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Abstract. We consider a multicriteria sorting procedure based on a
majority rule, called MR-Sort. This procedure allows to sort each object
of a set, evaluated on multiple criteria, in a category selected among a
set of pre-defined and ordered categories. With MR-Sort, the ordered
categories are separated by profiles which are vectors of performances on
the different attributes. Using the MR-Sort rule, an object is assigned to
a category if it is at least as good as the category lower profile and not
better than the category upper profile. To determine whether an object
is as good as a profile, the weights of the criteria on which the object
performances are better than the profile performances are summed up
and compared to a threshold. If the sum of weights is at least equal to the
threshold, then the object is considered at least as good as the profile. In
view of increasing the expressiveness of the model, we substitute additive
weights by a capacity to represent the power of coalitions of criteria.
This corresponds to the Non-Compensatory Sorting model characterized
by Bouyssou and Marchant. In the paper we describe a mixed integer
program and a heuristic algorithm that enable to learn the parameters
of this model from assignment examples.

1 Introduction

In Multiple Criteria Decision Analysis (MCDA), the “sorting problem setting”
(or ordered classification) consists in assigning each alternative of a set, evaluated
on several monotone criteria, in a category selected among a set of pre-defined
and ordered categories. Several MCDA methods are designed to handle sorting
problems. In this paper, we consider a sorting model that satisfies the require-
ments of the non-compensatory sorting models characterized in [1,2]. The model
is a generalization of MR-Sort [3,4]. In MR-Sort, categories are separated by
profiles which are vectors of performances on the different criteria. Each crite-
rion of the model is associated a weight representing its importance or its voting
power. Using this model, without veto, we assign an alternative to a category if



it is considered at least as good as the category lower profile and not at least
as good as the category upper profile. An alternative is considered as good as
a profile if its performances are at least as good as the profile performances on
a weighted majority of criteria. In MR-Sort, the weighted majority of criteria is
reached if the sum of weights of criteria on which the alternative is at least as
good as the profile is greater than a threshold.

Such a model contrasts with utility based models such as UTADIS [5,6].
It belongs to a class of decision models referred as noncompensatory in the
literature [7,8], because it just takes into account whether or not an evaluation
is above the profile value, not by how much it passes or misses this profile value.
These methods are well suited to criteria assessed on ordinal scales.

Consider a MR-Sort model involving 4 criteria (c1, c2, c3 and c4) and 2
ordered categories (C2 ≻ C1), separated by a profile b1. Using this model, an
alternative is assigned to the “good” category (C2) iff its performances are as
good as the profile b1 on at least one of the four following minimal criteria
coalitions: c1 ∧ c2, c3 ∧ c4, c1 ∧ c4 and c2 ∧ c4. A coalition of criteria is said to be
minimal if removing any criterion is enough to reject the assertion “alternative
a is as good as profile b”. With an MR-Sort model, this can be achieved by
selecting, for instance, the following weights and majority threshold: w1 = 0.3,
w2 = 0.2, w3 = 0.1, w4 = 0.4 and λ = 0.5. We have w1 + w2 = λ, w3 + w4 = λ,
w1 + w4 > λ and w2 + w4 > λ. All the other coalitions of criteria, which are
not supersets of the four minimal coalitions listed above, are not sufficient to be
considered as good as b1 (e.g. w1 + w3 < λ).

Assume that we want a model for which the two minimal sufficient criteria
coalitions are: c1 ∧ c2 and c3 ∧ c4. Modeling this classification rule with an MR-
Sort model is impossible. To model these rules, we have to choose weights wi, i =
1, . . . , 4, summing up to 1, such that w1 + w2 ≥ λ and w3 + w4 ≥ λ. Summing
these two inequalities yields 1 ≥ 2λ. If we want these coalitions to be the only
minimal sufficient ones, we must also have : w1+w3 < λ, w1+w4 < λ, w2+w3 < λ
and w2 + w4 < λ. Summing these four inequalities yields 2 < 4λ. Hence, there
exist no weights and majority threshold for which the 2 above coalitions are the
only two minimal sufficient coalitions. In view of being able to represent such
a type of rule, we consider in this paper an extension of MR-Sort allowing to
model interactions between criteria. This formulation expresses the majority rule
of MR-Sort by using a capacity like in the Choquet Integral [9]. This model is
called the Non Compensatory Sorting Model (NCS model). It was introduced
and characterized in [1,2].

In this paper, we aim at studying the additional descriptive ability of the NCS
model as compared to MR-Sort. We assess this experimentally on real datasets.
The paper is organized as follows. The next section describes formally what is
a non compensatory sorting model. Section 3 recalls previous work dealing with
learning the parameters of MR-Sort models from assignment examples. The
next two sections describe respectively a Mixed Integer Program and a heuristic
algorithm that allow to learn the parameters of a NCS model. Some experimental
results are finally presented.



