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Abstract

An important modeling decision made while designing

Conditional Random Fields (CRFs) is the choice of the po-

tential functions over the cliques of variables. Laplacian

potentials are useful because they are robust potentials and

match image statistics better than Gaussians. Moreover, en-

ergies with Laplacian terms remain convex, which simplifies

inference. This makes Laplacian potentials an ideal model-

ing choice for some applications.

In this paper, we study max-margin parameter learning

in CRFs with Laplacian potentials (LCRFs). We first show

that structured hinge-loss [35] is non-convex for LCRFs

and thus techniques used by previous works are not appli-

cable. We then present the first approximate max-margin

algorithm for LCRFs. Finally, we make our learning al-

gorithm scalable in the number of training images by using

dual-decomposition techniques. Our experiments on single-

image depth estimation show that even with simple features,

our approach achieves comparable to state-of-art results.

1. Introduction

Undirected graphical models such as Markov Random

Fields (MRFs) and Conditional Random Fields (CRFs)

have been successfully applied to a number of vision prob-

lems, such as image denoising, optical flow and single-

image depth estimation. While designing an MRF/CRF for

an application, especially one with continuous random vari-

ables, an important modeling decision is the choice of the

family of potential functions over the cliques of variables.

In the context of natural images, this question has

been studied as the search for suitable natural image pri-

ors [36, 38]. Some of the earliest works [12] used quadratic

disagreement pairwise potentials, corresponding to Gaus-

sian priors on images. Since then however, a large body

of work [21, 34, 36, 38] has found that histograms of fil-

ter responses for natural images tend to be highly “non-

Gaussian”, in that they have sharp peaks at zero and heavy

tails. Consequently, recent works have focused on non-

convex priors [2, 22, 23, 32, 36].

A similar situation holds for range images, i.e. images
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Figure 1: Log10 of the normalized histogram of relative depths

(between adjacent pixels) from 400 laser scans collected by Sax-

ena et al. [24, 25]. Notice that the relative depths are better mod-

eled by a Laplacian distribution than a Gaussian.

captured by laser range-scanners as opposed to traditional

cameras. Huang et al. [13] presented the first analysis

of range images and found that log-gradient-histograms of

range images of natural scenes were also heavy-tailed and

peaked at zero. More recently, Saxena et al. [24, 25] made

similar observations in the context of monocular depth es-

timation, and found that relative depths are better modeled

by a Laplacian distribution than a Gaussian.

Model. The model we consider is a CRF with Laplacian

potentials, which we refer to as Laplacian CRF (LCRF) for

ease of notation. Although non-convex models like Fields

of Experts (FOE) [22, 36] or hyper-Laplacian priors [14]

may be a better fit to natural statistics than LCRFs, there

are a number of good reasons for using LCRFs.

Laplacian potentials represent a sweet spot in the trade-

off between the conflicting goals of modeling and optimiza-

tion. Gaussian potentials lead to easy (inference and learn-

ing) optimization problems, but are a poor match to im-

age statistics. Non-convex models (e.g., FOE) match image

statistics well but result in difficult (non-convex) optimiza-

tion problems. Laplacian potentials are robust potentials

and match image statistics better than Gaussians, yet ener-

gies with Laplacian terms remain convex, which simplifies

inference. Moreover, in recent work, Schmidt et al. [29]

found that Laplacian models actually outperformed hyper-

Laplacian models on the task of image restoration, when
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used with MAP inference.

Goal. In this paper, we study discriminative parameter

learning in LCRFs. This is a challenging problem because

LCRFs involve ℓ1-norm terms and thus the energy function

(negative log probability) is a non-linear function of the

parameters. Thus, well understood techniques like Struc-

tured SVMs (SSVMs) [35] and Max-Margin Markov Nets

(M3Ns) [5] are not directly applicable.

Contributions. We first show that the key object in max-

margin learning, i.e. the structured hinge-loss [35] is non-

convex for LCRFs. Thus, an exact max-margin learning

algorithm is unlikely to exist. We then present an approx-

imate max-margin algorithm for LCRFs by linearizing the

non-convex ℓ1-norm constraints. This broadens the class

of energy functions that may be learnt via SSVMs, albeit

approximately. To the best of our knowledge, this is the

first max-margin discriminative training algorithm for CRFs

with Laplacian potentials.

