ho-
mologs with the predicted probability. As expected, the correlation was very weak
(A = 0.214, ? < 2 × 10−16, Figure S3 in Online Resource 1). We also observed
that frequencies vary extensively within each confidence bin and while mis-predicted
amino acids sometimes occur at high frequency in natural alignments, in the majority
of cases, they occur at near-zero frequency (Figure S3 in Online Resource 1).
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Fig. 6 Comparing site-specific variability between CNN predictions and alignments as a function of
percent similarity to the wild type. Predictions were generated by the 20 Å box CNN. Variability was
calculated as the effective number of amino acids per site (=eff). Each point represents the correlation
coefficient between site-specific predicted variability (=eff) and alignment variability for a single protein.
Colored points represent significant correlations (? < 0.05). All ?-values have been adjusted with the false
discovery rate correction. Average significant correlations per similarity group from lowest similarity to
highest are 0.270, 0.330, 0.338, 0.335, and 0.286. No significant difference in mean correlation was found
between the middle three similarity groups. However, there is a significant increase in mean correlation
from the (0–20%] group to the (20–40%] group (? = 6 × 10−07) and a significant decrease in mean
correlation from the (60–80%] group to the (80–100%] group (? = 0.0025).

3.4 Variation in natural alignments correlates weakly with network predictions

As the neural network outputs a probability distribution across all 20 amino acids,
we can ask whether the spread in the probability distribution contains any useful
information. Specifically, we analyzed whether sites where the network distributes
the probability over several amino acids correlate with non-conserved sites in the
MSAs and vice-versa. We calculated the correlation of the effective number of amino
acids =eff at each site for the CNN model predictions and the MSAs, respectively. The
effective number is a statistic that ranges from one to 20, where one indicates that only
a single amino acid is predicted (CNN) or present (MSA) at the site and 20 indicates
that all amino acids are predicted to be equally likely/are present in equal proportions.
If the neural network can predict site variability in natural sequence alignments, we
would expect the =eff calculated from the neural network prediction to correlate with
the =eff calculated from the MSAs.

We found that correlations varied widely among protein structures but depended
only weakly on sequence divergence in the alignment (Figure 6). For some protein
structures, we saw significant correlations explaining 10–30% of the variation in the
data (correlation coefficients of up to 0.6), while for other protein structures, we
saw no significant correlations. Correlations were on average strongest for the three
intermediate sequence similarity groups but were not much weaker for other sequence
similarity groups.

3.5 Small microenvironments are sufficient for good network performance

Finally, we assessed whether the volume of the microenvironment had an impact on
CNN prediction accuracy. If the CNN model only needs the first contact shell of atoms
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Fig. 7 Overall performance of CNN predictions for boxes of size 12 Å, 20 Å, 30 Å and 40 Å. The black
points and bars represent the means and 95% confidence intervals, respectively. If no bars are visible, the
95% confidence intervals are smaller than the points indicating the location of the means. All ?-values
have been adjusted with the false discovery rate correction. (a) Prediction accuracy compared to the wild
type sequence. The average amino acid accuracies for box sizes of 12, 20, 30, and 40 Å were 0.562,
0.592, 0.606, and 0.598, respectively, and the average class accuracies were 0.698, 0.713, 0.724, and 0.716,
respectively. For amino acid predictions (purple), the differences in mean accuracy between all consecutive
box sizes were significant (? < 9 × 10−05). (b) Prediction accuracy compared to the alignment consensus.
The average amino acid accuracies for box sizes of 12, 20, 30, and 40 Å were 0.373, 0.383, 0.388, and
0.387, respectively, and the average class accuracies were 0.548, 0.552, 0.561, and 0.557, respectively.
For consensus amino acid predictions (purple), only the difference in accuracy between the 12 Å box
predictions and the other three box sizes was found to be significant (? < 0.003). Accuracy is slightly
lower for the 12 Å box than for the other three box sizes.

to accurately generate the probability distribution, then using the smallest possible
box that captures the first contact shell should be sufficient. On the other hand, if
long-range interactions among amino acids are critical for accurately predicting the
probability distribution, then prediction accuracy should increase proportionally with
the volume of the microenvironment.

