
 Open access Journal Article DOI:10.1177/0278364911410459

Learning the semantics of object-action relations by observation — Source link

Eren Erdal Aksoy, Alexey Abramov, Johannes Dörr, KeJun Ning ...+2 more authors

Institutions: University of Göttingen, Spanish National Research Council

Published on: 01 Sep 2011 - The International Journal of Robotics Research (SAGE Publications)

Topics: Representation (mathematics), Spatial relation, Set (psychology), Robotic arm and Object (computer science)

Related papers:

 Detection of Manipulation Action Consequences (MAC)

 Visual object-action recognition: Inferring object affordances from human demonstration

 Categorizing object-action relations from semantic scene graphs

 A Simple Ontology of Manipulation Actions Based on Hand-Object Relations

 Learning Functional Object-Categories from a Relational Spatio-Temporal Representation

Share this paper:

View more about this paper here: https://typeset.io/papers/learning-the-semantics-of-object-action-relations-by-
4wnot6hycg

https://typeset.io/
https://www.doi.org/10.1177/0278364911410459
https://typeset.io/papers/learning-the-semantics-of-object-action-relations-by-4wnot6hycg
https://typeset.io/authors/eren-erdal-aksoy-41ui82y8sc
https://typeset.io/authors/alexey-abramov-no6hm9mqtj
https://typeset.io/authors/johannes-dorr-2cr3ujolhv
https://typeset.io/authors/kejun-ning-x5lmtgsh1p
https://typeset.io/institutions/university-of-gottingen-1tax7gfk
https://typeset.io/institutions/spanish-national-research-council-27f2hp8j
https://typeset.io/journals/the-international-journal-of-robotics-research-3rqyvl4i
https://typeset.io/topics/representation-mathematics-17ztg7v0
https://typeset.io/topics/spatial-relation-jpnepq7e
https://typeset.io/topics/set-psychology-25y49cfn
https://typeset.io/topics/robotic-arm-q9269c9n
https://typeset.io/topics/object-computer-science-16wjd3bx
https://typeset.io/papers/detection-of-manipulation-action-consequences-mac-3crytsxm0w
https://typeset.io/papers/visual-object-action-recognition-inferring-object-22udbai2ni
https://typeset.io/papers/categorizing-object-action-relations-from-semantic-scene-4ym9sics6q
https://typeset.io/papers/a-simple-ontology-of-manipulation-actions-based-on-hand-1md6p2sbmi
https://typeset.io/papers/learning-functional-object-categories-from-a-relational-1xaot9mtfb
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/learning-the-semantics-of-object-action-relations-by-4wnot6hycg
https://twitter.com/intent/tweet?text=Learning%20the%20semantics%20of%20object-action%20relations%20by%20observation&url=https://typeset.io/papers/learning-the-semantics-of-object-action-relations-by-4wnot6hycg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/learning-the-semantics-of-object-action-relations-by-4wnot6hycg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/learning-the-semantics-of-object-action-relations-by-4wnot6hycg
https://typeset.io/papers/learning-the-semantics-of-object-action-relations-by-4wnot6hycg

Learning the semantics of object-action relations by observation

Eren Erdal Aksoy1, Alexey Abramov1, Johannes Dörr1, Kejun Ning1,
Babette Dellen1,2 and Florentin Wörgötter1

1Bernstein Center for Computational Neuroscience, University of Göttingen,
III. Physikalisches Institut, Friedrich-Hund Platz 1,

37077 Göttingen, Germany
Emails: eaksoye,abramov,jdoerr,worgott@physik3.gwdg.de

2Institut de Robòtica i Informàtica Industrial (CSIC-UPC),
Llorens i Artigas 4-6, 08028 Barcelona, Spain

Email: bdellen@iri.upc.edu

Abstract

Recognizing manipulations performed by a human
and the transfer and execution of this by a robot
is a difficult problem. We address this in the cur-
rent study by introducing a novel representation of
the relations between objects at decisive time points
during a manipulation. Thereby, we encode the es-
sential changes in a visual scenery in a condensed way
such that a robot can recognize and learn a manipula-
tion without prior object knowledge. To achieve this
we continuously track image segments in the video
and construct a dynamic graph sequence. Topologi-
cal transitions of those graphs occur whenever a spa-
tial relation between some segments has changed in
a discontinuous way and these moments are stored in
a transition matrix called the semantic event chain
(SEC). We demonstrate that these time points are
highly descriptive for distinguishing different manip-
ulations. Employing simple sub-string search algo-
rithms, semantic event chains can be compared and
type-similar manipulations can be recognized with
high confidence. As the approach is generic, statisti-
cal learning can be used to find the archetypal SEC
of a given manipulation class. The performance of
the algorithm is demonstrated on a set of real videos

showing hands manipulating various objects and per-
forming different actions. In experiments with a
robotic arm, we show that the SEC can be learned
by observing human manipulations, transferred to a
new scenario, and then reproduced by the machine.

Keywords: Semantic scene graphs, unsupervised
learning, action recognition, object categorization,
affordances, Object-Action Complexes (OACs)

1 Introduction

It is long known that raw observation and naive copy-
ing are insufficient to execute an action by a robot.
Execution requires capturing the action’s essence and
often this problem is discussed in conjunction with
imitation learning (Breazeal and Scassellati, 2002).

Humans are – without problems – able to capture
“the essence” and recognize the consequences of their
own actions as well as those performed by others.
While, the mirror-neuron system is suspected to be
involved in this feat (Rizzolatti and Craighero, 2004),
it is until now completely unknown how newborns
gradually learn to recognize and imitate and thereby
develop advanced motor skills aiding their cognitive
development.

1

Part of the problem lies in the fact that usually
there are many ways to perform a certain manipu-
lation. Movement trajectories may be different and
even the order of how to perform it may change to
some degree. On the other hand, certain moments
during a manipulation will be similar or even iden-
tical. For example, during a manual assembly pro-
cess certain object combinations must occur without
which mounting would render nonsense.
This points to the fact that at certain pivotal

time-points one needs to comprehend specifically the
momentarily existing relation between manipulator
(hand) and manipulated object as well as the result-
ing relations (and their changes) between objects and
object parts.
This defines the requirements for a potentially use-

ful manipulation representation for artificial agents:
It needs to be (1) based on sensory signals and (2)
learn-able by observation. At the same time it should
encode the (3) relations between objects in an in-
variant way, which it should do only on certain de-
cisive (4) moments during the manipulation. Fur-
thermore, preferably it should also be (5) human-
comprehensible and (6) compatible with model-based
knowledge. Aspects (1) and (2) will assure ground-
ing as the process is bootstrapped in a generic way.
Aspect (3) would lead to the required categoriza-
tion property (invariance against irrelevant object-
specifics) and aspect (4) to a dramatic data compres-
sion as only a few moments need to be stored. The
last two aspects (5,6) would allow human access –
very practically – for debugging and improving the
algorithm(s) but also for being able to better under-
stand and possibly interact with the artificial system
and for entering model based knowledge.
To arrive at such a representation is a very diffi-

cult problem and commonly one uses models of ob-
jects (and hands) and trajectories to encode a ma-
nipulation (see next section for literature discussion).
These approaches, however, can easily lack ground-
ing because models are almost always given by the
designer and not learned by the agent itself. Further-
more, it is so far unknown how to solve the variabil-
ity problem of manipulations in a model-based way.
Or, more plainly: What is the correct model (model-
class) for bringing objects and actions together in all

those vastly differing manipulations?

In this study it is our goal to introduce the so-
called “Semantic Event Chain” (SEC) as a novel,
generic encoding scheme for manipulations, which, to
a large degree, fulfills the above introduced require-
ments (grounded, learnable, invariant, compressed,
and human-comprehensible). We will show that these
SECs can be used to allow an agent by observation to
learn distinguishing between different manipulations
and to classify parts of the observed scene. Further-
more, we will demonstrate that an agent can decide
by self-observation whether or not a manipulation se-
quence was correct. Thus, our algorithms give the
machine a basic tool by which it can assess the con-
sequence of a manipulation step directly linking the
symbolic planning domain to the signal domain (im-
age) addressing the difficult cause-effect problem of
how to observe and verify self-induced changes.

To show this we will use at the sensor front-end
computer vision methods for image segmentation and
tracking. On the motor side we will employ meth-
ods for dynamic trajectory generation and control.
Both aspects are not in the core of this paper, which
focuses – as discussed above – on the semantics of
manipulations, their representation, and learning.

Parts of this study have been published at a con-
ference (Aksoy et al., 2010).

2 Related Work

To date, there exists no common framework for ma-
nipulation recognition. Different approaches have
been presented for vision-based recognition of ma-
nipulations (which is the focus of the work presented
in this paper), vision-based recognition of human-
motion patterns, and non-visual recognition of other
types of activities (Modayil et al., 2008; Liao et al.,
2005; Hongeng, 2004). The latter will not be dis-
cussed any further, because our work focuses on vi-
sion. In the following we give short summaries of pre-
vious achievements obtained in these areas. We also
review previous work on vision-based object recogni-
tion, since there exist relations to our work.

2

2.1 Recognition of manipulations

The visual analysis of manipulations, e.g., a hand
manipulating an object, represents an important
subproblem in vision-based manipulation recognition
and is relevant for many vision-based applications
such as learning from demonstration, work-flow opti-
mization, and automatic surveillance. However, ma-
nipulations are far less understood than for example
human motion patterns and only a few solutions have
been proposed so far (Vicente et al., 2007; Sridhar
et al., 2008; Kjellstrom et al., 2008).

Sridhar et al. (2008) analyzed manipulations in
the context of a breakfast scenario, where a hand
is manipulating several objects (cups, knifes, bread)
in a certain order. The whole image sequence is
represented by an activity graph which holds spa-
tiotemporal object interactions. By using statistical
generalization, event classes are extracted from the
activity graphs. Here, each event class encodes a
similar pattern of spatiotemporal relations between
corresponding objects, and object categories can be
learned by calculating the similarity between object
roles at each event class. They demonstrated that
objects can be categorized by considering their com-
mon roles in manipulations. However, large activity
graphs and the difficulty of finding exact graph iso-
morphisms make this framework expensive and sen-
sitive to noise. Furthermore, object knowledge was
provided beforehand. This way the vision problem
was (artificially) separated from the manipulation-
recognition problem.