In addition, we use ideas from the dual-decomposition

[3, 7] literature to decompose the problem of learning pa-

rameters from a dataset of images into smaller learning

problems over individual training images. We present an ef-

ficient dual-decomposition-based algorithm that scales lin-

early with the number of training images and is very effi-

cient in practice. This makes our approach highly paral-

lelizable and scalable to a large number of training images.

We apply LCRFs to the problem of single-image depth

estimation, which is a difficult mathematically-ill-posed

problem due to the ambiguities introduced by the projec-

tion of the 3D world onto a 2D image. Interestingly, for this

problem, Saxena et al. [24] originally proposed an LCRF

to model depth as a function of the image features. How-

ever, in the absence of a parameter learning algorithm, they

resorted to a heuristic approach that neglected the partition

function. In this work, we show that by using a principled

approximate learning algorithm, we obtain improvements in

depth estimates, not only over their heuristic approach but

also other techniques. Specifically, we achieve state-of-art

performance on one common error metric and are competi-

tive with the state of the art on another metric.

2. Related Work

Most relevant to our work are algorithms for parameter

learning in continuous random field models, max-margin

methods and techniques for single-image depth estimation.

Parameter Learning in Continuous Random Fields. In

the FOE model, Roth and Black [22] used contrastive diver-

gence [10] to approximate the maximum likelihood estima-

tion of the parameters. Weiss and Freeman [36] proposed a

basis rotation algorithm for approximating the same. Note

that these are generative training methods while we are in-

terested in a discriminative training algorithm.

Tappen et al. [33] presented a Gaussian CRF model, and

showed that discriminative learning in GCRFs boils down to

linear algebra operations, and is thus tractable and efficient.

Scharstein and Pal [28] used MAP estimates to approxi-

mate the gradient for max-conditional-likelihood learning

of parameters. In [32], Tappen trained FOE parameters

by minimizing a loss function with stochastic gradient de-

scent. Samuel and Tappen [23] presented an improved

version based on implicit-differentiation. Li and Hutten-

locher [18] presented a discriminative learning algorithm

based on simultaneous perturbation stochastic approxima-

tion. Barbu [2] used marginal space learning to learn the

parameters. Note that for LCRFs, any reasonable loss func-

tion will be non-differentiable due to ℓ1-norm terms, and

thus gradient-based methods are not directly applicable. In-

stead of exploring smooth approximations (which are often

slow to converge), we formulate our problem as a Structured

SVM (solved via a cutting-plane algorithm).

Structured Max-Margin Learning. Taskar et al. [5]

proposed a max-margin method for training Markov net-

works and Tsochantaridis et al. [35] proposed a Struc-

tured Support Vector Machine (SSVM) framework for

learning structured-output models. Both techniques have

been widely used since their introduction. Li and Hutten-

locher [19] proposed an SSVM-based algorithm in the con-

text of stereo. Szummer et al. [31] used graph-cuts within

an SSVM learning algorithm in the context of segmenta-

tion. We note that in both cases, the energies of the models

were linear in the parameters. This is not true for LCRFs,

and thus max-margin methods are not directly applicable.

Overcoming this restriction is the main focus of this paper.

Single Image Depth Estimation. Saxena et al. [24, 27]

considered the problem of depth estimation from a single

image using a CRF. They found that CRFs with Lapla-

cian potentials significantly outperform those with Gaus-

sian potentials, even with their heuristic learning approach,

in which they ignored the partition function. Sudderth et

al. [30] used hierarchical Dirichlet Processes in order to

model the depth of objects. Liu et al. [20] proposed a

semantic-category based depth-estimation model that is the

current state-of-art (in terms of one error metric) on the

dataset of Saxena et al. [24,27]. More recently, Li et al. [16]

proposed a feedback-enabled cascaded classification model

that achieved state-of-art performance (in terms of another

error metric) on this dataset.

Laplacian terms. We note that Laplacian terms have been

explored in several contexts, including Lasso shrinkage [8]

and sparse coding [6]. These methods focus on inference

techniques, i.e. how to efficiently minimize objective func-

tions with ℓ1-norm terms or constraints. This paper, on

the other hand, is concerned with the problem of parame-

ter learning in CRFs that contain these potentials.