2 MR-Sort and NCS models

2.1 MR-Sort model

MR-Sort is a method for assigning objects to ordered categories. It is a simplified
version of ELECTRE TRI, another MCDA method [10,11].

The MR-Sort rule works as follows. Formally, let X be a set of objects eval-
uated on n ordered attributes (or criteria), F = {1, ..., n}. We assume that
X is the Cartesian product of the criteria scales, X =

∏n
j=1 Xj . An object

a ∈ X is a vector (a1, . . . , aj , . . . , an), where aj ∈ Xj for all j. The ordered
categories which the objects are assigned to by the MR-Sort model are denoted
by Ch, with h = 1, . . . , p. Category Ch is delimited by its lower limit profile
bh−1 and its upper limit profile bh, which is also the lower limit profile of cate-
gory Ch+1 (provided 0 < h < p). The profile bh is the vector of criterion values
(bh,1, . . . , bh,j , . . . , bh,n), with bh,j ∈ Xj for all j. We denote by P = {1, ...., p}
the list of category indices. By convention, the best category, Cp, is delimited
by a fictive upper profile, bp, and the worst one, C1, by a fictive lower profile,
b0. It is assumed that the profiles dominate one another, i.e.: bh−1,j ≤ bh,j , for
h = {1, . . . , p} and j = {1, . . . , n}.

Using the MR-Sort procedure, an object is assigned to a category if its crite-
rion values are at least as good as the category lower profile values on a weighted
majority of criteria while this condition is not fulfilled when the object’s criterion
values are compared to the category upper profile values. In the former case, we
say that the object is preferred to the profile, while, in the latter, it is not. For-
mally, if an object a ∈ X is preferred to a profile bh, we denote this by a < bh.
Object a is preferred to profile bh whenever the following condition is met:

a < bh ⇔
∑

j:aj≥bh,j

wj ≥ λ, (1)

where wj is the nonnegative weight associated with criterion j, for all j and λ sets
a majority level. The weights satisfy the normalization condition

∑

j∈F wj = 1;
λ is called the majority threshold ; it satisfies λ ∈ [1/2, 1].

The preference relation < defined by (1) is called an outranking relation
without veto or a concordance relation ([11]; see also [12,13] for an axiomatic
description of such relations). Consequently, the condition for an object a ∈ X
to be assigned to category Ch reads:

∑

j:aj≥bh−1,j

wj ≥ λ and
∑

j:aj≥bh,j

wj < λ. (2)

The MR-Sort assignment rule described above involves pn + 1 parameters,
i.e. n weights, (p− 1)n profiles evaluations and one majority threshold.

A learning set A is a subset of objects A ⊆ X for which an assignment is
known. For h ∈ P , Ah denotes the subset of objects a ∈ A which are assigned
to category Ch. The subsets Ah are disjoint; some of them may be empty.



2.2 NCS model

Limitation of MR-Sort Before describing the NCS model, we show the limits
of MR-Sort. As an illustration, consider an application in which a committee
for a higher education program has to decide about the admission of students
on the basis of their evaluations in 4 courses: math, physics, chemistry and
history. To be accepted in the program, the committee considers that a student
should have a sufficient majority of evaluations above 10/20. From the committee
point of view, courses (criteria) coalitions don’t have the same importance. The
strength of a coalition of courses varies as a function of the courses belonging to
the coalition. The committee stated that the following subsets are the minimal
coalitions of courses in which the evaluation should be above 10/20 in order to
be accepted: {math, physics}, {math, chemistry} and {chemistry, history}. To
illustrate this rule, Table 1 shows evaluations of several students and, for each
student, whether he is accepted or refused.

Table 1. Evaluation of students and their acceptance/refusal status

Math Physics Chemistry History A/R

James 11 11 9 9 A
Marc 11 9 11 9 A
Robert 9 9 11 11 A
John 11 9 9 11 R
Paul 9 11 9 11 R
Pierre 9 11 11 9 R

Representing these assignments by using a MR-Sort model with profiles fixed
at 10/20 in each course is impossible. There are no additive weights allowing to
model such rules. MR-Sort is not adapted to handle such type of problems since
it does not allow to model attribute interactions. In view of taking criterion inter-
actions into account, we modify the definition of the global outranking relation,
a < bh, given in (1).

Capacity The new model described hereafter uses capacities. A capacity is a
function µ : 2F → [0, 1] such that:

– µ(B) ≥ µ(A), for all A ⊆ B ⊆ F (monotonicity) ;
– µ(∅) = 0 and µ(F ) = 1 (normalization).

The Möbius transform allows to express the capacity in another form:

µ(A) =
∑

B⊆A

m(B) ∀A ⊆ F with m(B) =
∑

C⊆B

(−1)|B|−|C|µ(C).