Kjellstrom et al. (2008) segmented hand and ob-
jects from the video and then defined hand/object
features (shape based) and manipulation features,
providing a sequence of interrelated manipulations
and object features. Semantic manipulation-object
dependencies, e.g. drink/glass, are then extracted us-
ing conditional random fields (CRFs) and connected
hierarchical CRFs. Hand/manipulator and the ma-
nipulated object together define the manipulation,
and for this reason the recognition process simulta-
neously involves both hand/manipulator and objects
(Vicente et al., 2007; Kjellstrom et al., 2008). In Vi-
cente et al. (2007), manipulations are represented as
sequences of motion primitives. Here, five different

manipulations of different levels of complexity were
investigated. The process is modeled using a combi-
nation of discriminative support vector machines and
generative Hidden Markov Models (HMMs). HMMs
have also been used by Ogawara et al. (2002) to ex-
tract primitive of manipulations by learning several
HMMs and then to cluster these HMMs such that
each cluster represents one primitive. Raamana et al.
(2007) recognized simple object manipulations such
as pointing, rotating and grasping in a table-top sce-
nario using HMMs and selected the best features for
recognition automatically. These works demonstrate
that HMMs are a useful tool if the manipulation
primitives are hidden in the sensory feature set pro-
vided to solve the recognition tasks. Usually this the
case if low-level features are used instead of higher-
level “object” like entities. However, in our case, ma-
nipulations are represented by chained relations be-
tween image segments (see Section 3), which directly
represent manipulation primitives, and as such they
can be compared, grouped, and superimposed with-
out having to assume a hidden model. This holds
at least for the manipulation examples considered in
this paper.

2.2 Recognition of human motion pat-
terns

Recognition of human motion has received much at-
tention in recent years and many contributions ex-
ist, but are often unrelated to manipulation recog-
nition (Laptev and Perez, 2007; Niebles et al., 2008;
Dee et al., 2009; Hakeem and Shah, 2005; Calinon
and Billard, 2004, 2005, 2007; Maurer et al., 2005;
Gilbert et al., 2009). Much work has been done by
the group of Aude Billard (Calinon and Billard, 2004,
2005, 2007; Maurer et al., 2005) addressing the aspect
of gesture recognition. Naturally a strong focus lies
here on finding a way to describe complete trajec-
tories and different methods (including PCA, ICA,
HMM and Hopfield nets) have been used in differ-
ent combinations to address this problem and also to
deal with the question of sequence learning (Maurer
et al., 2005). In Laptev and Perez (2007) spatiotem-
poral volumes of optical flow are used to classify hu-
man motion patterns. In Niebles et al. (2008) human

3

actions are learned in an unsupervised way by us-
ing spatiotemporal words that represent space-time
interest points. Dee et al. (2009) segment images
into regions of similar motion structure and learn
pair wise spatial relations between motion regions,
roughly corresponding to semantic relations such as
“above”, “below”, and “overlapping”. By combining
these learned spatial relations with the segmentations
learned from data, a compact representation can be
provided for each video, representing a motion-based
model of the scene, which allows classifying videos
containing different kinds of motion patterns, e.g. in-
door scenarios with moving people, roads, squares or
plazas. In Hakeem and Shah (2005) events involving
multiple agents are detected and learned considering
temporally correlated sub-events. In Gilbert et al.
(2009) simple 2D corners are grouped in both spatial
and temporal domains using a hierarchical process
at each stage and the most descriptive features are
then learned by using data mining. This way, fast
and accurate action recognition in video sequences is
achieved in real time.

2.3 Object recognition and the role of
context

Despite progress that has been made in the past
decades, the recognition of objects using visual cues
remains a highly challenging task and still there
exists no vision system reaching human object-
recognition capabilities. This is mainly due to the
fact that objects take vastly different appearances
in images because of the following factors: (i) rel-
ative pose of an object to a camera, (ii) light-
ing variations, and (iii) variance in appearance of
objects (size, color, shape) belonging to the same
class. Object recognition systems extract certain
object-relevant characteristics in images and match
them against stored object representation or mod-
els, which can be either 2D or 3D. We roughly dis-
tinguish between geometry-based, appearance-based,
and feature-based approaches. Geometry-based ap-
proaches use a geometric description of a 3D ob-
ject and match its projected shape against the im-
age of the object (Mundy, 2006; Mundy and Zisser-
man, 1992). This approach however requires that

the object can be initially segmented from the im-
age. Appearance-based algorithms use global im-
age patterns to perform recognition (Turk and Pent-
land, 1991; Murase and Nayar, 1995; Belhumeur and
Kriegmant, 1996). For example, Turk and Pentland
(1991) projected face images onto a face-specific fea-
ture space and used the distance of a projected image
to the eigenvectors of the face space for classification.

These methods show invariance to changes in view-
point and lighting conditions, but are sensitive to oc-
clusions. Feature-based algorithms find local interest
points in the image, e.g., SIFT (Lowe, 2004), that
have invariant properties with respect to pose, light-
ing, and affine transformations (Fergus et al., 2003;
Nister and Stewenius, 2006; Sivic and Zisserman,
2003). Local feature histograms are then matched
against model representations for object recognition.
Feature-based methods depend on the quality and
number of features that can be extracted from the
image, and thus perform best for images containing
rich texture.

In the above described “classical” approaches to
object recognition, the context in which the object is
embedded is usually considered to be of minor impor-
tance or even harmful to the recognition procedure,
and the problem is sometimes eased by segmenting
the object from the background prior to recognition.
On the other hand, evidence from visual cognition
as well as computer vision suggests that objects ap-
pearing in a consistent or familiar background can
be more accurately detected and recognized than ob-
jects appearing in an inconsistent scenario (Torralba,
2003; Helbig et al., 2010; Hoiem et al., 2008; Oliva
and Torralba, 2009). Recently it has been shown in
psychophysical experiments that also action context
can facilitate human object recognition (Helbig et al.,
2010).

This observation is to some extent in agreement
with our study, where objects, which can be asso-
ciated with certain manipulations, are obtained in-
directly by classifying and recognizing actions and
without using prior object knowledge.

4

Figure 1: Processing example and semantic event chain representation. (a) Frames from a movie recorded
during a manipulation. All frames (b) are segmented (c) by superparamagnetic clustering in a spin-lattice
model (Dellen et al., 2009), which also allows for consistent marker-less tracking (e) of the individual seg-
ments. From the image segments, graphs are constructed (d) where graph nodes represent the segments’
centers and graph edges encode whether or not two segments touch each other. Then we encode a manipu-
lation by storing only main graphs between which a topological change has taken place (f). Such a change
happens whenever an edge or a node has been newly formed or has been deleted. This type of representa-
tion is then given by the semantic event chain (g), which is a sequence-table, where each entry encodes the
spatial relations between each segment pair ρi,j counting graph edges (2 means that segments touch (denoted
by red edges), 1 means that they overlap (denoted by blue edges), 0 means that there is no edge between two
segments, and absence of a previously existing segment yields 9).

5

Figure 2: Block diagram of the algorithm

3 METHODS

3.1 Overview of the Algorithm

Before discussing details we provide an overview of
the different algorithmic steps (see Fig. 1 and 2).
Fig. 1 shows a processing example of a manipula-

tion resulting in its semantic event chain represen-
tation. We first extract all frames from the ma-
nipulation movie (Fig. 1 (a)). Frames (Fig. 1 (b))
are then segmented (Fig. 1 (c)) by superparamag-
netic clustering in a spin-lattice model (Dellen et al.,
2009; Abramov et al., 2010), which allows for consis-
tent marker-less tracking (Fig. 1 (e)) of the individ-
ual segments due to spin-linking across images using
optic-flow information. The scene is then represented
by undirected and un-weighted graphs (Fig. 1 (d)),
the nodes and edges of which represent segments and
their neighborhood relations, respectively. Graphs
can change by continuous distortions (lengthening or
shortening of edges) or, more importantly, through
discontinuous changes (nodes or edges can appear or
disappear). Such a discontinuous change represents
a natural breaking point: All graphs before are topo-
logically identical and so are those after the breaking
point. Hence, we can apply an exact graph-matching
method at each breaking point and extract the cor-
responding topological main graph. The sequence
of these main graphs (Fig. 1 (f)) thus represents all
structural changes in the scene. This type of rep-
resentation is then encoded by the semantic event
chain (Fig. 1 (g)), which is a sequence-table, where 0
means that there is no edge between two segments,
corresponding to two spatially separated segments, 1
means that one segment overlaps with the other com-

pletely, and 2 represents segments that touch each
other. A special case exists when segment has dis-
appeared, which will be denoted by 9. Note that the
complete image sequence, which has here roughly 100
frames, is represented by an event chain with a size of
only 7 × 8. The above described steps (1-4) are also
presented in Fig. 2, showing the block diagram of the
complete algorithm. The following steps (5-7) utilize
the SEC to compute similarity values between videos
showing manipulations (step 5), to perform action
classification (step 6A) and conjointly performed seg-
ment categorization (step 6B), and, finally, the learn-
ing of archetypal SECs (step 7). In the following, we
describe the different algorithmic steps in detail.

3.2 Recording, Preprocessing, Seg-
mentation & Tracking (Step 1)

Manipulation movies are recorded in indoor environ-
ments with limited context. All movies used in this
study can be found at http://www.nld.ds.mpg.de/

~eren/Movies.html (see Extension 1-2). Typical ex-
amples are shown in Fig. 4. We use a stereoscopic
camera setup using AVT Marlin F080C CCD firewire
cameras and lenses with variable focal length of 2.7-
13.5mm (see Fig. 3(a)). Distance to the manipula-
tion scene is about 1.0− 1.5 m. Images are rectified
(see Fig. 3(b-c)), stereo and optic-flow information is
extracted by different standard algorithms (Pauwels
and Van Hulle, 2008; Sabatini et al., 2007). An exam-
ple of a resulting sparse phase-based disparity map is
shown in Fig. 3(d). For step 1 (Fig. 2), we use an
image-segmentation method, developed by us earlier,
in which segments are obtained and tracked by a 3D

6

Figure 3: Schematic of recording and visual prepro-
cessing. (a) Stereo camera setup. (b,c) Original ex-
ample frames from the left and right image sequences.
(d) Sparse phase-based disparity map. (e,f) Extracted
segments for the left and right image.

linking process (see Fig. 3(e-f)). The method has
been been described in detail elsewhere (Shylo et al.,
2009; Dellen et al., 2009; Dellen and Wörgötter, 2009;
Abramov et al., 2010). It is mainly implemented on
GPUs and operates close-to real-time at about 23 fps
at a resolution of 256 × 320 pixels. For reasons of
brevity details will be omitted here. The main re-
sult from these steps is that we receive consistently
tracked image segments, the fate of which can be used
to encode a manipulation as described next.