Finally, we should also point out that although the work

of Zhu et al. [37] uses a similar name as us, they use Lapla-

cian priors for a sparse structural bias, while we use Lapla-

cian potentials on the variables of the model.

3. Laplacian CRF

We now describe our model in detail before presenting

our proposed learning algorithm in Section 4.

Notation. Let [n] be shorthand for the set {1, 2, . . . , n}.
Consider a collection of continuous random variables Y =
{yi | i ∈ [n], yi ∈ R}, and a graph G = (V, E) defined

over these variables, i.e. V = [n], E ⊆
(

[n]
2

)

. For a vector

y ∈ R
n, we use P (y) as a shorthand for P (Y = y). Our

goal is to jointly predictY from a collection of local features

{xi ∈ R
k | i ∈ [n]} extracted at these labeling sites. Let

X = [xT
1 ; x

T
2 ; . . . ;x

T
n ] be the matrix holding these features

as rows. Finally, let Q = [fT
1 ; . . . ; fT

m] be a matrix of

linear filters operating on Y .

We define a Laplacian CRF as:

P (y | X , θ) =
1

Z
exp (−E(y|X , θ)) , where (1)

E(y | X , θ) = ||y −Xθ||1 + ||Qy||1, (2)

and where ||a||1 =
∑m

i=1 |ai| for a ∈ R
m, Z is the par-

tition function, and θ ∈ R
k is the vector of model parame-

ters (to be learnt). We can see that this model penalizes for

deviations from linear predictions and for having large re-

sponses to the filters Q. Comparing our model with popular

models like [32], we note that they penalize filter responses

via a non-convex Lorentzian penalty function, while we use

a convex ℓ1-norm penalty.

Although the algorithms we develop are valid for arbi-

trary filters Q, in this paper we only focus on gradient fil-

ters, i.e. the case when Q is the (weighted) incidence matrix

of G, such that rows of Qy give the (weighted) differences

of neighboring labels. Thus:

E(y | X , θ) = ||y −Xθ||1 +
∑

(i,j)∈E

|wij (yi − yj)|, (3)

where wij are edge-weights. These edge-weights may

themselves be functions of edge-features, i.e. wij = xT
ij β,

where xij is a feature extracted at edge (i, j), and β is

the (shared) edge parameter vector. For ease of explana-

tion and to match our current implementation, in this pa-

per we only describe learning techniques for θ and assume

wij to be known constants. However, the algorithm for

learning β is a straightforward generalization, and is pre-

sented in the supplementary material [1] (Section 1). Fi-

nally, note that we place no restrictions on the size or type of

the graph-neighborhood and there could be arbitrary “long-

range” links between the variables.

4. Learning and Inference in LCRFs

Before we go into details about parameter learning we

need to describe inference in LCRFs.

4.1. Inference
We focus on maximum a posteriori inference in this

model, which can be written as:

ŷ(θ) = argmax
y∈Rn

P (y | X , θ) (4a)

= argmin
y∈Rn

{||y −Xθ||1 + ||Qy||1} (4b)

This is an ℓ1-norm minimization problem. It is well-
known [4] that such problems may be formulated as a linear

program. Let q , X θ, A , [ In×n ; Q ] (where In×n is

the n× n identity matrix) and b , [ q ; 0m×1 ]. Now:

ŷ(θ) = argmin
y∈Rn

{||Iy − q||1 + ||Qy − 0||1} (5a)

=argmin
y∈Rn

||Ay − b||1, (5b)

= argmin
y∈Rn,ν∈R(n+m)

ν · 1 (5c)

s.t. ν ≥ Ay − b, (5d)

ν ≥ −(Ay − b) (5e)

where ν is an auxiliary variable. Notice that (5c) is now

a Linear Program (LP). The trick above is to notice that

absolute value minimization can be replaced by two linear

lower bounds. As we will see next, this trick helps us more

than once.