The value m(B) can be interpreted as the weight that is exclusively allocated
to B as a whole. A capacity can be defined directly by its Möbius transform



also called Möbius interaction. A Möbius interaction or Möbius mass m is a set
function m : 2F → [−1, 1] satisfying the following conditions:

∑

j∈K⊆J∪{j}

m(K) ≥ 0 ∀j ∈ F, J ⊆ F\{i} and
∑

K⊆F

m(K) = 1. (3)

If m is a Möbius interaction, the set function defined by µ(A) =
∑

B⊆A m(B) is
a capacity. Conditions (3) guarantee that µ is monotone [14].

NCS model Using a capacity to express the weight of the coalition in favor of
an object, we transform the outranking rule (1) as follows:

a < bh ⇔ µ(A) ≥ λ with A = {j ∈ F : aj ≥ bh,j}

and µ(A) =
∑

B⊆A

m(B) (4)

Computing the value of µ(A) with the Möbius transform requires the evaluation
of 2|A| parameters. In a model involving n criteria, this implies the elicitation of
2n parameters, with µ(∅) = 0 and µ(F ) = 1. To reduce the number of parameters
to elicit, we use a 2-additive capacity in which all the interactions involving more
than 2 criteria are equal to zero. Inferring a 2-additive capacity for a model

having n criteria requires the determination of n(n+1)
2 − 1 parameters.

Finally, the condition for an object a ∈ X to be assigned to category Ch can
be expressed as follows:

µ(Fa≥bh−1
) ≥ λ and µ(Fa≥bh) < λ (5)

with Fa≥bh−1
= {j ∈ F : aj ≥ bh−1,j} and Fa≥bh = {j ∈ F : aj ≥ bh,j}.

This model fits with the definition of a NCS model given in [1,2]. We note that
MR-Sort is a special case of a NCS model in which a simple additive capacity is
used.

3 Learning the parameters of a MR-Sort model

Learning the parameters of MR-Sort and ELECTRE TRI models has been al-
ready studied in several articles [3,4,15,16,17,18,19,20,21]. In this section, we
recall how to learn the parameters of an MR-Sort model using respectively an
exact method [3] and a heuristic algorithm [4].

3.1 Mixed Integer Programming

Learning the parameters of a MR-Sort model using linear programming tech-
niques has been proposed in [3]. The paper describes a Mixed Integer Program
(MIP) taking a set of assignment examples and their vector of performances
as input and finding the parameters of a MR-Sort model such that the largest



possible number of examples are restored by the inferred model. We recall in
this subsection the main steps to obtain the MIP formulation.

The condition for an object x to be assigned to category Ch (Equation (2))
can be written as follows:

a ∈ Ch ⇐⇒























∑n
j=1 c

h−1
a,j ≥ λ with ch−1

a,j =

{

wj if aj ≥ bh−1,j

0 otherwise

∑n
j=1 c

h
a,j < λ with cha,j =

{

wj if aj ≥ bh,j

0 otherwise

To linearize these constraints, we introduce for each value cla,j , with l = {h−1, h},

a binary variable δla,j that is equal to 1 when the performance of the object a is
at least as good as or better than the performance of the profile bl on criterion
j and 0 otherwise. To obtain the value of δla,j , we add the following constraints,
where M is an arbitrary large positive constant:

M(δla,j − 1) ≤ aj − bl,j < M · δla,j (6)

By using the value δla,j , the values of cla,j are obtained as follows:

{

cla,j ≥ 0

cla,j ≤ wj

{

cla,j ≤ δla,j
cla,j ≥ δla,j − 1 + wj

The objective function of the MIP consists in maximizing the number of ex-
amples compatible with the learned model, i.e. minimizing the 0/1 loss function.
In order to model this, new binary variables, γa for all a ∈ A, are introduced.
The value of γa is equal to 1 if object a is assigned to the expected category, i.e.
the category it is assigned to in the learning set, and equal to 0 otherwise. To
obtain the correct value of γa variables, two additional constraints are added:

{

∑n
j=1 c

h−1
a,j ≥ λ+M(γa − 1)

∑n
j=1 c

h
a,j < λ−M(γa − 1)

The objective function chosen for the linear program consists in maximiz-
ing the number of examples compatible with the model. Formally it reads:
max

∑

a∈A γa. Finally, the combination of all the constraints leads to the MIP
given in Appendix 1.A.

3.2 A heuristic algorithm

The MIP presented in the previous section is not suitable for large data sets
because of the high computing time that is required to infer the MR-Sort pa-
rameters. In view of learning MR-Sort models in the context of large data sets,
a heuristic algorithm has been proposed in [4]. As in the MIP, the heuristic
algorithm takes as input a set of assignment examples and their vectors of per-
formances. The algorithm returns the parameters of a MR-Sort model.



min
∑

a∈A(x
′
a + y′

a)
s.t.