3.3 Relational Scene Graphs (Step 2)

Following the extraction of segments (Step 1), we an-
alyze the spatial relations between each segment pair.
We denote spatial relations by ρi,j in which i and j
are the segment numbers. Note that spatial relations
are symmetric, i.e. ρi,j = ρj,i.

As mentioned in the algorithmic overview above,
we define four relations between segments: Touch-
ing=2, Overlapping=1, Non-touching=0, and Ab-
sent=9, which refers to an image segment that is
not observed in the scene. We redefined standard
concepts used in the field of topology (e.g. hole,
neighbor, etc.) on purpose to make the terminol-
ogy more appropriate in the context of manipula-
tion recognition. Terms such as overlapping and
touching are directly referring to primitive manipu-
lations. Whenever necessary, we use 3D-information
from our stereo setup to disambiguate perspective ef-
fects, which would lead to false relations when us-
ing only 2D. Note 3D information could also be used
to define additional relations (like “inside”, “above”,
etc.). This is currently not done as classification re-
sults are already highly satisfactory even without.

Furthermore we note that ultimately additional in-
formation must be stored if one wants to use such
graphs (or event chains) also for execution of a ma-
nipulation. At least one needs to additionally define
the required movement trajectories as well as the de-
sired poses of the objects which are brought into con-
tact with each other as the relation of just ”touching”
will not be sufficient for - for example - a mounting
procedure. The current paper does not address these
issues, though, as we are here focusing on manipula-
tion recognition but not on execution.

Given that image segments often have strangely-
shaped as well as noisy borders, the correct assign-
ment of these relations is non-trivial and we had to
design a fast and efficient special algorithm for this.
As this is not in the core of this study, we will provide
details only in Appendix 1. This algorithm gives us
the required relations.

Once the image sequence has been segmented
and spatial relations have been extracted, we repre-
sent the scene by undirected and unweighted labeled
graphs. The graph nodes are the segment labels and

7

Figure 4: Four different real action types. (a),(d),(g),(j) Original images, (b),(e),(h),(k) corresponding
image segments, and (c),(f),(i),(l) scene graphs from the following manipulations: Moving Object, Making
Sandwich, Filling Liquid, and Opening Book. In blue and red are indicated Overlapping and Touching
relations.

8

plotted at the center of each segment. Nodes are then
connected by an edge if segment relations are either
Touching or Overlapping.
Fig. 4 shows original frames and corresponding seg-

ments and their scene graphs from four different real
action types: Moving Object, Making Sandwich, Fill-
ing Liquid, and Opening Book. In the Moving Object
action a hand is putting an orange on a plate while
moving the plate together with the orange (Fig. 4 (a-
c)). The Making Sandwich action represents a sce-
nario in which two hands are putting pieces of bread,
salami, and cheese on top of each other (Fig. 4 (d-f)).
In the Filling Liquid action a cup is being filled with
liquid from another cup (Fig. 4 (g-i)). The Opening
Book action describes a scenario in which a hand is
opening a book (Fig. 4 (j-l)).

3.4 Main Graphs (Step 3)

To understand the remainder of the algorithm better,
we will now use simple, artificial scenes to describe
steps 3 to 6 of Fig. 2. Fig. 5 (a-b) depicts original
frames and their corresponding segments of an artifi-
cial Moving Object action (sample action 1) in which
a black round object is moving from a yellow vessel
into a red vessel. We will come back to real scenes
later.
Scene graphs, such as those depicted in Fig. 4, rep-

resent spatial relations between nodes. Unless spa-
tial relations change, the scene graphs remain topo-
logically the same. The only changes in the graph
structures are the node positions or the edge lengths
depending on the object trajectory and speed. Con-
sequently, any change in the spatial relation between
nodes corresponds to a change in the main struc-
ture of the scene graphs. Therefore, those changes in
the graphs can be employed to define manipulation
primitives. Considering this fact, we apply an exact
graph-matching method in order to extract the main
graphs by computing the eigenvalues and eigenvec-
tors of the adjacency matrices of the graphs (Sumsi,
2008). A change in the eigenvalues or eigenvectors
then corresponds to a structural change of the graph.
The whole image sequence of the artificial Moving
Object action has 92 frames, however, after extracting
the main graphs, only 5 frames are left, each defining

Figure 5: Simple example of the Moving Object action
(sample action 1). (a) Original images. (b) Corre-
sponding image segments. (c) Semantic scene graphs.
In blue and red are indicated Overlapping and Touch-
ing relations. (d) Original semantic event chain (ξ1o).
(e) Derivative of the semantic event chain (ξ1d). (f)
Compressed semantic event chain (ξ1c).

a single manipulation primitive (Fig. 5 (c)).

3.5 Event Chains (Step 4)

All existing spatial relations in the main graphs are
saved in the form of a table where the rows represent
spatial relations between each pair of nodes. The
maximum total number of spatial relations, hence the
maximum total number of rows, is defined as

ρtotal = n(n− 1)/2 , (1)

where n is the total number of segments. For the
sample Moving Object action we have n = 4 (yellow

9

and red vessels, a black moving object, and a green
background) and therefore ρtotal = 6. Those relations
are ρ2,1, ρ3,1, ρ4,1, ρ3,2, ρ4,2, and ρ4,3.
Since any change in the spatial relations represents

an event that defines an action, we refer to this ta-
ble as original semantic event chain (ξo). Fig. 5 (d)
shows it for the artificial action explained above.
It is now important to understand that these tables

contain spatial-relational information (rows) as well
as temporal information in the form of a sequence
of time-points (sequence of columns) when a certain
change has happened. To compare two manipula-
tions with each other, spatial and temporal aspects
are being analyzed in two steps by different sub-string
search algorithms.
To achieve this, we first perform two data-

compression steps. In general, it suffices to only
encode the transitions from one state (one column)
in the original chain (ξo) to another (next column).
Therefore, we can perform a derivative-like operation
on ξo and represent the result by ξd to simplify the
chains.
For this we scan each row of ξo from left to right

and substitute “changes” by combining their numer-
ical values into a two-digit number. For example a
change from Overlapping to Touching, hence from 1
to 2, will be now encoded by 12. When nothing has
changed a double digit, like 11, occurs. Rows where
nothing ever happens (e.g. row ρ3,2 in Fig. 5 (d))
are immediately removed. The resulting represen-
tation (ξd) is, thus, a mild, loss-less compression of
the original one. It is required for temporal analy-
sis. Fig. 5 (e) shows ξ1d for the sample Moving Object
action.
Then, in a second compression step all double-

digits (00, 11, 22, and 99) are removed leading to ξc.
This representation has lost all temporal information
and will be used for the spatial-relational analysis. ξ1c
of the artificial action is given in Fig. 5 (f).

3.6 Similarity Measure (Step 5)

Next we will discuss how to calculate the similarity of
two actions. Essential this comes down to sub-string
search algorithms in the spatial as well as the tempo-
ral domain. In the spatial domain we are searching

for the correspondences between rows of two com-
pressed event chains to reduce the combinatorics (see
Section 3.6.1). Then in the temporal domain the or-
der of columns is examined to get the final recognition
result (see Section 3.6.2).

To explain this we created one more sample for
the artificial Moving Object action. Fig. 6 depicts
the main graphs with respective image segments of
sample action 2 in which a red rectangular object is
moving from a blue vessel into a yellow vessel fol-
lowing a different trajectory with different speed as
compared to the first sample. Moreover, the scene
contains two more objects which are either station-
ary (red round object) or moving randomly (black
round object). Following the same procedure, the
event chain ξ2o and their compressed versions (ξ2d and
ξ2c) for the second sample are calculated and given

Figure 6: Different version of the simple Moving Ob-
ject action (sample action 2). (a) Original images.
(b) Respective image segments. (c) Semantic scene
graphs. In blue and red are indicated Overlapping
and Touching relations. (d) Original semantic event
chain (ξ2o). (e) Derivative of the semantic event chain
(ξ2d). (f) Compressed semantic event chain (ξ2c).

10

in Fig. 6 (d-f). Note that even though the second
sample contains more objects, the dimensions of the
different chains are accidentally the same. This is
of no importance as the sub-string search described
next does not rely on dimensions, allowing to com-
pare arbitrarily long action sequences.

3.6.1 Spatial Similarity Analysis

The goal of this subsection is to provide the first of
two subsequent analysis steps, required to obtain a
final measure of similarity between two event chains.
The first step is based on a spatial analysis compar-
ing the rows of compressed event chains (ξ1c and ξ2c)
accounting for a possibly shuffling of rows in differ-
ent versions of the same manipulations. This way
the number of possible relations is reduced before we
can finally, in the second step, find the true similarity
measures.
Let ξ1c and ξ2c be the sets of rows for the two ma-

nipulations, written as a matrix (e.g. Fig. 5 (f) and
6 (f)):

ξ1c =

r11,1 r11,2 · · · · · · r1
1,γ1

1

r12,1 r12,2 · · · r1
2,γ1

2

...
...

. . .
...

r1m,1 r1m,2 · · · · · · · · · r1m,γ1
m

,

and

ξ2c =

r21,1 r21,2 · · · · · · · · · · · · r2
1,γ2

1

r22,1 r22,2 · · · · · · r2
2,γ2

2

...
...

. . .
...

r2k,1 r2k,2 · · · · · · · · · r2
k,γ2

k

,

where ri,j represents a relational change between a
segment pair

ri,j ∈ {01, 02, 09, 10, 12, 19, 20, 21, 29, 90, 91, 92} .

The lengths of the rows are usually different and
given by indices γ.