4.2. Parameter Learning
Parameter learning involves finding the optimal values of

parameter θ from labeled training data. Let us first consider
a single training sample (X ,y∗), where y∗ is the ground-
truth labeling. We start with the margin-rescaled Structured
SVM formulation of Tsochantaridis et al. [35], which min-
imizes the following problem:

min
θ,ξ

1

2
||θ||22 + C ξ (6a)

s.t. E(yi|X , θ)− E(y∗|X , θ) ≥ ∆(yi,y∗)− ξ ∀yi (6b)

ξ ≥ 0, (6c)

where ∆(yi,y∗) is a user-specified risk function measur-
ing the separation between labelings, and C is a positive
multiplier. Intuitively, we can see that SSVM minimizes a
quadratic objective subject to constraints that enforce a soft
margin between the energy of ground-truth and any other
labeling, such that the margin is scaled by the risk function.
It is known [35] that all of the above constraints (6b),(6c)
may be expressed compactly via the structured-hinge-loss:

HLoss(θ) = max
{

0, E(y∗|X , θ)

−min
yi

(

E(yi|X , θ)−∆(yi,y∗)

)

}

. (7)

It can be shown [35] that hinge-loss is a convex upper-
bound on risk incurred by the MAP solution ŷ, i.e.
HLoss(θ) ≥ ∆(ŷ(θ),y∗). Thus, SSVMs can be under-
stood as minimizing a regularized structured hinge loss:

min
θ

1

2
||θ||22 + C HLoss(θ) (8)

Note that for a continuous-valued CRF, the set of all pos-
sible other labelings is an infinitely large set, and thus the
above program cannot even be written down. Following the



work of Tsochantaridis et al. [35], we address this problem
by using a cutting-plane approach. Specifically, we initial-

ize this program with a small set of “bad” labelings Ĩ, then
learn θ, and if the optimal labeling corresponding to this

learnt θ, i.e. the solution to (4), is not already in the set Ĩ
(within some tolerance factor), we add it to the set and re-
peat. Formally, we repeatedly solve:

(MM : Ĩ) min
θ,ξ

1

2
||θ||22 + C ξ (9a)

s.t. ||yi −Xθ||1 + ||Qyi||1

− ||y∗ −Xθ||1 − ||Qy∗||1 ≥ 1− ξ, ∀i ∈ Ĩ (9b)

ξ ≥ 0. (9c)

Nonconvexity of Hinge-Loss. Recall that in a typical

SSVM or M3N, the energy function is linear in parameters.

In our case, the energy function contains ℓ1-norm terms, and

thus constraints (9b) are not linear in θ. Unfortunately, this

makes the corresponding hinge-loss non-convex. Formally,

we can state the following:

Theorem 1 Hinge Loss for the LCRF model, i.e.

HLoss(θ) = max
{

0, ||y∗ − X θ||1 + ||Qy∗||1 −

minyi

(

||yi − X θ||1 + ||Qyi||1 − ∆(yi,y∗)
)}

, is

non-convex in θ.

Proof. See Supplementary Material [1], Section 2.

Due to this non-convexity, standard techniques like sub-

gradient descent and cutting-plane methods cannot be used

to minimize the LCRF hinge-loss. Furthermore, note that

the variables θ multiply with X and therefore every abso-

lute value term contains all the components of θ. This does

not allows use of search algorithms such as in [15].

Approximate Max-Margin Learning. We now show how

the non-convex program (MM : Ĩ) can be approximated
by a convex QP. The following exposition is described with
a 0-1 risk, however any risk-function (e.g. hamming) may
be used as long as the risk-augmented energy minimization
problem [35] is tractable. We use the same trick as we did in
(5c) to convert an ℓ1-norm minimization into an LP, using

auxiliary variables: d∗, {di} ∈ R
n:

(MMQP : Ĩ)

min
θ,ξ,{d∗},{di}

1

2
||θ||22 + C ξ + C1

n
∑

j=1

d∗j + C2

∑

i∈Ĩ

n
∑

j=1

dij (10a)

s.t.

n
∑

j=1

dij −
n
∑

j=1

d∗j ≥ 1 + ||Qy∗||1 − ||Qyi||1 − ξ (10b)

