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Abstract

We consider the problem of learning the structure of a pairwise graphical model over
continuous and discrete variables. We present a new pairwise model for graphical models with
both continuous and discrete variables that is amenable to structure learning. In previous
work, authors have considered structure learning of Gaussian graphical models and structure
learning of discrete models. Our approach is a natural generalization of these two lines of
work to the mixed case. The penalization scheme involves a novel symmetric use of the
group-lasso norm and follows naturally from a particular parametrization of the model.

1 Introduction

Many authors have considered the problem of learning the edge structure and parameters of

sparse undirected graphical models. We will focus on using the l1 regularizer to promote sparsity.

This line of work has taken two separate paths: one for learning continuous valued data and

one for learning discrete valued data. However, typical data sources contain both continuous and

discrete variables: population survey data, genomics data, url-click pairs etc. For genomics data,

in addition to the gene expression values, we have attributes attached to each sample such as

gender, age, ethniticy etc. In this work, we consider learning mixed models with both continuous

variables and discrete variables.

For only continuous variables, previous work assumes a multivariate Gaussian (Gaussian graph-

ical) model with mean 0 and inverse covariance Θ. Θ is then estimated via the graphical lasso

by minimizing the regularized negative log-likelihood `(Θ) + λ ‖Θ‖1. Several efficient methods for
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solving this can be found in Friedman et al. (2008a); Banerjee et al. (2008). Because the graph-

ical lasso problem is computationally challenging, several authors considered methods related to

the pseudolikelihood (PL) and nodewise regression (Meinshausen and Bühlmann, 2006; Friedman

et al., 2010; Peng et al., 2009). For discrete models, previous work focuses on estimating a pairwise

Markov random field of the form p(y) ∝ exp
∑

r≤j φrj(yr, yj). The maximum likelihood problem

is intractable for models with a moderate to large number of variables (high-dimensional) because

it requires evaluating the partition function and its derivatives. Again previous work has focused

on the pseudolikelihood approach (Guo et al., 2010; Schmidt, 2010; Schmidt et al., 2008; Höfling

and Tibshirani, 2009; Jalali et al., 2011; Lee et al., 2006; Ravikumar et al., 2010).

Our main contribution here is to propose a model that connects the discrete and continuous

models previously discussed. The conditional distributions of this model are two widely adopted

and well understood models: multiclass logistic regression and Gaussian linear regression. In

addition, in the case of only discrete variables, our model is a pairwise Markov random field; in the

case of only continuous variables, it is a Gaussian graphical model. Our proposed model leads to

a natural scheme for structure learning that generalizes the graphical Lasso. Here the parameters

occur as singletons, vectors or blocks, which we penalize using group-lasso norms, in a way that

respects the symmetry in the model. Since each parameter block is of different size, we also derive

a calibrated weighting scheme to penalize each edge fairly. We also discuss a conditional model

(conditional random field) that allows the output variables to be mixed, which can be viewed as

a multivariate response regression with mixed output variables. Similar ideas have been used to

learn the covariance structure in multivariate response regression with continuous output variables

Witten and Tibshirani (2009); Kim et al. (2009); Rothman et al. (2010).

In Section 2, we introduce our new mixed graphical model and discuss previous approaches to

modeling mixed data. Section 3 discusses the pseudolikelihood approach to parameter estimation

and connections to generalized linear models. Section 4 discusses a natural method to perform

structure learning in the mixed model. Section 5 presents the calibrated regularization scheme,

Section 6 discusses the consistency of the estimation procedures, and Section 7 discusses two

methods for solving the optimization problem. Finally, Section 8 discusses a conditional random

field extension and Section 9 presents empirical results on a census population survey dataset and
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synthetic experiments.