We trained four separate CNN models, using microenvironment volumes of linear
size 12 Å, 20 Å, 30 Å, and 40 Å, respectively. Overall, we found that for wild-type
amino acid predictions, average accuracy did not change much across box sizes.
However, there was a small increase from a mean accuracy of 56.2% to a mean
accuracy of 60.6% from the 12 Å box to the 30 Å box (? < 1 × 10−10)(Figure 7a).
The 40 Å box accuracy was lower than the 30 Å box by one percentage point. All
differences between consecutive box sizes were between one and three percentage
points and statistically significant (? < 2×10−16). Similar patterns were found for the
class and consensus predictions (Figure 7a and b).

We also assessed whether microenvironment volume had an effect on the network’s
ability to learn natural variation. Because the (40–60%] similarity group had the
highest correlation between predicted and natural =eff for the 20 Å network, we
restricted our analysis to alignments in this similarity group. We repeated the analysis
from Figure 6 and found that the correlations between predicted and observed site
variability also did not appear to vary much with microenvironment volume (Figure S4
in Online Resource 1). However, the highest correlations were observed for the smallest
two microenvironment volumes. In aggregate, these results suggest that the atoms in
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the first contact shell hold most of the information the CNN model is using to generate
the probability distribution, and additional atoms present in larger microenvironment
volumes are not contributing much additional information.

4 Discussion

We have examined the ability of a Convolutional Neural Network (CNN) to predict
resident amino acids in a protein structure from their local microenvironment. The
self-supervised learning task and data engineering methodologies were adopted from
prior work [36,33]. We have found that the CNN model primarily predicts the wild type
residue and that its confidence is a reliable estimate of prediction accuracy. Looking
at amino acids predicted with highest confidence, we have found little association
with their conservation in homologous sequences. Finally, by training four separate
CNNs using different microenvironment volumes as input data, we have learned that
the network primarily uses the first contact shell; larger microenvironments do not
add much additional information to the prediction task.

Our findings reinforce the notion that amino acids are entrenched in their local
biochemical environment [31,11], and that the constraints acting on an amino acid in
a protein tend to change over time as the protein evolves. We can predict the resident
amino acid at a site from its structural surroundings with approximately 60% accuracy
— far better than random chance. Notably, though, 40% of the time we predict the
wrong amino acid, and 30% of the time we predict the wrong amino-acid class.
There are two reasons why our predictions may be wrong, and we expect that our
dataset contains both cases: (i) the neural network is making an incorrect prediction;
(ii) the neural network prediction is correct, and the resident amino acid is actually
inconsistent with its current chemical surroundings. The second scenario provides an
opportunity for protein engineering, as it would point out sites that are primed for
mutation. Theoretical arguments and simulations suggest such sites must exist [31,
11], and future work will have to determine whether we can reliably identify such
sites and make use of them in protein engineering applications. A small pilot study
suggests that this indeed is the case [33].

Predictions at the alignment level (i.e., predicting the consensus amino acid in a
multiple sequence alignment) are substantially less accurate — around 40% on aver-
age — though still much better than random chance. This finding again reinforces that
sites are not independent in protein structures and that the constraints on individual
sites slowly change over time [27]. Our analysis of prediction accuracy as a function
of sequence similarity provides insight into the extent to which local environments
change as mutations accumulate. When going from the highest sequence similarity
group (80–100%) to the lowest sequence similarity group (0–20%), prediction accu-
racy drops approximately by half. Thus, even if we replace nearly every amino acid
in a protein, the network prediction accuracy declines only by about 50%. This shows
that biochemical environments change only slowly and can be conserved even at ex-
treme levels of sequence divergence. Similar observations have been made previously
in the context of protein–protein binding interfaces [20,35]. Additionally, it would be
interesting to see if feeding the CNN models molecular dynamic simulations of the
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microenvironments could enable a better assessment the biochemical environment
around an amino acid and potentially improve how well the CNN model predictions
recapitulate natural variation.