ξ ≥ 0 ∀i ∈ Ĩ (10c)

d∗ ≥+ (y∗ −Xθ), d∗ ≥ −(y∗ −Xθ) (10d)

di ≥+ (yi −Xθ), di ≥ −(yi −Xθ) ∀i ∈ Ĩ (10e)

where C1, C2 are positive weights (see [1] for how to set

them). All constraints in the above program (MMQP : Ĩ)

are linear in θ, ξ, {d∗}, {di}, and this program is a convex

quadratic program, solvable by standard techniques. For-

mally, we can state the following about this approximation:

Theorem 2 If {θ̂, ξ̂, d̂∗, d̂i} is the optimum solution of

MMQP : Ĩ (10), then ξ̂ is equal to the LCRF hinge-loss

HLoss(θ̂), and thus an upper-bound on the loss incurred

by the MAP solution, i.e. ξ̂ = HLoss(θ̂) ≥ ∆(ŷ(θ̂),y∗).

Proof. See Supplementary Material [1], Section 3.

Thus, the constraints of the two programs – MM : Ĩ (9)

and MMQP : Ĩ (10) – represent exactly the same object,

i.e. structured hinge-loss. The approximation comes from

the extra terms in the objective function (10a), which are

necessary for linearizing the ℓ1-norm terms.

From a computational perspective, it is important to

point out one drawback of this linearization approach. Pro-

gram (MMQP : Ĩ) includes vector constraints (10d),(10e)

of dimension equal to the number of random variables (n).

While constraint (10d) does not grow with iterations of

the cutting-plane algorithm, constraint (10e) does. Thus,

each additional “bad” labeling added to the list Ĩ adds n
more constraints to the QP, which may become impracti-

cal. However, as we see next, we use ideas from the dual-

decomposition [3, 7] literature to restrict this QP to a man-

ageable size.

4.3. Extension to Multiple Training Images
via DualDecomposition

Let us now extend our algorithm to learn from multi-
ple images. Consider a training dataset indexed by T =
{1, 2, . . . , T}. Let ξ(t) denote the slack variable and vec-

tor D(t) = {d∗(t),di(t) | i ∈ Ĩ} hold all auxiliary vari-
ables for a training image t. For brevity of description, let
us denote all linear constraints in (10) with the polytope

P(t). Thus, {θ, ξ(t),D(t)} ∈ P(t) denotes the set of so-
lutions feasible according to image t. We can now write
down a straightforward generalization of the previous pro-

gram (MMQP : Ĩ) to multiple training images:

(MMQP : ĨT )

min
θ,{ξ(t),D(t)}

1

2
||θ||22 +

C

T

∑

t∈T

ξ(t) +
C′

T

∑

t∈T

D(t) · 1 (11a)

s.t. {θ, ξ(t),D(t)} ∈ P(t) ∀t ∈ T . (11b)

Clearly, as the size of the training dataset increases, this

program becomes larger, and very quickly impractical. The

key here is to notice that this large program (MMQP : ĨT )
consists of several almost independent problems over indi-

vidual images, only coupled by the parameter θ. We fol-

low a dual-decomposition approach, where we solve a La-

grangian relaxation of this problem which easily decom-

poses to smaller independent sub-problems for each train-

ing image. This enables solving the problem over a dis-

tributed architecture or a cloud of machines, and thus scales

well to large datasets. Most importantly, we prove this

Lagragian relaxation achieves zero duality gap and in fact

is a tight relaxation (see Theorem 3). Thus, the solution

to the Lagrangian relaxation converges to the solution of

MMQP : ĨT .



We describe this relaxation next. First, we reparame-
terize the previous program by allocating to each training

image its own copy of the parameters θ(t):

(MMQP : ĨT 2)

min
θ̃,{θ(t),ξ(t),D(t)}

1

2T

∑

t∈T

||θ(t)||22 +
C

T

∑

t∈T

ξ(t)

+
C′

T

∑

t∈T

D(t) · 1 (12a)

s.t. {θ(t), ξ(t),D(t)} ∈ P(t) (12b)

θ(t) = θ̃ ∀t ∈ T . (12c)

The above program (MMQP : ĨT 2) uses a global

variable θ̃ to force all training images to have the same
parameters, and thus is equivalent to the earlier program