Now each row of ξ1c is compared with each row of
ξ2c in order to find the highest similarity. The com-
parison process searches for equal entries of one row
against the other using a standard sub-string search,
briefly described next. Assume that we compare the
ath row of ξ1c with the bth row of ξ2c . If row a is shorter
or of equal length than row b (γ1a ≤ γ2b), the a

th row
of ξ1c is shifted γ2b −γ

1
a+1 times to the right. At each

shift its entries are compared with the one of the bth

row of ξ2c and we get as a result set Fa,b defined as:

Fa,b = {ft : t ∈ [1, γ2b − γ1a + 1]} ,

ft =
100

γ2b

γ1

a
∑

i=1

δi , (2)

where γ2b is the normalization factor and i is the
row index and with

δi =

{

1 if r1a,i = r2b,i+t−1

0 else
, (3)

where the set Fa,b represents all possible similar-
ities for every shift t, given by ft, which holds the
normalized percentage of the similarity calculated be-
tween the shifted rows.
As usual for sub-string searches, we are only inter-

ested in the maximum similarity of every comparison
hence we define:

Ma,b = max(Fa,b),

For the case γ1a > γ2b , a symmetrical procedure is
performed by interchanging all indices of Eqs. (2),
(3) above.
Spatial similarity values between all rows of ξ1c and

ξ2c are stored in a matrix ζspatial with size m× k as

ζspatial =

M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k

...
...

. . .
...

Mm,1 Mm,2 · · · Mm,k

,

11

The final similarity value (ψspatial) between the
rows of two compressed event chains is calculated
by taking the mean value of the highest similarities
across rows of ζspatial as

ψspatial =
1

m

m
∑

i=1

max
j

(Mi,j), j ∈ [1, · · · , k] . (4)

The complete similarity matrix (ζspatial) between
the artificial Moving Object samples (ξ1c and ξ2c) is
given in Table 1. Visual inspection of ξ1c (Fig. 5 (f))
and ξ2c (Fig. 6 (f)) immediately confirms these simi-
larity values. We find 100% similarity (ψspatial) be-
tween both artificial “manipulations”. One can see
that Eq. 4 can still lead to multiple assignments of
permutations with the same maximal similarity. This
will be resolved by the temporal similarity measure-
ment stage following below. In more realistic scenes
100% is, of course, often not reached (see Fig. 7 be-
low) and one needs to define a threshold above which
one would consider two similarity values as equal.
However, we also observe that there are several

100% matches between rows in these examples. As
a consequence, for the second example two permu-
tations ξ2,1c and ξ2,2c exist with equal row-matching
probability as given in Table 2. Note, for real scenes
after thresholding, even more permutations might ex-
ist. Hence, the analysis in not yet complete.

3.6.2 Temporal Similarity Analysis

In the now following second step we can use the time
sequence, encoded in the order of events in the event

❍
❍
❍

❍❍
ξ1c

ξ2c ρ2,1 ρ3,1 ρ6,1 ρ3,2 ρ3,6

ρ2,1 100% 25% 100% 50% 50%

ρ3,1 100% 25% 100% 50% 50%

ρ4,1 25% 100% 25% 50% 50%

ρ4,2 50% 50% 50% 0% 100%

ρ4,3 50% 50% 50% 100% 0%

Table 1: Similarity table (ζspatial). Similarity values
between the rows of ξ1c and ξ2c the artificial Moving
Object samples.

ξ1c ξ21c
ρ2,1 ⇐ 100% ⇒ ρ2,1
ρ3,1 ⇐ 100% ⇒ ρ6,1
ρ4,1 ⇐ 100% ⇒ ρ3,1
ρ4,2 ⇐ 100% ⇒ ρ3,6
ρ4,3 ⇐ 100% ⇒ ρ3,2

ξ21d

11 11 12 21
12 21 11 11
02 21 12 20
12 20 00 00
00 00 02 21

(a) Permutation ξ21d

ξ1c ξ22c
ρ2,1 ⇐ 100% ⇒ ρ6,1
ρ3,1 ⇐ 100% ⇒ ρ2,1
ρ4,1 ⇐ 100% ⇒ ρ3,1
ρ4,2 ⇐ 100% ⇒ ρ3,6
ρ4,3 ⇐ 100% ⇒ ρ3,2

ξ22d

12 21 11 11
11 11 12 21
02 21 12 20
12 20 00 00
00 00 02 21

(b) Permutation ξ22d

Table 2: Permutations ξ2,pd .

chains to find the best matching permutation and
thereby arrive at the final result. To this end will
now use temporal information, hence a derivative like
term ξd, to find the truly matching permutation.

Thus, we will compare both permutations ξ
2p

d , p =
1, 2 of the second event chain, shown in Tab. 2 (a-
b), with the first one ξ1d. In such cases where ξ1d
has more rows than ξ

2p

d , hence rows which have no

correspondences, ξ
2p

d will be filled with dummy rows
that have no possible similarities.

Let ξ1d and ξ
2p

d be matrices with the sizes of q × u
and q × v and assume that u ≤ v as

ξ1d =

e11,1 e11,2 · · · e11,u
e12,1 e12,2 · · · e12,u
...

...
. . .

...
e1q,1 e1q,2 · · · e1q,u

,

and

12

ξ
2p

d =

e
2p

1,1 e
2p

1,2 · · · e
2p

1,v

e
2p

2,1 e
2p

2,2 · · · e
2p

2,v

...
...

. . .
...

e
2p

q,1 e
2p

q,2 · · · e
2p
q,v

,

where ξ
2p

d is a permutation of ξ2d and e1i,j and e
2p

i,j

represent the possible relational changes between any
segment pair

ei,j ∈ {00, 01, 02, 09, 10, 11, 12, 19, 20, 21,

22, 29, 90, 91, 92, 99} . (5)

Following this, the columns of ξ1d and ξ
2p

d are com-
pared. Note that by contrast to rows, columns of
event chains will never be shuffled unless they rep-
resent different types of actions. Therefore, the col-
umn orders of type-similar event chains have to be
the same. Assume that we compare the ath and bth

columns of ξ1d and ξ
2p

d , respectively. The procedure
is very similar to the one for the spatial analysis.
Since the lengths of the columns q are the same,

no shift-operator is required and columns are directly
compared index-wise as

θa,b =
100

q

q
∑

j=1

δj , (6)

where j is the column index and with

δj =

{

1 if e1j,a = e
2p

j,b

0 else
, (7)

where θa,b holds the normalized percentage of the
similarity value calculated between columns.
Similarity values between all columns of ξ1d and ξ

2p

d

are stored in a matrix ζptemporal with the size of u× v
as

ζptemporal =

θ1,1 θ1,2 · · · θ1,v
θ2,1 θ2,2 · · · θ2,v
...

...
. . .

...
θu,1 θu,2 · · · θu,v

,

The final similarity value ψp
temporal between the

columns of two event chains is then calculated by tak-
ing the mean value of the highest similarities across
rows as

ψp
temporal =

1

u

u
∑

i=1

max
j

(θi,j), j ∈ [1, · · · , v] (8)

For each permutation ξ
2p

d given in Tab. 2 a
ψp
temporal value is calculated by using Eqs. (6), (7),

and (8), yielding ψ1
temporal = 60% and ψ2

temporal =
100%. Note that we use Longest Common Subse-
quence (LCS) in order to guarantee that the order of
columns is the same. LCS is generally used to find
the longest sequence observed in both input sample
sequences. Columns of event chains are used as se-
quences for this task. Since the number of sequences
is constant, the problem is solvable in polynomial
time by dynamic programming. Consequently, our
two sample actions have 100% similarity and permu-
tation ξ22d represents the final row correspondences
to the first action. The best matching permutation
is further used for categorizing objects as described
in sub-section 3.8.

As mentioned above, in real scenes often 100%
are not reached and we will call two actions “type-
similar” as soon as their final similarity value exceeds
a certain threshold. We would also like to point out
that the final spatial and temporal similarity values
are not necessarily identical. Action classification
should use the final temporal similarity values as this
measure is more restrictive and therefore provides the
final means for classification.

The question arises, why we use a 2-step process
as the second step might suffice on its own. In this
case however all possible permutations would have to
be analyzed, which can be very costly (up to O(n!))
for big event chains. Particularly, decisive “no-match
decisions”, which occur for all non-type similar ma-
nipulations – hence, quite often – could only be ob-
tained at the end of the complete permutation analy-
sis. Whereas, when performing spatial analysis which
has the time complexity of O(n3), this result is ob-
tained faster. This leads to a substantial algorithmic

13

speed-up and makes the choice of a two-step algo-
rithm useful.

3.7 Action Classification (Step 6A)

We applied our framework to four different real ac-
tion types: Moving Object, Making Sandwich, Filling
Liquid, and Opening Book (see Fig. 4). For each of
these actions, we recorded four movies with highly
different trajectories, speeds, hand positions, and ob-
ject shapes. These examples were introduced to show
that really different instantiations of a manipulation
will still be recognized as belonging to the same type.

Event chains of each real test data are compared
with each other by using the similarity measurement
algorithm explained in Step 5. The resulting final
maximal similarity values are given in Fig. 7. Each
test data has high similarity with the other versions
of its type-similar action (see close to diagonal) and
almost always, the similarity between type-similar ac-
tions is much bigger than the similarity between non-
type-similar actions. The minimum similarity value
for type-similar actions is measured as 62% between
the forth and second versions of Filling Liquid, but

Figure 7: Similarity values between event chains of
the real test data set.

the similarity between Filling Liquid and non-type-
similar actions is far less. Setting a threshold at 60%
would, across all examples, lead to zero false nega-
tives and to two false positives (opening book ver-
sion II and moving object version I), which would be
confused with other manipulations. This is interest-
ing as opening a book can indeed look very similar
to the moving of an object (picking up a book-cover
and moving it - say - up and towards you will indeed
look very similar from picking up an object and mov-
ing it up and towards you). The same is true for the
comparison of moving-object with making-sandwich.
In the making-sandwich action many subcomponents
exist where objects are being moved. Thus, in gen-
eral the manipulation analysis shown in Fig. 7 cor-
responds very well to our human understanding of
action (sub-)components!
Note, as soon as the complete table has been mea-

sured, it is also accessible to unsupervised classifica-
tion (X-means, (Dan Pelleg, 2000)). We have done
this by using correlation values between columns as
features and we receive four classes with no outliers.
Hence with clustering one gets completely correct
classification of all individual manipulations.