∑

j:aj≥bh−1,j

wj − xa + x
′
a = λ ∀a ∈ Ah, h = {2, ..., p}

∑

j:aj≥bh,j

wj + ya − y
′
a = λ− ǫ ∀a ∈ Ah, h = {1, ..., p− 1}

n
∑

j=1

wj = 1

wj ∈ [0; 1] ∀j ∈ F

λ ∈ [0.5; 1]

xa, ya, x
′
a, y

′
a ∈ R

+

0

ε a small positive number.

(7)

The heuristic algorithm proposed in [4] works as follows. First a population
of MR-Sort models is initialized. After the initialization, the two following steps
are repeated iteratively on each model in the population:

1. A linear program optimizes the weights and the majority threshold on the
basis of assignment examples and fixed profiles.

2. Given the inferred weights and the majority threshold, a heuristic adjusts
the profiles of the model on the basis of the assignment examples.

After applying these two steps to all the models in the population, the
⌊

n
2

⌋

models restoring the least numbers of examples are reinitialized. These steps are
repeated until the heuristic finds a model that fully restores all the examples or
after a number of iterations specified a priori.

The linear program designed to learn the weights and the majority threshold
is given by (7). It minimizes a sum of slack variables, x′

a and y′a, that is equal to 0
when all the objects are correctly assigned, i.e. assigned to the category defined in
the input data set. We remark that the objective function of the linear program
does not explicitly minimize the 0/1 loss but a sum of slacks. This implies that
compensatory effects might appear, with undesirable consequences on the 0/1
loss. However in this heuristic, we consider that these effects are acceptable. The
linear program doesn’t involve binary variables. Therefore, the computing time
remains reasonable when the size of the problem increases.

The objective function of the heuristic varying the profiles maximizes the
number of examples compatible with the model. To do so, it iterates over each
profile h and each criterion j and identifies a set of candidate moves for the
profile, which correspond to the performances of the examples on criterion j
located between profiles h− 1 and h+1. Each candidate move is evaluated as a
function of the probability to improve the classification accuracy of the model.
To evaluate if a candidate move is likely or unlikely to improve the classification
of one or several objects, the examples which have an evaluation on criterion j
located between the current value of the profile, bh,j , and the candidate move,
bh,j + δ (resp. bh,j − δ), are grouped in different subsets:



V +δ
h,j (resp. V −δ

h,j ) : the sets of objects misclassified in Ch+1 instead of Ch (resp.
Ch instead of Ch+1), for which moving the profile bh by +δ (resp. −δ) on j
results in a correct assignment.

W+δ
h,j (resp. W−δ

h,j ) : the sets of objects misclassified in Ch+1 instead of Ch (resp.
Ch instead of Ch+1), for which moving the profile bh by +δ (resp. −δ) on
j strengthens the criteria coalition in favor of the correct classification but
will not by itself result in a correct assignment.

Q+δ
h,j (resp. Q−δ

h,j) : the sets of objects correctly classified in Ch+1 (resp. Ch+1)
for which moving the profile bh by +δ (resp. −δ) on j results in a misclassi-
fication.

R+δ
h,j (resp. R−δ

h,j) : the sets of objects misclassified in Ch+1 instead of Ch (resp.
Ch instead of Ch+1), for which moving the profile bh by +δ (resp. −δ) on j
weakens the criteria coalition in favor of the correct classification but does
not induce misclassification by itself.

T+δ
h,j (resp. T−δ

h,j ) : the sets of objects misclassified in a category higher than Ch

(resp. in a category lower than Ch+1) for which the current profile evaluation
weakens the criteria coalition in favor of the correct classification.

A formal definition of these sets can be found in [4]. The evaluation of the
candidate moves is done by aggregating the number of elements in each subset.
Finally, the choice to move or not the profile on the criterion is determined by
comparing the candidate move evaluation to a random number drawn uniformly.
These operations are repeated multiple times on each profile and each criterion.

4 Mixed Integer Program to learn a 2-additive NCS

model

As compared to a MR-Sort model, a NCS model involves more parameters.
In a standard MR-Sort model, a weight is associated to each criterion, which
makes overall n parameters to elicit. With a NCS model limited to two-additive
capacities, the computation of the strength of a coalition of criteria involves the
weights of the criteria in the coalition and the pairwise interactions (Möbius

coefficients) between these criteria. Overall there are n(n+1)
2 − 1 coefficients. In

the two-additive case, let us denote by mj the weights of criterion j and by mj,k

the Möbius interactions between criteria j and k. The capacity µ(A) of a subset
of criteria is obtained as: µ(A) =

∑

j∈A mj +
∑

{j,k}⊆A mj,k. The constraints (3)
on the interaction read:

mj +
∑

k∈J

mj,k ≥ 0 ∀j ∈ F, ∀J ⊆ F\{j} (8)

and
∑

j∈F mj +
∑

{j,k}⊆F mj,k = 1.
The number of monotonicity constraints evolves exponentially as a function

of the number of criteria, n. In [22], two other formulations are proposed in order
to reduce significantly the number of constraints ensuring the monotonicity of
the capacities. The first formulation reduces the number of constraints to 2n2



but leads to a non linear program. The second formulation reduces the number
of constraints to n2 + 1 without introducing non linearities but adds n2 extra
variables.