(MMQP : ĨT ). However, we can now relax con-
straints (12c). We consider a Lagrangian relaxation of
the above program by dualizing [7] the complicating con-
straints (12c):

(LR : ĨT )

min
θ̃,{θ(t),ξ(t),D(t)}

1

2T

∑

t∈T

||θ(t)||22 +
C

T

∑

t∈T

ξ(t)

+
C′

T

∑

t∈T

D(t) · 1+
∑

t∈T

λ(t) · (θ(t) − θ̃) (13a)

s.t. {θ(t), ξ(t),D(t)} ∈ P(t) ∀t ∈ T , (13b)

where λ(t) ∈ R
k are the (unconstrained) Lagrangian mul-

tipliers, which may be thought of as indicating the penalties
or costs for violating their corresponding constraints. Note
that now the above problem is completely separable into in-
dependent sub-problems for each training image.

(LR : ĨT 2)

∑

t∈T

min
θ(t),ξ(t),D(t)

( 1

2T
||θ(t)||22 + λ(t) · θ(t) +

C

T
ξ(t)

+
C′

T
D(t) · 1

)

−min
θ̃

(

∑

t∈T

λ(t)
)

· θ̃ (14a)

s.t. {θ(t), ξ(t),D(t)} ∈ P(t) ∀t ∈ T . (14b)

We can see that the (unconstrained) optimization over

θ̃ forces a constraint on the Lagrangian variables, i.e.
∑

t∈T
λ(t) = 0; otherwise the program will not have a

finite value. Let us now define these independent sub-

problems as a function of the dual variables (λ(t)):

F(t)(λ(t)) = min
θ(t),ξ(t),D(t)

1

2T
||θ(t)||22 + λ(t) · θ(t)

+
C

T
ξ(t) +

C′

T
D(t) · 1 (15a)

s.t. {θ(t), ξ(t),D(t)} ∈ P(t). (15b)

We can now search for the tightest relaxation by optimiz-

ing over the dual variables {λ(t)}. Formally, this is the La-

grangian dual of (MMQP : ĨT ):

(LD : ĨT ) max
{λ(t)}

∑

t∈T

F(t)(λ(t)) (16a)

s.t.
∑

t∈T

λ(t) = 0. (16b)

Algorithm 1. We solve this dual problem via projected

gradient ascent. It is easy to verify that the gradient of

each sub-problem with respect to the Lagrangian multi-

plier is simply the optimal parameter learned from that sub-

problem, i.e. ∂F(t)

∂λ(t) = θ̂(t), where θ̂(t) is the optimal solu-

tion to problem (15). We also note that each subproblem

is strongly convex in θ(t) and thus has a unique optimum

θ̂(t). The projection step is fairly simple – it involves satis-

fying the zero-mean constraint of (16b), which can be en-

forced by subtracting the mean of the dual variables. Over-

all, the update rule is given by λ(t) ←−
[

λ(t) + α∂F(t)

∂λ(t)

]

0
,

where α is the step-size and [·]0 is the projection operator,

i.e.
[

x(t)
]

0
= x(t)− 1

T

∑

t∈T
x(t). We can see that each step

of gradient ascent requires learning parameters on all sub-

problems. Thus, we have converted a large QP into several

smaller QPs that can be independently optimized in parallel,

although they need to be solved several times.

Most importantly, the following theorem shows that the

Lagrangian relaxation does not introduce a second level

of approximation In fact, our algorithm exactly solves

MMQP : ĨT .

Theorem 3 LD : ĨT (16) has zero duality gap and Algo-

rithm 1 converges to the optimum of MMQP : ĨT (11).

Proof. See Supplementary Material [1], Section 4.

5. Experiments

We apply our learning algorithm to the problem of es-

timating depth from a single image (see Fig. 2 for exam-

ples). This is a difficult mathematically-ill-posed problem

due to the ambiguities introduced by the projection of the

3D world onto a 2D image. Local features alone are typ-

ically not enough for estimating depth (e.g., both sky and

water can be blue, a gray patch could be sidewalk or a wall).

We need to use a CRF to model the relations between the

depths at neighboring regions. Hand-tuning weights on fea-

tures is difficult and impractical and thus a good learning

algorithm is essential for this application.