3.8 Segment Categorization (Step 6B)

The row correspondence, determined by finding the
best matching permutation, also implicitly encodes
the similarity of the graph nodes between the two
different examples.
We will explain this using again the two artificial

examples (Fig. 5 and Fig. 6). The row similarity val-
ues of the second permutation given in Table 2 (b)
represent the correspondences between manipulated
nodes in ξ1 and ξ2 (now we can drop all other indices
as descriptions will not suffer).
The question, which we would like to answer is:

which nodes represent segments that play the same
role in type-similar actions.

This can be achieved in a fully unsupervised way
by a simple counting procedure. We first analyze
which node number in ξ1 is repeating in conjunction
with which node number in ξ2 in Table 2. We start
with node number 1 in ξ1, which occurs in relations
ρ2,1, ρ3,1 and ρ4,1. Its corresponding best matching

14

Figure 8: Segment categorization results. In each action type, the manipulated segments can be classified and
grouped based on their action roles. Note, classification happens at the level of segments or segment groups.
A link to the object-domain (indicated by the dashed arrows) could be introduced by including explicit object
models, but this is not part of this study.

relations are given by:

ρ2,1 ⇐ 100% ⇒ ρ6,1
ρ3,1 ⇐ 100% ⇒ ρ2,1 ⇒ 1 ≈ 1 .
ρ4,1 ⇐ 100% ⇒ ρ3,1

While node 1 is repeating three times in ξ1 (left
side), the same node number 1 in ξ2 (right side) is also
repeating three times. However, node numbers 2, 3,
and 6 in ξ2 occur only once. Therefore, we conclude
that graph nodes 1 in both examples, ξ1 and ξ2, had
the same roles. In fact, both graph nodes represent
the green background in both actions.
We continue the node relation analysis with node

number 2 in ξ1, and obtain

ρ2,1 ⇐ 100% ⇒ ρ6,1 ⇒ 2 ≈ 6 .
ρ4,2 ⇐ 100% ⇒ ρ3,6

Node number 2 in ξ1 is repeating twice with node
number 6 in ξ2. Those graph nodes represent the yel-
low and blue vessels within which the moving objects
are initially placed and from which they then move
away.
For the case of node number 3 in ξ1 we obtain

ρ3,1 ⇐ 100% ⇒ ρ2,1 ⇒ 3 ≈ 2 .
ρ4,3 ⇐ 100% ⇒ ρ3,2

Node number 3 in ξ1 corresponds to node number
2 in ξ2 because both of them are repeating twice.
Those graph nodes define the destination vessels for
the moving objects.

The last node number 4 in ξ1 is obtained as

ρ4,1 ⇐ 100% ⇒ ρ3,1
ρ4,2 ⇐ 100% ⇒ ρ3,6 ⇒ 4 ≈ 3 .
ρ4,3 ⇐ 100% ⇒ ρ3,2

Node number 4 in ξ1 and node number 3 in ξ2 are
both repeating three times. In fact, both graph nodes
represent the moving objects, which are the round
black object in ξ1 and the rectangular red object in
ξ2.
In the case of having the same highest value more

than once, e.g. having two times 100% similarity val-
ues in the same row of the similarity matrix, segment
categorization might lead to ambiguous results, i.e.
one segment would correspond to two different seg-
ment in the other manipulation. This sort of con-
flicts can be solved by taking the second highest val-
ues in the similarity matrix and calculating the node-
similarity again. This way we always achieve unique
segment categorization results.

We applied this categorization algorithm to our
four different real manipulation scenes (Fig. 4). The
results showed that the manipulated segments in each

15

Figure 9: Sample frames from 10 different versions of a “Putting an object on a plate” action. In this action
type a hand is appearing in the scene, putting different kinds of objects (e.g. apple, orange, a piece of bread,
etc.) on a plate following different trajectories with different speeds, and then leaving the scene.

action type can be categorized according to their roles
in the actions. Fig. 8 illustrates the categorization
results, e.g. the Moving Object actions include three
different segment groups here named by their object-
names for simplicity (apples or oranges, plates, and
hands) each of which performed different roles. In
the Filling Liquid action the hands are grouped cor-
rectly despite having different poses. Note that for
the sake of simplicity the backgrounds are ignored in
Fig. 8 although they are also detected and grouped
correctly.

While we are here strictly at the level of segments it
is evident (albeit non-trivial!) that this unsupervised
categorization process could be coupled to object
models, thus, providing access to object categoriza-
tion, too. It is interesting to remark that in this case
any object-like entity will be classified strictly in the
context of the observed manipulation. Thus, steps
6A and 6B are tightly linked as depicted by the gray
box in Fig.2. For example a “cup-being-filled” would
be grouped with other objects-being-filled. The same
cup, when occurring in an action of “cup-used-as-
pedestal” (where the cup is first turned upside down
and then something is put on top), would be clas-
sified together with other objects-used-as-pedestals.
This relates to the cognitive concept of affordances
(Gibson, 1977) and will be discussed later in more
detail.

3.9 Learning (Step 7)

In the next step we will show that the SECs of dif-
ferent instantiations of type-similar manipulation can
be combined by statistical learning to render a model
SEC for this manipulation type. Also this is done in
an unsupervised way.

We know that rows of the event chain encode the
main relational changes between segments. To ar-
rive at a model, the learning procedure just needs
to search for all common relational changes observed
across repeated type-similar manipulations. A simple
averaging algorithm suffices for this.

We describe an on-line version of the learning,
but the same procedure could also be employed in
batch-mode. Learning is initiated by assigning small
weights ωr

i to all rows and ωc
i to all columns of the

first observed chain. When observing the next ma-
nipulation, we use Step 6A (action classification) to
find out if it is type-similar. If this is the case the
weights of each row and column are incremented by
a small amount ∆ωi if the row and column have a cor-
respondence in the new event chain. If the new chain
has additional, so far unobserved rows, the model is
extended by these rows, which start with the initial
small weight value. This is repeated as long as de-
sired but usually 10 instantiations suffice for a stable
model. After this, weights are thresholded, deleting
all rows and columns which are subthreshold and re-
turning the resulting model event chain for this ma-

16

Figure 10: (a) Similarity values between event chains
of “Putting an object on a plate” and “Taking an
object from a plate” actions. (b) The learned SEC
model for the action type “Putting an object on a
plate” with corresponding row (ωr

i) and column (ωc
i)

weight values. These weight vectors are just for illus-
tration since different weight values might be observed
for different action types due to degree of noise in the
event chains. (c) Same for “Taking an object from a
plate”.

nipulation type.
In addition to this, for each manipulation instance,

action-relevant segments (segment groups) are ex-
tracted and labeled according to their roles within
the observed action as explained in Step 6B (segment
categorization).
Note, online learning could suffer from bad first ex-

amples with which all next following manipulations
would be classified. There are obvious work-arounds,
for example cross-comparing the manipulations with
each other. Ultimately, batch-mode learning is more
useful. For this one would first record scenes from
many manipulations, then perform clustering of the
similarity matrix (e.g. Fig. 10) after which learning
can be done for each cluster in the same way as de-
scribed above.
We applied the learning framework in batch-mode

to two different manipulation types: “Putting an ob-
ject on a plate” and “Taking an object from a plate”
each of which has 10 different versions with strongly
different trajectories, speeds, hand positions, and ob-
jects (see Fig. 9 to get an impression of the level of
difference).
Unsupervised classification of the similarity matrix

(see Fig. 10) is used to classify those 20 versions.
Note, many times a high similarity values (around
50%) is observed between non-type-similar actions.
The reason is that except for the sequencing, which
is inverted for “putting” versus “taking”, primitives
of both action types necessarily look similar. Differ-
ences are big enough, though, such that unsupervised
classification will still lead to completely correct clas-
sification.
Next, a SEC model is learned for each manipula-

tion class by searching for the similar common rows
and columns observed in all 10 different versions as
explained above. Fig. 10 (b-c) shows the learned SEC
models for both action types with corresponding row
(ωr

i) and column (ωc
i) weight values. To prove the ac-

curacy of the learned SEC models we prepared 5 test
movies which all contain both action types – putting
and taking –, but performed in different temporal or-
der (or sometimes with two hands at the same time!).
Fig. 11 shows some sample frames from each of the
test movies.
Fig. 12 depicts the similarity results between two

17

Figure 11: Sample frames from 5 different mixed actions in which both manipulation types “Putting an object
on a plate” and “Taking an object from a plate” are performed in different orders. (a) A hand is first taking
a piece of bread from a plate and then putting it on a different plate. (b) Another piece of bread is moved
from one plate to another with a different trajectory. (c) A hand is replacing an orange. (d) A hand is first
putting an orange on a plate and then taking a piece of bread from another plate. (e) A hand is putting an
orange on a plate and in the mean time the other hand is simultaneously taking an apple from the second
plate.

learned models and all 25 movies, 20 of which are the
training data and the remaining 5 are unknown test
data. Similarity is measured as described in Step 5.
In red and blue are indicated the similarities for a
given movie with the “Putting an object on a plate”
and “Taking an object from a plate” models by leave-
one-out method, respectively. For the first 10 train-
ing data the learned model of “Putting an object on
a plate” has higher a similarity, whereas the model
of “Taking an object from a plate” has a lower one
(Fig. 12, green area). It is the other way around for
the next 10 training data (Fig. 12 yellow area). How-
ever, for the last 5 test data, in which both manip-
ulation types are performed in different orders both
learned models have high similarity. (Fig. 12 blue
area). When doing time-slicing (data not shown) one
sees that the similarity in the last 5 data for either
manipulation increases together with the completion
of the respective manipulation. Thus, one after the
other in the first 4 movies and simultaneously in the
last one, where both actions are performed simulta-
neously.

4 Case Study: Learning and re-
playing an action sequence

Artificial intelligence (AI) systems almost always
follow logic rules structured as: pre-condition, ac-
tion, post-condition. Assessment of success of
rule-execution requires measuring the post-condition.
Hence, such systems rely on Thorndike’s law of cause
and effect (Thorndike, 1911) and, traditionally, they
were defined by their programmers. Thus, it is dif-
ficult to find ways for an agent to learn cause-effect
rules by itself (without explicit interference of a su-
pervisor, see “grounding problem”, (Harnad, 1990)).
Furthermore, especially in complex situations, agents
are faced with the problem of how to assess “effect”
as many aspects of a situation might change follow-
ing an action (see “frame problem”, (McCarthy and
Hayes, 1969)).