With a 2-additive MR-Sort model, the constraints for an alternative a to be
assigned to a category h (5) can also be expressed as follows:

{

∑n
j=1 c

h−1
a,j +

∑n
j=1

∑j
k=1 c

h−1
a,j,k ≥ λ+M(γa − 1)

∑n
j=1 c

h
a,j +

∑n
j=1

∑j
k=1 c

h
a,j,k < λ−M(γa − 1)

(9)

with:

– ch−1
a,j (resp. cha,j) equals mj if the performance of alternative a is at least as

good as the performance of profile bh−1 (resp. bh) on criterion j, and equals
0 otherwise;

– ch−1
a,j,k (resp. cha,j,k) equals mj,k if the performance of alternative a is at least

as good as the performance of profile bh−1 (resp. bh) on criteria j and k, and
equals 0 otherwise.

For all a ∈ A, j ∈ F and l ∈ P , constraints (8) imply that cla,j ≥ 0 and that

cla,j,k ∈ [−1, 1]. The values of ch−1
a,j and cha,j are obtained in a similar way as it is

done for learning the parameters of a standard MR-Sort model by replacing the
weights with the corresponding Möbius coefficients (10).

{

cla,j ≥ 0

cla,j ≤ mj

{

cla,j ≤ δla,j
cla,j ≥ δla,j − 1 +mj

(10)

However it is not the case for the variables ch−1
a,j,k and cha,j,k, because they involve

two criteria. To linearize the formulation, we introduce new binary variables,
∆l

a,j,k equal to 1 if alternative a has better performances than profile bl on

criteria j and k and equal to 0 otherwise. We obtain the value of ∆l
a,j,k thanks

to the conjunction of constraints given in (6) and the following constraints:

2∆l
a,j,k ≤ δla,j + δka,j ≤ ∆l

a,j,k + 1

In order to obtain the value of cla,j,k, which can be either positive or negative,

for all l ∈ P , we decompose the variable in two parts, αl
a,j,k and βl

a,j,k such that

cla,j,k = αl
a,j,k − βl

a,j,k with αl
a,j,k ≥ 0 and βl

a,j,k ≥ 0. The same is done for mj,k

which is decomposed as follows: mj,k = m+
j,k−m−

j,k with m+
j,k ≥ 0 and m−

j,k ≥ 0.

The values of αl
a,j,k and βl

a,j,k are obtained thanks to the following constraints:











αl
a,j,k ≤ ∆l

a,j,k

αl
a,j,k ≤ m+

j,k

αl
a,j,k ≥ ∆l

a,j,k − 1 +m+
j,k











βl
a,j,k ≤ ∆l

a,j,k

βl
a,j,k ≤ m−

j,k

βl
a,j,k ≥ ∆l

a,j,k − 1 +m−
j,k

Finally, we obtain the MIP displayed in Appendix 1.B.



min
∑

a∈A(x
′
a + y′

a)
s.t.

n
∑

j:aj≥bh−1,j



mj +

j
∑

k:ak≥bh−1,k

mj,k



− xa + x
′
a = λ ∀a ∈ Ah,

h = {2, ..., p}
n
∑

j:aj≥bh,j



mj +

j
∑

k:ak≥bh,k

mj,k



+ ya − y
′
a = λ− ε ∀a ∈ Ah,

h = {1, ..., p− 1}
n
∑

j=1

mj +

n
∑

j=1

j
∑

k=1

mj,k = 1

mj +
∑

k∈J

mj,k ≥ 0 ∀j ∈ F, ∀J ⊆ F\{j}

λ ∈ [0.5; 1]
mj ∈ [0, 1] ∀j ∈ F

mj,k ∈ [−1, 1] ∀j ∈ F, ∀k ∈ F, k < j

xa, ya, x
′
a, y

′
a ∈ R

+

0 a ∈ A

ε a small positive number.

(11)

5 A heuristic algorithm to learn a 2-additive NCS model

The MIP described in the previous section requires a lot of binary variables and
is therefore not well-suited for large problems. In the present section, we describe
an adaptation of the heuristic described in subsection 3.2 in view of learning the
parameters of a NCS model. Like for the MIP in the previous section, we limit
the model to 2-additive capacities in order to reduce the number of coefficients
as compared to a model with a general capacity.

One of the components that needs to be adapted in the heuristic in order
to be able to learn a 2-additive NCS model is the linear program that infers
the weights and the majority threshold (7). Like in the MIP described in the
previous section, we use the Möbius transform to express capacities. In view of
inferring Möbius coefficients, mj and mj,k, ∀j, ∀k with k < j, we modify the
linear program as shown in (11).