Our findings also confirm previously leveled criticism [10] against widely used
exchangeability matrices such as BLOSUM, WAG, or LG [13,37,21]. These matrices
assume that we can meaningfully define exchangeability scores that predict how easily
we can replace an amino acid with any other amino acid at any site in a protein, and
they predict that virtually any amino acid can be replaced with any other. The problem
with this prediction is that while it may be true when averaging over millions of sites
and many thousand proteins, exchangeability predictions are virtually useless at any
given site of interest. In practice, at any given site of interest, only a small number (∼ 5

on average) of amino acids are allowed [10,8,17], and mutations to other amino acids
will rarely if ever be observed. Similarly, here we have seen that the local biochemical
environment, which is entirely ignored by exchangeability matrices, provides a strong
constraint on the resident amino acid, and it predicts the resident amino acid in at least
60% of all cases. We believe that exchangeability models based on local amino acid
preferences and/or local biochemical environments are much more useful than global
exchangeability models that treat every single site the same.

Looking only at residues predicted with an accuracy of 80% and above, we have
not seen equal prediction frequencies across all 20 amino acids. In part, this is driven
by natural amino acid abundance. For example, hydrophobic/non-polar amino acids,
which include aliphatic and certain aromatic amino acids, comprise a larger portion
of the protein, as they are most abundant in the protein core [6]. Consequently, they
are also more frequent in our training dataset. However, we have found prediction
accuracy of hydrophobic/non-polar amino acids to be higher than expected given
their frequencies in the training dataset. One possibility that would explain this finding
is that hydrophobic residues, because they tend to be located in the core, are more
commonly found in microenvironments that are entirely filled instead of partially
empty, providing the CNN more context to make accurate predictions.

We were surprised to find good prediction accuracy with small microenvironment
volumes, as long-range interactions in proteins are well documented [15,2,25,32].
This reinforces the notion that long-range interactions act via percolation through the
structure. Because the CNN model’s predictions remain localized to a small microen-
vironment, the model does not generalize it’s predictions to more distant contacts.
Consequently, we cannot expect the model to successfully predict a substitution at
one site without being required to predict compensatory substitutions at another site
[26]. Furthermore, it would be inaccurate to rule out any single network-suggested
substitutions if they do not immediately produce a functional protein; additional com-
pensatory substitutions may be required. Unfortunately, the current model can not
account for combinations or groups of substitutions.

Our research aims to shed light on the applicability of machine learning for pre-
dicting a protein’s fitness landscape. Due to current advancements in next-generation
sequencing and the ever growing collection of digital, chemical, and biological data,
computational models are becoming increasingly popular for learning the relation-
ship between protein sequence and structure. For example, Hidden Markov Models
are being developed for reconstructing protein fitness landscapes using families of
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homologs [4]. Neural network-based approaches, including Transformers and Gen-
erative Adversarial Networks (GANs), have also become increasingly widely used
for the prediction and simulation of functional sequence space [39,30,29]. Recently,
the deep neural network-based model developed by Deepmind, alphafold, has shown
state of the art success in predicting the global protein structure from sequence [19].
Here, we have addressed the converse problem, where Convolutional Neural Networks
(CNNs) are trained to learn and predict a protein’s sequence from its local structure
[36,33]. Going forward, we expect that the primary application for this converse prob-
lem is going to be protein engineering. CNNs such as the one studied here can be
used to identify sites that are primed for mutation because the resident amino acid is
not consistent with its microenvironment [36,33]. Future work will have to determine
whether best results are obtained if the network is trained on wild-type residues, as
was done here, or whether training the network on natural variation will yield better
candidates for protein engineering.
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