In the following we show our first results of a sys-
tem that allows learning the rules of an action se-
quence without explicit supervision and then exe-
cuting actions in a scenario self-assessing “action-

18

Figure 12: Similarity results between the two learned
modes and all 25 movies. In red and blue are in-
dicated the similarities for a given movie with the
“Putting an object on a plate” and “Taking an ob-
ject from a plate” models, respectively. First 20 data
are the training data and represent different versions
of the “Putting an object on a plate” and “Taking an
object from a plate” actions, respectively. The last 5
data represent the mixed actions used for testing the
learned models.

effects”. Both processes rely on the event chains and
the agent can without any pre-defined rule set learn
the sequence and then assess the (in-)correctness of
its actions just by comparing the resulting chains.
Condensation into event chains thus helps solving the
grounding- as well as the frame problem.

Our robot system is quite simple, consisting of a 3
DOF arm an with magnetic gripper (Neurorobotics,
Sussex). Thus, we used “pushing” as well as “pick-
and-place” as action repertoire. To generate trajec-
tories we used predefined dynamic movement prim-
itives (Ijspeert et al., 2002; Ning et al., 2010) and
trajectory start- and end-points (for touching) were
visually pre-defined and transferred onto the robot
via a standard inverse kinematics procedure (no ser-
voeing). Motion generation and control are not in
the focus of this study, therefore we kept this simple
here (for an advanced treatment of these aspects see
Ning et al. (2010)). Objects for pick-and-place were
magnetic.

The desired action sequence was first demonstrated

by a human. Fig. 13 (a-b) (blue frame) shows sam-
ple frames of the action sequence in which a hand is
“pushing” a lid off a container and then “picking-and-
placing” a ball inside. The event chains of this action
sequence is learned by our system. It can be broken
into two sub-chains and the final result is shown in
Fig 14 (a,b).
In the next step we confront the robot with a scene,

provide it with a possible set of motion-trajectory
start points, and let the robot randomly try out
pushing and pick-and-place actions. Fig. 13 (c-f)(red
frame) shows a subset of the different types of actions
the robot has tried out (many more were performed
but cannot be shown here). The blue tip of the robot
arm is visible in the images. Note, objects are usu-
ally different from the ones used by the human. In
Fig. 13 (c) the robot is only pushing a lid but does
not continue with pick&place. In (d) a black ball
is pushed. Fig. 13 (e) shows how the robot picks
up a ball and then drops it on the table. Panel (f)
represents an action where the robot is taking the
ball from a container and places it on the table. All
these examples do not (or only incompletely in (c))
reproduce the observed action sequence. Fig 13 (g-
h) (green frame) shows the correct action sequence
which at some point was also executed by the robot.
Corresponding event chains of all those action se-

quences are given in Fig 14. Due to different noise
sources (in tracking, segmentation or depth informa-
tion) the sizes of individual event chains can vary
considerably. Still, as discussed in the section on
Learning, individual chains contain the relevant infor-
mation, which is not harmed by noise-induced rows
and columns. As a consequence, even very different
looking event chains can be robustly compared to the
learned models (a,b) using the above described simi-
larity algorithm. Figure labels (a-h) in Fig. 13 corre-
spond to those in Fig. 14. Colored boxes in Fig. 14
show rows with high similarities. This occurs for
panel (c) and (g), which are similar to (a), as well as
for (h), which is similar to (b). A similarity table is
shown in Fig. 14 (i). It shows that manipulation (c) is
similar to the learned pushing model (a). The same is
true for manipulation (g), which both are above 60%
similarity. Only manipulation (h) is similar to the
pick and place-inside model (b) with 87% similarity.

19

Figure 13: Action sequence of (a) pushing a lid off a container and then (b) putting a ball inside demonstrated
by a human (blue frame). Different types of robot actions (red frame). (c) pushing a lid, (d) pushing a ball,
(e) lifting a ball and dropping it on the table, (f) taking the ball from a container and putting it on the table.
The green frame shows a robot action sequence similar to the one performed by the human, in which (g) a
lid is first pushed off and then (h) a ball is placed inside a container.

20

Figure 14: Corresponding event chains of human demonstrated actions and different types of robot actions.
Labels (a-h) correspond to the manipulations shown in Fig 13 (a-h). (a,b) Event chain model extracted
from human demonstration of (a) “pushing” as well as (b) “pick-and-place-inside”. (c-f) Event chains
corresponding to the wrong or incomplete actions in Fig 13 (c-f, red frame). (g,h) Event chains corresponding
to the correct sequence in Fig 13 (g,h, green frame). (i) Similarity table between all actions the robot has
tried (c-h) and the learned models (a,b) demonstrated by the human.

21

Sequence (g-h) of both manipulations following each
other is, thus, correctly recognized as being the one
that reproduces the complete learned model (a-b).

Thus, this (still rather simple) set of examples
demonstrates that by using SECs learning and recog-
nition of manipulations is possible for a robot. The
main achievement, we believe, lies here in the very
high level of abstraction, which allows the machine
to recognize (in-)correctness of its actions even when
objects and their arrangements are very different in
the different scenes.

5 Discussion

In this paper we have introduced a novel represen-
tation for manipulations, called the semantic event
chain, which focuses on the relations between objects
(including hands) in a scene. The representation gen-
erates column vectors in a matrix where every transi-
tion between neighboring vectors can be interpreted
as an action rule, which defines which object rela-
tions have changed in the scene. Hence event chains
reach a rather high level of abstraction but on the
other hand they remain tightly linked to the images
from which they originate, because they rely on con-
tinuously tracked segments. We have devised sim-
ple algorithms based on sub-string comparisons and
counting procedures by which event chains can be
compared and actions as well as segment (-groups)
can be classified in an unsupervised way. No prior
object models are required in this approach and the
learning of archetypal event chains (“models”) relies
only on weight upgrade of repeating columns (repeat-
ing “rules”). Thus, learning also operates in an unsu-
pervised way. The method was shown to be successful
in classifying and recognizing video showing different
manipulations, and also in learning the archetypal
SEC for a given action class. We further demon-
strated the feasibility of the approach through ex-
periments with an robotic arm. By observation, the
machine extracted the SEC of a human manipula-
tion, and then reproduced the associated manipula-
tion type in a new scenario via repeated experimen-
tation.

To our knowledge this is the first approach to-

wards manipulation recognition, which reaches an al-
most symbolic level of abstraction1 while being fully
grounded in the signal domain. In the following we
will discuss related approaches and also problems and
possible extensions of our algorithm.

5.1 Related approaches

Our framework introduces the semantic event chain
which is a novel representation that seems to hold
some promise for extracting action semantics. It di-
rectly encodes the observed manipulations without
hidden states. Event chains remain tightly linked to
perception but are of semantic character. Thus, they
are more invariant with respect to viewpoint changes
and object features than most other approaches. This
however only holds if the visual entities used, here
image segments, carry sufficient meaning, i.e. they
represent parts of objects. As a consequence, the se-
mantic event chain is composed of action primitives,
and no hidden model needs to be assumed (e.g. Hid-
den Markov Model) as required in other works to
bridge the gap between signal and symbol (Ogawara
et al., 2002; Raamana et al., 2007).
Similarities exist between our approach and the

work by Sridhar et al. (2008), who analyzed manip-
ulations in the context of a breakfast scenario and
represented the whole image sequence by an activ-
ity graph which holds spatiotemporal object inter-
actions. By using statistical generalization, event
classes are extracted from the activity graphs. Ob-
ject categories are learned by calculating the similar-
ity between object roles at each event class. How-
ever, large activity graphs and the difficulty of find-
ing exact graph isomorphisms are a major drawback
of this method. Furthermore, unlike in our work, ob-
ject knowledge was provided beforehand, thus lacking
grounding in the signal domain.
Our approach is different from the one by Kjell-

strom et al. (2008). In our method, event chains
are already highly invariant with respect to viewpoint

1Note, the symbolic domain can be directly coupled to the
event chains as these chains allow the parsing of meaningful
rule-like commands such as: “In the next transition perform
an action that assures the segment 17 touches segment 12 and
that segment 3 overlaps with segment 5.”

22

changes and object features because the relations be-
tween segments are of qualitative character - e.g.,
touching is already a semantic description -, while in
the work of Kjellstrom et al. (2008) semantics only
emerge at the last stage of the modeling process.
In the present paper, we do not perform any ob-

ject recognition in the classical sense (see Section 2.3).
The image segments used for finding the SECs are be-
low the object level, which means that a “true” object
may be composed of several segments. Nevertheless,
during the manipulation recognition procedure, im-
age segments emerge naturally in conjunction with
their associated action, providing a means to extract
“action-relevant” objects from the scene by recogniz-
ing the respective actions in the SECs. This result is
congruent with psychophysical evidence that humans
recognize objects more easily if they are embedded in
a consistent action context (Helbig et al., 2010). The
approach has the advantage that it is highly invari-
ant to the object’s appearance and only takes into
account the functionality of the object with respect
to a given set of actions (see Fig. 8). However, the
rich information provided by the object’s appearance
in the image is ignored and thus the algorithm does
not allow recognizing objects without providing any
action context.