For an h × w image, our model variables {yi | i ∈
[n], n = hw} indicate log-depth at each pixel, given image

features xi ∈ R
k at the corresponding pixels in the image.

We follow the same parameter sharing scheme as Saxena et

al. [27], i.e. assign each row of an image its own parame-

ter vector. We use two kinds of features: 105-dim texture

features computed using the publicly-available code from

Make3D [24], and 8-dim semantic-category-prediction fea-

tures at each pixel provided by Liu et al. [20]. When we

compare to other works using the same features, the perfor-

mance difference can be attributed to the choice of model

and learning algorithm used. Moreover, Saxena et al. [24]

used the same (texture) features and model as us (LCRF),

and trained the parameters simply by minimizing the ℓ1 er-

ror ||y − X θ||1. Any performance difference between their
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Figure 2: Results on single-image depth estimation using LCRFs trained with our learning algorithm. (Left) Laser ground-

truth depths. (Middle) Original image. (Right) Predicted depths. We can see that LCRFs model depth discontinuities well.

(Best viewed in color.)

work and ours is specifically attributed to the use of our

max-margin learning algorithm.

We test our approach on the Make3D Range Image

dataset [25, 27], which consists of 534 images (400 train-

ing, 134 testing) with ground-truth depths obtained from a

laser scanner. The variety of environments (roads, build-

ings, trees, indoor corridors, etc.) presents situations such as

sharp depth changes (due to occlusions) and thin long struc-
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(c) Avg-Rel Error

Figure 3: Error on test set vs the number of training images.

(Red) Pseudo-Inverse training. (Blue) Our training algorithm.

Note that our training method performs well even with a small

number of training images.

tures (trees, poles, etc.), making this a challenging dataset.

All results are reported on the 134 test images.

We measure our performance with a commonly used er-

ror metric on this dataset called rel-error, defined as
1
n

∑n
j=1(ŷj − y∗j )/y

∗
j , where y∗j is the ground-truth depth

for pixel j, and ŷj is the predicted depth. Another error

metric that is also sometimes used is log10 error metric
1
n

∑n
j=1 | log10 ŷj−log10 y

∗
j |. For the sake of completeness,

we also report RMSE errors
√

1
n

∑n
j=1(ŷj − y∗j )

2, which a

number of previous works do not report.

We experimented with decomposition into sub-problems

of various sizes, and found decomposition into 8 fifty-image

sub-problems to be an ideal choice. Note that the zero du-

ality gap statements in Theorem 3 hold for batch decompo-

sition as well. We typically ran Algorithm 1 for 4-8 steps,

and typical cardinality of set Ĩ was 5-10.

Comparison to State-of-the-Art. We compare our results

to a number of other works that have reported results on this

dataset. The comparison is shown in Table 1. The results

for “Chance” baseline are taken from Saxena et al. [27].

This table also lists the major improvement source over the

original work of Saxena et al. [24] (SCN). We note that a di-

rect comparison with these methods is problematic. Some

methods use more sophisticated models and sometimes ad-

ditional data/features, limiting the conclusions that may be

drawn from the comparison. For example SCN [24] use a

hierarchical MRF; Liu et al. [20] (LGK) use semantic labels

and additional geometry based priors in the CRF. Heitz et

al. [9] and Li et al.’s [16] cascaded classification models

combine information from object detection, image segmen-

tation and scene categorization. Overall, these works fo-

cused on using context in order to improve performance. On

the other hand, our method only uses a single 4-connected

grid and no additional information. Despite the simplicity,

our model achieves 0.362 rel-error, which is better than cur-

rent best of 0.370. We attribute this superior performance

to our learning algorithm, which enables training an accu-

rate model (LCRF) for the problem. On RMSE and log10

errors, our approach is competitive with the state of the art,

but not the lowest. Hopefully, performance can be further

improved by combining these orthogonal ideas – our LCRF

model and learning algorithm, semantic modeling of LGK,
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Figure 4: Effects of learning algorithms on pointwise-CRF

with Make3D features. Plotting Avg-Rel Error. This figure

shows that even with simple features, our learning technique im-

proves the performance over other methods.

and multi-task information of Heitz et al.