The value of xa − x′
a (resp. ya − y′a) represents the difference between the

capacity of the criteria belonging to the coalition in favor of a ∈ Ah w.r.t. bh−1

(resp. bh) and the majority threshold. If both xa − x′
a and ya − y′a are positive,

then object a is assigned to the correct category. In order to try to maximize the
number of examples correctly assigned by the model, the objective function of
the linear program minimizes the sum of x′

a and y′a, i.e. the objective function
is min

∑

a∈A(x
′
a + y′a).

The heuristic adjusting the profile also needs some adaptations in view of
taking capacities into account. More precisely, the formal definition of the sets
in which objects are classified for computing the candidate move evaluation



should be adapted. The semantics of the sets, recalled in Section 3.2 remains
identical. The formal definitions of these sets have to be adapted to take into
account the capacity. The rest of the algorithm remains unchanged.

6 Experiments

The use of the MIP for learning a NCS model is limited because of the large
number of binary variables involved. It contains more binary variables than the
MIP learning the parameters of a simple additive MR-Sort model. Experiments
reported in [3] have demonstrated that the computing time required to learn the
parameters of a standard MR-Sort model having a small number of criteria and
categories from a small set of assignment examples becomes quickly prohibitive.
Therefore we cannot expect to be able to treat large problems using the MIP for
learning NCS models.

In view of assessing the performance of the heuristic algorithm designed for
learning the parameters of a NCS model, we use it to learn NCS models from
several real data sets presented in Table 2. These data sets, available at http://
www.uni-marburg.de/fb12/kebi/research/repository/monodata, have been
already used to assess other algorithms (e.g. [4,23]). They involve from 120 to
1728 instances, from 4 to 8 monotone attributes and from 2 to 36 categories. In
our experiments, categories have been binarized by thresholding at the median.

Data set #instances #attributes #categories

DBS 120 8 2
CPU 209 6 4
BCC 286 7 2
MPG 392 7 36
ESL 488 4 9
MMG 961 5 2
ERA 1000 4 4
LEV 1000 4 5
CEV 1728 6 4

Table 2. Data sets

In our first experiment, we use 50% of the alternatives in the data sets as
learning set and the rest as test set. We learn MR-Sort and NCS models using
both heuristics. We repeat this procedure for 100 random splits of the data sets
in learning and test sets. We observe from Table 3 that the classification accuracy
obtained with the NCS heuristic is on average comparable to the one obtained
with the MR-Sort heuristic. The use of a more expressive model does not help
much to improve the classification accuracy of the test set.

In a second experiment, we check the ability of MR-Sort and NCS to restore
the whole data set. To do so, we run both heuristics 100 times. The average

http://www.uni-marburg.de/fb12/kebi/research/repository/monodata
http://www.uni-marburg.de/fb12/kebi/research/repository/monodata


Data set Heuristic MR-Sort Heuristic NCS

DBS 0.8377± 0.0469 0.8312± 0.0502
CPU 0.9325± 0.0237 0.9313± 0.0272
BCC 0.7250± 0.0379 0.7328± 0.0345
MPG 0.8219± 0.0237 0.8180± 0.0247
ESL 0.8996± 0.0185 0.8970± 0.0173
MMG 0.8268± 0.0151 0.8335± 0.0138
ERA 0.7944± 0.0173 0.7944± 0.0156
LEV 0.8408± 0.0122 0.8508± 0.0188
CEV 0.9064± 0.0119 0.9118± 0.0263

Table 3. Average and standard deviation of the classification accuracy of the test set
when using 50 % of the examples as learning set and the rest as test set

classification accuracy and standard deviation of the learning set are given in
Table 4. The NCS heuristic does not always give better results than the MR-
Sort one in restoring the learning set examples. Except for the MPG data set,
we observe a slight advantage (of the order of one standard deviation) in favor
of NCS when the number of attributes is at least 6. There is almost no difference
for the data sets described by 4 or 5 attributes and for MPG (7 attributes).

Data set Heuristic MR-Sort Heuristic NCS

DBS 0.9268± 0.0096 0.9326± 0.0087
CPU 0.9643± 0.0048 0.9703± 0.0091
BCC 0.7605± 0.0147 0.7761± 0.0085
MPG 0.8419± 0.0099 0.8389± 0.0069
ESL 0.9164± 0.0033 0.9168± 0.0042
MMG 0.8419± 0.0099 0.8409± 0.0091
ERA 0.8035± 0.0052 0.8027± 0.0053
LEV 0.8501± 0.0082 0.8643± 0.0038
CEV 0.9005± 0.0141 0.9172± 0.0101

Table 4. Average and standard deviation of the classification accuracy of the learning
set when using the MR-Sort and NCS models learned on the whole data set

Average computing times of the results in Table 4 are displayed in Table 5.
Learning a NCS model can take up to almost 3 times as much as learning a
simple MR-Sort model.