5.2 Features and Problems of the Al-
gorithm

The realm of object and action recognition is exceed-
ingly rich carrying many facets and so far there is no
algorithm existing which would reach the level of hu-
man proficiency. Adults can robustly classify objects
and actions using a very high degree of invariance and
generalization. To reach classification robustness in
artificial systems usually the application scenarios are
restricted and models of objects and/or actions are
introduced, which however limits the generalization
properties of such systems. To improve on this, pref-
erentially life-long model-learning would be required
leading to the extension of existing models and to the
acquisition of new ones across all scenarios. Little is
known how to do this.
In the introduction we had discussed that at least

six properties define the requirements for a useful

manipulation representation for artificial agents: (1)
sensory signal based, (2) learnable, (3) relational, (4)
time-sliced (5) human-comprehensible and (6) com-
patible with models.
We believe that the here introduced representation

carries these aspects at least to some degree and that
the approach also reaches across scenarios, but we
are also aware of the fact that we are still far away
from the final goal, which would be to reach human
proficiency.
What are the drawbacks we are still facing and

which extensions need to be made in future work to
improve on this?
We heavily rely on advanced computer vision

methods and we are aware that failures in the com-
puter vision can harm our approach. Measures are
undertaken to reduce such failures (Dellen et al.,
2009), but this was not in the core of this study.
It is evident that image segments do not correspond

to objects and our approach remains “beneath” the
object level. While this way being strongly grounded
in the image domain, we do not address complex as-
pects such as “permanence” and “feature binding”,
which are both required to assure the continuous ex-
istence of an object in the memory of a system.
In the case of heavily textured objects, feature

binding based on color alone as employed in the seg-
mentation framework will lead to a large number
of segments, i.e. objects will be highly fragmented.
This may cause problems to the tracking procedures
(matching complexity) and thus will affect the qual-
ity of the SECs in an undesirable way. For tex-
tured images, additional mechanisms should be used
at the segmentation stage to avoid over-segmentation
and/or fragmented segments could be merged using
segment-based grouping criteria. We are currently
investigating potential solutions to this problem.
However, probably the most important feature of

the here presented algorithms is that they do not rely
on image segments as their input. Any (!) continu-
ously trackable entity, as long as it is sufficiently close
to the semantic level, hence also object-model-based
tracking, can be used to design an event chain. Thus,
while we still think that image segments are in many
ways useful, the event chain representation and its
core algorithms are transferable to other inputs too.

23

Furthermore, as mentioned above, our approach
and the resulting event chains cannot directly be used
to execute an action. For this, additional information
about movement trajectories of the hands as well as
information on the required poses of the objects needs
to be stored and used. It will be a topic of future re-
search to introduce these aspects into the framework.

5.3 Affordances and Object-Action
Complexes

The rule-character of the event chains was used in
this study to let an agent assess the success of its own
actions. The experiments shown in Figs. 13 and 14
have demonstrated that an agent can first learn event
chains and then connect them to (predefined) motion
patterns trying out how to reproduce an action se-
quence. In doing so correlations between actions and
outcomes (the resulting states) exist and the agent
can produce triplets of [starting state, action, result-
ing state], where starting and resulting state are given
by adjacent columns of the event chain. If the re-
sulting state matches the one remembered from the
learning phase then the agent can store the complete
triplet. This way actions can be attached to starting
states taking the process forward from recognition to
purposeful execution. Also this process works in an
unsupervised way, where repetition would allow the
agent to consolidate a triplet, but is also accessible
by supervision, where a teacher would tell the agent
which action to perform when.
For easy of talking we will use the term “thing” and

“object” now in this discussion avoiding the clumsy
terms segment-group, entity, etc.
As mentioned above, in our representation ob-

jects are being classified always in the context of
the performed manipulation. A thing, when be-
ing filled with liquid, could be grouped with fillable
objects into a category, which a human might call
“containers”. Equally well the same thing (when
turned around) would be grouped together with other
platforms into a category “pedestals” as soon as
someone puts something on top of it. This as-
pect strongly relates to Gibson’s concept of affor-
dances (Gibson, 1977), where objects suggest ac-
tions. This concept had been extended by a group of

European researchers from the PACO-PLUS project
(http://www.paco-plus.org/) stating the objects and
action are combined by humans into the cogni-
tive concept of Object-Action Complexes (OACs)
(Wörgötter et al., 2009; Krüger et al., 2010). A phys-
ical “thing” gets its meaning through the actions per-
formed with it and will consequentially be interpreted
– like the container/pedestal above – always in an ac-
tion context.
Krüger et al. (2010) had given a formal definition of

the Object-Action Complex. In an abbreviated way
it states that an OAC is a function that compares
obtained against excepted outcome when an action
is being executed at an object. The OAC thereby
also measures success of the action by assessing the
sensor states of the agent. An OAC, thus, represents
a model of the transformations that takes place at an
object following an action (Wörgötter et al., 2009).
OACs are learnable by the agent.
Adjacent columns of an event chain together with

the processes of action learning described above are
closely related to this concept. Thus, a complete
event chain (together with its actions and objects)
represents a chain of OACs and can be understood
as a category which groups objects and actions into
the cognitive concept of a manipulation. Thus, the
here suggested set of algorithms provides – as far as
we know – the first entry point to a grounded, agent-
learnable cognitive categorization process of rather
high complexity. In addition, it provides a link to
the symbolic, language domain because of its rule-
like character.
As discussed above, many problems still exist, but

we would hope that this research might open some
new avenues into the difficult cognitive field of action
understanding.

Acknowledgment

The research leading to these results has received
funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 - Challenge
2 - Cognitive Systems, Interaction, Robotics - under
grant agreement No 247947 - GARNICS. We thank
Tomas Kulvicius for valuable discussion. B.D. ac-

24

knowledges support from the Spanish Ministry for
Science and Innovation via a Ramon y Cajal Fellow-
ship.

6 Appendix

6.1 Appendix 1 - Defining segment re-
lations in a fast and efficient way

As defined in the main text, possible spatial rela-
tions of each segment pair are Touching=2, and Over-
lapping=1, No Connection=0, and Absence=9. The
process of calculating those relations has two main
steps. In the very first step the segmented image
is scanned horizontally (from left to right) and ver-
tically (from top to down) to calculate the existing
segment sequences. Following the scanning process,
all lines (vertical+horizontal) are counted where a
certain segment sequence has been observed and are
stored in a list

L : (i1, i2, i3, ...) 7→ nS

where nS is the number of all vertical and horizon-
tal lines with the segment sequence (i0, i1, i2, ...).

Fig. 15 illustrates how the sequences between 5
different segments can be calculated, e.g. (1) and
(1, 2, 1, 3, 1) are observed as 225 and 40 times, re-
spectively.
The second main step analyzes the existing se-

quences to calculate the spatial relations between seg-
ment pairs. For this purpose, each sequence is iter-
ated by considering the following rules:

• “Touching”: Segments follow one right after
the other in any sequence are touching, e.g. seg-
ments 5 and 3 are touching each other in such
sequences (..., 5, 3, ...) or (..., 3, 5, ...).

• “Overlapping”: (i) If a segment is observed
twice in a sequence, all segments in between are
overlapping with it, e.g. in (..., 1, 5, 3, 1, ...) 5 and
3 are both overlapped (surrounded) by 1. (ii)
However, the inner segments are not overlapping
with each other, e.g. in (..., 1, 5, 3, 1, ...) 5 cannot
overlap with 3 because it is not observed twice.

To each rule corresponds a counter of hints (either
Ct

i,j or Co
i,j). For each segment pair, counters store

number of hints that show the rules are fulfilled for
each segment pair as

• Ct
i,j 7→ nt: Number of hints that i and j are

touching.

• Co
i,j 7→ no: Number of hints that i is overlapping

with j.

Note that Ct
i,j ≡ Ct

j,i since the Touching relation
is undirected, whereas Co

i,j is not symmetric.
Each sequence S is processed separately. Its ele-

ments are stored in a stack one after another. When
the next element in is stored, the first rule indi-
cates that in and the previous element in−1 have the
Touching relation. Since the current sequence has
been found multiple times in the image (given by
L(S)), the touching entry (in−1, in) is incremented
by L(S):

Ct
in−1,in

+= L(S) .

Example: The sequence S := (1, 5, 3, 1) is analyzed
by storing the first element i1 = 1 in the stack. Since
there are always more than one element required for
the stack, the algorithm immediately skips to adding
the next element i2 = 5. The first rule indicates that
the pair (1, 5) has the Touching relation. As a result,
Ct

1,5 is increased by L(S) = 40. The same operations
are applied to the pair (5, 3) in the next step.
To fulfill the second rule the stored element needs

to be checked whether it is already in the stack. In
this case, the elements of the first occurrence is and
in are recognized as having the Overlapping relation
with in. Therefore, the corresponding counter will be
updated as follows:

Co
in,j

+= L(S), ∀j ∈ {is+1, ..., in−1} .

Example: In the same sequence given in the pre-
vious example the next element i4 = 1 is added to
the stack and Ct

1,3 is incremented by 40. Since i4
occurred earlier (is = i1), all elements in between,
hence i2 = 5 and i3 = 3, Co

1,5 and Co
1,3 are increased

by L(S) = 40.

25

Figure 15: Calculating the spatial segment relations between background, two vessels, and two contents which
are represented by segment number 1, 2, 3, 4, and 5, respectively.

The second rule also indicates that those inner el-
ements j do not overlap with each other, thus:

Co
jn,jm

−= L(S), ∀jn, jm ∈ {is+1, ..., in−1}, n 6= m.

Example: Due to this rule, Co
3,5 and Co

5,3 are de-
creased by 40.
Next, the inner elements are removed from the se-

quence. This is important in cases of having recur-
sive overlapping situations to get Overlapping rela-
tions only between neighbor segments. In Fig. 15
segment pairs (1, 2) and (2, 4) have the Overlapping
relations, whereas (1, 4) has No Connection.
Example: For the sequence S := (1, 2, 4, 2, 1), i4

is added to the stack in the fourth step. By con-
sidering the description given above, we compute
Ct

2,4+ = L(S) and Co
2,4+ = L(S). The elements

i3 and i4 are then removed from the stack, which
leads to (1, 2). The algorithm is continuing by adding
i5 = 1 to the stack and by computing Ct

1,2+= L(S)
and Co

1,2+= L(S) as described above. In the end it
is observed that segment pairs (2, 4) and (1, 2) have
the Overlapping relation, however, (1, 4) has No Con-
nection.
Once all sequences are iterated, the values in Ct

i,j

and Co
i,j are used to compute the final spatial rela-

tions of the segments. Note that some counter values

might be wrong due to noisy segments. Instead of
defining a minimum value as a static threshold, each
entry is normalized first using the size of the corre-
sponding segments:

C̄t
i,j :=

Ct
i,j

min(Ni, Nj)

where Ni is a list that stores the pixel size of seg-
ment i. Normalization considers only the smaller seg-
ment that makes the algorithm robust against noise
and accurate for small segments. Note that Co

i,j is
also normalized in the same way. Each normalized
entry C̄t

i,j and C̄o
i,j is then thresholded. Unless C̄t

i,j

and C̄o
i,j exceed the thresholds, relations are set to

No Connection.
The main advantage of the proposed algorithm is

that each step explained above can be calculated sep-
arately and hence can be parallelized.
Note, more complex 3D spatial segment relations

(e.g. inside above, under, etc.) directly relate to the
overlapping and touching relations as only a third di-
mension needs to be added. The following example
makes this clear. Consider two 2D-Overlapping cases:
“lying on top” (e.g. two flat objects) or “being in-
side” (of one smaller object inside a container). Both
are 2D-identical in the sense of being an overlapping-

26

Extension Type Description

1 Video Four Different Action Types

2 Video Case Study

Table 3: Multimedia Extensions

relation, but with adding 3D one could define new
relations (“on-top” and “inside”).