Stability w.r.t. Small Training Set. We also analyzed the

performance of our learning algorithm with the size of train-

ing set. Fig. 3 shows that our algorithm is less prone to over-

fitting as compared to the pseudo-inverse training of SCN,

i.e. even with small amounts of training data, it can perform

reasonably well on the test set.

Effect of Learning Algorithm. Finally, we try to isolate

the the effect of the learning algorithm from other factors.

To do this, we only compare baselines that all use exactly

the same features and approximate the same MRF/CRF

structure (although different kinds of potentials). These in-

clude SCN [24], the “pointwise CRF” from Make3D [27]

and the “Pixel CRF model” from LGK [20]. For this com-

parison, we trained our model with texture features only.

Fig. 4 shows the results. We see that our learning algorithm

performs significantly better than SCN, LGK and Make3D.

Qualitative Results. In Fig. 2, we show the predicted

depths for a few examples in the test set, together with

the laser ground-truth depths for comparison. Our algo-

rithm makes quite reasonable-looking predictions. In gen-

eral, CRFs suffer from the problem of over-smoothing (e.g.

observed by Saxena et al. [24, 27]). However, this prob-

lem seems to be less acute in our method—we believe this

is because our learning method learns the parameters while

taking into account the edge terms in the CRF, and thus re-

sults in sharper (see Fig. 2-E,H,I) and more accurate depths.

The problem still persists in some cases, such as in Fig. 2-

J, where our algorithm was confused by the texture of the

leaves, and produced over-smoothed depths.

Note that the ground-truth labels were limited to a range

of 80 meters, and therefore, in most of the images in Fig. 2,

we see that far-away structures are measured as 80m (same

as sky) by the laser. Our model reasonably predicts even

far-away parts in the image (and the actual ground-truth la-

bel is wrong!). See Fig. 2-A,D,F,G,H,I. In Fig. 2-B, we

see the reflections of another building, trees and sky into

a glass-paned transparent wall. The laser scanner measures

depths incorrectly because the pulses get scattered by the



Table 1: Summary of results for the depth estimation task. Empty entrees indicate that those numbers were not reported in the prior work.

Note that different methods use different features, different structure of the MRFs/CRFs, as well as other additional information in some

cases. See Fig. 4 for the effect of learning algorithm alone. See text for details.

Method Description (main improvement source) RMSE-linear Avg-log10 Avg-Rel

Chance predict mean depthmap 28 0.334 0.698
SCN [24] hierarchical, pointwise CRF, Laplacian potentials 16.7 0.198 0.530
HEH [11] surface layout, discrete CRF - 0.320 1.423
Make3D - pointwise CRF [27] tertiary connections - 0.149 0.458
Make3D - superpixel CRF [26] superpixel formulation - 0.187 0.370
LGK - pointwise CRF [20] semantic segmentation, geometry - 0.149 0.375
LGK - superpixel CRF [20] semantic segmentation, geometry - 0.148 0.379
CCM [9] - cascaded models object detection, segmentation, categorization 15.4m - -
Li et al. [16] - feedback cascades object detection, categorization, event, geometric layout 15.2m - -
Li et al. [17] probabilistic dependence between parameters 15.2m - -

Our model - pointwise CRF max-margin learning 15.8 0.168 0.362

glass. Our algorithm relies on the image and estimates the

depth of the reflected structures instead.

6. Conclusions

In this paper, we considered continuous-valued CRFs

with heavy-tailed Laplacian potentials. Although LCRFs

are the ideal modeling choice for many applications and

inference in these models is convex and tractable, param-

eter learning could only be performed heuristically in prior

work. We presented the first (approximate) max-margin pa-

rameter learning algorithm for LCRFs, by linearizing the

non-convex ℓ1-norm constraints. We also presented a dual-

decomposition-based algorithm to make learning scalable

in the number of training images.

Future work involves exploring more sophisticated de-

composition techniques like Augmented Lagrangian meth-

ods. In addition, ℓ1-norm minimization problems are often

convex relaxations for solving ℓ0-norm minimization i.e.

cardinality constraints. We believe that the learning algo-

rithm for LCRFs presented in this paper could be useful for

MRFs/CRFs with such potentials as well.
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