The above experiments on benchmark data sets available in the literature
failed to show a clear advantage at using NCS rather than MR-Sort. This raises
the following question. Which type of data set would reveal a gain of expressivity
provided by NCS over MR-Sort? We investigate this question in the next section.



Data set Heuristic MR-Sort Heuristic NCS

DBS 3.0508 6.9547
CPU 3.1646 5.2069
BCC 3.3700 7.7545
MPG 4.4136 9.9294
ESL 3.8466 7.2495
MMG 6.1481 13.4848
ERA 5.9689 14.4875
LEV 5.8986 13.2356
CEV 11.1122 31.7042

Table 5. Average computing time (in seconds) required to find a solution with MR-Sort
and NCS heuristics when using all the examples as learning set

7 Potential gain in descriptive power with the NCS

model

Among NCS assignment rules, some can be exactly represented by additive
weights and a threshold (the MR-Sort rules), while the others require a non-
additive capacity and a threshold. We call the latter non-additive NCS rules.
These are not MR-Sort rules but they can be approximated by a MR-Sort model.
The experiment described below aims at assessing how well a non-additive NCS
rule can be approximated by a MR-Sort rule.

Consider a NCS model assigning alternatives in two categories, C1 and C2.
For a given profile, the set of all possible alternatives can be partitioned in 2n

subsets, where n is the number of criteria. Each of these subsets is characterized
by one of the 2n relative positions of an alternative w.r.t. the profile. On each
criterion, the performance of an alternative is either at least as good as the profile
or worse. Due to the ordinal nature of the NCS rule, all alternatives that share
the same relative position w.r.t. the profile (i.e. all alternatives in the same class
of the partition in 2n subsets) are assigned to the same category. If we assume
that the evaluations of the alternatives on all criteria range in the [0, 1] interval,
we can set the profile values to 0.5 on all criteria. The set of n-dimensional
Boolean vectors is composed of exactly one example of each possible relative
position w.r.t. the profile.

Our experiments are conducted as follows.

1. We modify the MIP described in section 3.1 to learn only the weights and
the majority threshold of a MR-Sort model on the basis of fixed profiles
and assignment examples. The objective function of the MIP remains the
minimization of the 0/1 loss.

2. We generate all possible NCS rules for n = 4, 5, 6 criteria. For more detail
about how this can be done, see [24]; the list of all non-equivalent NCS
rules is available at http://olivier.sobrie.be/shared/mbfs/. Each non-
additive NCS rule, is used to assign the set of n-dimensional Boolean vectors

http://olivier.sobrie.be/shared/mbfs/


to one of the two categories (using the 0.5 constant profile). These sets of
representative alternatives constitute our learning sets.

3. The modified MIP is used to learn the weights and majority threshold of a
MR-Sort model, which restores as well as possible the assignments made by
the non-additive NCS rule.

The results of the experimentation are displayed in Table 6. Each row of the
table contains the results for a given number of criteria, n = 4, 5, 6. The second
column shows the percentage of non-additive NCS rules among all possible rules
for each given number of criteria. The last three columns contain the min, max
and average percentage of the 2n examples assigned by non-additive rules that
cannot be restored by a simple additive model.

n % non-additive MR-Sort
min. max. avg.

4 11 % 6.2 % 6.2 % 6.2 %
5 57 % 3.1 % 9.4 % 3.9 %
6 97 % 1.6 % 12.5 % 4.8 %

Table 6. Average, minimum and maximum 0/1 loss of the learning sets after learning
additive weights and the majority threshold of a MR-Sort model

We observe that a MR-Sort model on 4 criteria is, in the worst case, not able
to restore 6.2% of the examples in the learning set (1 example out of 16). With 5
and 6 criteria, the maximum 0/1 loss increases respectively to 9.4% (3 examples
out of 32) and 12.5% (8 examples out of 64).

Note that these proportions were obtained using learning sets in which each
type of relative position w.r.t. the profile is represented exactly once. Therefore
these conclusions should be valid for learning sets in which all types of relative
positions are approximately equally represented. On a test set, the difference in
classification performance between a non-additive NCS rule and its approxima-
tion by a MR-Sort rule can be amplified, or, on the contrary, can fade, depending
on the proportion of the test alternatives belonging to the various types of rela-
tive positions w.r.t. the profile.

Table 6 reveals another important information. The proportion of non-additive
NCS rules among all NCS rules quickly grows with the number of attributes:
from 11% of 2-additive NCS rules for n = 4 to 97% for n = 6. It hence becomes
more and more likely that a NCS rule is not a MR-Sort one when n grows.