6.2 Appendix 2 - Index of Multimedia
Extensions

The multimedia extensions (see Table 3) to this arti-
cle are at: http://www.ijrr.org.

References

Abramov, A., Aksoy, E. E., Dörr, J., Pauwels, K.,
Wörgötter, F., and Dellen, B. (2010). 3d seman-
tic representation of actions from efficient stereo-
image-sequence segmentation on gpus. In 3DPVT.

Aksoy, E. E., Abramov, A., Wörgötter, F., and
Dellen, B. (2010). Categorizing object-action rela-
tions from semantic scene graphs. In IEEE Inter-
national Conference on Robotics and Automation,
ICRA2010 Alaska, USA.

Belhumeur, P. N. and Kriegmant, D. J. (1996). What
is the set of images of an object under all possible
lighting conditions. IEEE CVPR, pages 270–277.

Breazeal, C. and Scassellati, B. (2002). Robots that
imitate humans. Trends Cogn. Sci. (Regul. Ed.),
6:481–487.

Calinon, S. and Billard, A. (2004). Stochastic Ges-
ture Production and Recognition Model for a Hu-
manoid Robot. In Proceedings of the IEEE/RSJ
international Conference on Intelligent Robots and
Systems (IROS), volume 3, pages 2769–2774.

Calinon, S. and Billard, A. (2005). Recognition
and Reproduction of Gestures using a Probabilis-
tic Framework combining PCA, ICA and HMM.

In Proceedings of the International Conference on
Machine Learning (ICML), pages 105–112.

Calinon, S. and Billard, A. (2007). Incremental learn-
ing of gestures by imitation in a humanoid robot.
In HRI ’07: Proceedings of the ACM/IEEE inter-
national conference on Human-robot interaction,
pages 255–262, New York, NY, USA. ACM.

Dan Pelleg, A. M. (2000). X-means: Extending k-
means with efficient estimation of the number of
clusters. In Proceedings of the Seventeenth Inter-
national Conference on Machine Learning, pages
727–734, San Francisco. Morgan Kaufmann.

Dee, H., Hogg, D., and Cohn, A. (2009). Scene mod-
elling and classification using learned spatial rela-
tions. In Proc. Spatial Information Theory, volume
5756, pages 295–311. Springer N.Y.

Dellen, B., Aksoy, E. E., and Wörgötter, F. (2009).
Segment tracking via a spatiotemporal linking pro-
cess in an n-d lattice model. Sensors, 9(11):9355–
9379.

Dellen, B. and Wörgötter, F. (2009). Disparity from
stereo-segment silhouettes of weakly textured im-
ages. In Proceedings of the British Machine Vision
Conference.

Fergus, R., Perona, P., and Zisserman, A. (2003).
Object class recognition by unsupervised scale-
invariant learning. In In CVPR, pages 264–271.

Gibson, J. (1977). The theory of affordances. In per-
ceiving, acting, and knowing. Eds. Robert Shaw
and John Bransford.

Gilbert, A., Illingworth, J., and Bowden, R. (2009).
Action recognition using mined hierarchical com-
pound features. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Hakeem, A. and Shah, M. (2005). Multiple agent
event detection and representation in videos. In
AAAI.

Harnad, S. (1990). The symbol grounding problem.
Physica D 42, pages 335–346.

27

Helbig, H. B., Steinwender, J., Graf, M., and Kiefer,
M. (2010). Action observation can prime visual
object recognition. Experimental Brain Research,
200(3-4):251–258.

Hoiem, D., Efros, A. A., and Hebert, M. (2008).
Putting objects in perspective. Int. J. Comput.
Vision, 80(1):3–15.

Hongeng, S. (2004). Unsupervised learning of multi-
object event classes. In Proc. 15th British Machine
Vision Conference, pages 487–496.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002).
Movement imitation with nonlinear dynamical sys-
tems in humanoid robots. In in Proc. IEEE Int.
Conf. Robotics and Automation, pages 1398–1403.

Kjellstrom, H., Romero, J., and Kragic, D. (2008). Si-
multaneous visual recognition of manipulation ac-
tions and manipulated objects. In European Con-
ference on Computer Vision.

Krüger, N., Piater, J., Geib, C., Petrick, R., Steed-
man, M., Wörgötter, F., Ude, A., Asfour, T.,
Kraft, D., Omrcen, D., Agostini, A., and Dillmann,
R. (2010). Object-action complexes: Grounded ab-
stractions of sensorimotor processes (in revision).
Robotics and Autonomous Systems.

Laptev, I. and Perez, P. (2007). Retrieving actions in
movies. In ICCV.

Liao, L., Fox, D., and Kautz, H. (2005). Location-
based activity recognition using relational markov
networks. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence, pages
773–778.

Lowe, D. G. (2004). Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60:91–110.

Maurer, A., Hersch, M., and Billard, A. (2005). Ex-
tended Hopfield Network for Sequence Learning:
Application to Gesture Recognition. In Proceed-
ings of ICANN’05.

McCarthy, J. and Hayes, P. (1969). Some philosoph-
ical problems from the standpoint of artificial in-
telligence. Machine Intelligence, pages 195–204.

Modayil, J., Bai, T., and Kautz, H. (2008). Im-
proving the recognition of interleaved activities. In
Proceedings of the 10th international conference on
Ubiquitous computing, pages 40–43.

Mundy, J. and Zisserman, A. (1992). Geometric In-
variance in Computer Vision. MIT Press.

Mundy, J. L. (2006). Object recognition in the ge-
ometric era: A retrospective. In Toward Catego-
ryLevel Object Recognition, volume 4170 of Lecture
Notes in Computer Science, pages 3–29. Springer.

Murase, H. and Nayar, S. K. (1995). Visual learning
and recognition of 3-d objects from appearance.
Int. J. Comput. Vision, 14(1):5–24.

Niebles, J., Wang, H., and Fei-Fei, L. (2008). Unsu-
pervised learning of human action categories using
spatial-temporal words. International Journal of
Computer Vision, 79(3):299–318.

Ning, K., Kulvicius, T., Tamosiunaite, M., and
Wörgötter, F. (2010). A novel trajectory gener-
ator based on dynamic motor primitives. IEEE
Transactions on Robotics (Submitted).

Nister, D. and Stewenius, H. (2006). Scalable recog-
nition with a vocabulary tree. In CVPR, pages
2161–2168.

Ogawara, K., Takamatsu, J., Kimura, H., and Kat-
sushi, I. (2002). Modeling manipulation interac-
tions by hidden markov models. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and
Systems.

Oliva, A. and Torralba, A. (2009). The role of context
in object recognition. Trends in Cognitive Sciences,
11(12):520–526.

Pauwels, K. and Van Hulle, M. (2008). Real-
time phase-based optical flow on the GPU. In
IEEE Conference on Computer Vision and Pat-
tern Recognition, Workshop on Computer Vision
on the GPU, Anchorage, Alaska.

28

Raamana, P. R., Grest, D., and Krueger, V. (2007).
Human action recognition in table-top scenarios:
an HMM-based analysis to optimize the perfor-
mance. In CAIP’07: Proceedings of the 12th inter-
national conference on Computer analysis of im-
ages and patterns, pages 101–108, Berlin, Heidel-
berg. Springer-Verlag.

Rizzolatti, G. and Craighero, L. (2004). The mirror-
neuron system. Annual Review of Neuroscience,
27:169–192.

Sabatini, S., Gastaldi, G., Solari, F., Diaz, J., Ros,
E., Pauwels, K., Van Hulle, M., Pugeault, N., and
Krüger, N. (2007). Compact and accurate early
vision processing in the harmonic space. In Inter-
national Conference on Computer Vision Theory
and Applications, pages 213–220, Barcelona.

Shylo, N., Wörgötter, F., and Dellen, B. (2009). As-
certaining relevant changes in visual data by inter-
facing AI reasoning and low-level visual informa-
tion via temporally stable image segments. In Pro-
ceedings of the International Conference on Cogni-
tive Systems (Cogsys 2008).

Sivic, J. and Zisserman, A. (2003). Video google:
A text retrieval approach to object matching in
videos. In ICCV ’03: Proceedings of the Ninth
IEEE International Conference on Computer Vi-
sion, page 1470, Washington, DC, USA. IEEE
Computer Society.

Sridhar, M., Cohn, G. A., and Hogg, D. (2008).
Learning functional object-categories from a re-
lational spatio-temporal representation. In Proc.
18th European Conference on Artificial Intelli-
gence, pages 606–610.

Sumsi, M. F. (2008). Theory and Algorithms on the
Median Graph. Application to Graph-based Clas-
sification and Clustering. PhD thesis, Universitat
Autonoma de Barcelona.

Thorndike, E. (1911). Animal intelligence. New York.
Macmillan.

Torralba, A. (2003). Modeling global scene factors in
attention. JOSA - A, 20:1407–1418.

Turk, M. and Pentland, A. (1991). Eigenfaces for
recognition. J. Cognitive Neuroscience, 3(1):71–86.

Vicente, I., Kyrki, V., and Kragic, D. (2007). Ac-
tion recognition and understanding through motor
primitives. Advanced Robotics, 21(15):1687–1707.

Wörgötter, F., Agostini, A., Krüger, N., Shylo, N.,
and Porr, B. (2009). Cognitive agents - a procedu-
ral perspective relying on predictability of object-
action complexes (oacs). Robotics and Autonomous
Systems, 57(4):420–432.

29