The results in Table 6 could help to better understand the relatively poor
gains observed in the previous section when comparing the heuristic algorithm
for learning a 2-additive NCS model and a MR-Sort model. We noticed that the
classification accuracy of the learned NCS rule tended to be slightly better for
the data sets involving at least 6 attributes. The lack of an advantage for data
sets involving 4 attributes might be due to the relative scarcity of non-additive



NCS rules for n = 4 (11%). When a gain is obtained, it is tiny, which might
result from the fact that the approximation of a non-additive NCS rule by a
MR-Sort rule is relatively good, at least up to n = 6. Investigating the NCS
for n ≥ 7 model in a systematic way, using the same method as we did in our
last experiments, is almost impossible due to the extremely fast growth of the
number of possible NCS rules (see [24]). It is however arguable that non-additive
NCS rules could be at an advantage, as compared to MR-Sort rules, when the
number of attributes is at least as large as 6.
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1.A MIP learning the parameters of a MR-Sort model

max
∑

a∈A γa
s.t.
n
∑

j=1

c
h−1

a,j ≥ λ+M(γa − 1) ∀a ∈ Ah, h = {2, ..., p}

n
∑

j=1

c
h
a,j < λ−M(γa − 1) ∀a ∈ Ah, h = {1, ..., p− 1}

aj − bl,j < M · δla,j ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

aj − bl,j ≥ M(δla,j − 1) ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

c
l
a,j ≤ δ

l
a,j ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

c
l
a,j ≤ wj ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

c
l
a,j ≥ δ

l
a,j − 1 + wj ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

bh,j ≥ bh−1,j ∀j ∈ F, h = {2, ..., p− 1}
n
∑

j=1

wj = 1

δ
l
a,j ∈ {0, 1} ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

c
l
a,j ∈ [0, 1] ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
bh,j ∈ R ∀j ∈ F, ∀h ∈ P

γa ∈ {0, 1} ∀a ∈ A

wj ∈ [0, 1] ∀j ∈ F

λ ∈ [0.5, 1]

(12)



1.B MIP learning the parameters of a 2-additive NCS

model

max
∑

a∈A γa
s.t.
n
∑

j=1

(

c
h−1

a,j +

j
∑

k=1

α
h−1

a,j,k −

j
∑

k=1

β
h−1

a,j,k

)

≥ λ+M(γa − 1) ∀a ∈ Ah,

h = {2, ..., p}
n
∑

j=1

(

c
h
a,j +

j
∑

k=1

α
h
a,j,k −

j
∑

k=1

β
h
a,j,k

)

< λ−M(γa − 1) ∀a ∈ Ah,

h = {1, · · · , p− 1}

mj +
∑

k∈J

(m+

j,k −m
−
j,k) ≥ 0 ∀j ∈ F, ∀J ⊆ F\{j}

n
∑

j=1

mj +

n
∑

j=1

j
∑

k=1

(m+

j,k −m
−
j,k) = 1

bh,j ≥ bh−1,j ∀j ∈ F, h = {2, ..., p}

c
l
a,j ≤ δ

l
a,j ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

c
l
a,j ≤ mj ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

c
l
a,j −mj ≥ δ

l
a,j − 1 ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

aj − bl,j < M · δla,j ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

aj − bl,j ≥ M(δla,j − 1) ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

δ
l
a,j + δ

l
a,k ≥ 2∆l

a,j,k ∀{j, k} ∈ F : k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

δ
l
a,j + δ

l
a,k ≤ ∆

l
a,j,k + 1 ∀{j, k} ∈ F : k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

α
l
a,j,k ≤ ∆

l
a,j,k ∀{j, k} ∈ F : k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

α
l
a,j,k ≤ m

+

j,k ∀{j, k} ∈ F : k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

α
l
a,j,k +m

+

j,k ≥ ∆
l
a,j,k − 1 ∀{j, k} ∈ F : k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

β
l
a,j,k ≤ ∆

l
a,j,k ∀{j, k} ∈ F : k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

β
l
a,j,k ≤ m

−
j,k ∀{j, k} ∈ F : k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

β
l
a,j,k −m

−
j,k ≥ ∆

l
a,j,k − 1 ∀{j, k} ∈ F : k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

c
l
a,j ∈ [0, 1] ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

δ
l
a,j ∈ {0, 1} ∀j ∈ F, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

α
l
a,j,k, β

l
a,j,k ∈ [0, 1] ∀{j, k} ∈ F : k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}

∆
l
a,j,k ∈ {0, 1} ∀{j, k} ∈ F : k < j, ∀a ∈ Ah, ∀h ∈ P, l = {h− 1, h}
mj ∈ [0, 1] ∀j ∈ F

m
+

j,k,m
−
j,k ∈ [0, 1] ∀j ∈ F, ∀k ∈ F, k < j

bh,j ∈ R ∀j ∈ F, ∀h ∈ P

γa ∈ {0, 1} ∀a ∈ A

λ ∈ [0, 1]

(13)