2 Mixed Graphical Model

We propose a pairwise graphical model on continuous and discrete variables. The model is a

pairwise Markov random field with density p(x, y; Θ) proportional to

exp

(
p∑
s=1

p∑
t=1

−1

2
βstxsxt +

p∑
s=1

αsxs +

p∑
s=1

q∑
j=1

ρsj(yj)xs +

q∑
j=1

q∑
r=1

φrj(yr, yj)

)
. (1)

Here xs denotes the sth of p continuous variables, and yj the jth of q discrete variables. The

joint model is parametrized by Θ = [{βst}, {αs}, {ρsj}, {φrj}]1. The discrete yr takes on Lr states.

The model parameters are βst continuous-continuous edge potential, αs continuous node potential,

ρsj(yj) continuous-discrete edge potential, and φrj(yr, yj) discrete-discrete edge potential.

The two most important features of this model are:

1. the conditional distributions are given by Gaussian linear regression and multiclass logistic

regressions;

2. the model simplifies to a multivariate Gaussian in the case of only continuous variables and

simplifies to the usual discrete pairwise Markov random field in the case of only discrete

variables.

The conditional distributions of a graphical model are of critical importance. The absence of an

edge corresponds to two variables being conditionally independent. The conditional independence

can be read off from the conditional distribution of a variable on all others. For example in

the multivariate Gaussian model, xs is conditionally independent of xt iff the partial correlation

coefficient is 0. The partial correlation coefficient is also the regression coefficient of xt in the linear

regression of xs on all other variables. Thus the conditional independence structure is captured by

the conditional distributions via the regression coefficient of a variable on all others. Our mixed

model has the desirable property that the two type of conditional distributions are simple Gaussian

1ρsj(yj) is a function taking Lj values ρsj(1), . . . , ρsj(Lj). Similarly, φrj(yr, yj) is a bivariate function taking on

Lr ×Lj values. Later, we will think of ρsj(yj) as a vector of length Lj and φrj(yr, yj) as a matrix of size Lr ×Lj .
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linear regressions and multiclass logistic regressions. This follows from the pairwise property in

the joint distribution. In more detail:

1. The conditional distribution of yr given the rest is multinomial, with probabilities defined

by a multiclass logistic regression where the covariates are the other variables xs and y\r

(denoted collectively by z in the right-hand side):

p(yr = k|y\r, x; Θ) =
exp

(
ωTk z

)∑Lr

l=1 exp (ωTl z)
=

exp
(
ω0k +

∑
j ωkjzj

)
∑Lr

l=1 exp
(
ω0l +

∑
j ωljzj

) (2)

Here we use a simplified notation, which we make explicit in Section 3.1. The discrete

variables are represented as dummy variables for each state, e.g. zj = 1[yu = k], and for

continuous variables zs = xs.

2. The conditional distribution of xs given the rest is Gaussian, with a mean function defined

by a linear regression with predictors x\s and yr.

E(xs|x\s, yr; Θ) = ωT z = ω0 +
∑
j

zjωj (3)

p(xs|x\s, yr; Θ) =
1√

2πσs
exp

(
− 1

2σ2
s

(xs − ωT z)2

)
.

As before, the discrete variables are represented as dummy variables for each state zj =

1[yu = k] and for continuous variables zs = xs.

The exact form of the conditional distributions (2) and (3) are given in (11) and (10) in Section 3.1,

where the regression parameters ωj are defined in terms of the parameters Θ.

The second important aspect of the mixed model is the two special cases of only continuous

and only discrete variables.

1. Continuous variables only. The pairwise mixed model reduces to the familiar multivariate

Gaussian parametrized by the symmetric positive-definite inverse covariance matrix B =

{βst} and mean µ = B−1α,

p(x) ∝ exp

(
−1

2
(x−B−1α)TB(x−B−1α)

)
.
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2. Discrete variables only. The pairwise mixed model reduces to a pairwise discrete (second-

order interaction) Markov random field,

p(y) ∝ exp

(
q∑
j=1

q∑
r=1

φrj(yr, yj)

)
.

Although these are the most important aspects, we can characterize the joint distribution

further. The conditional distribution of the continuous variables given the discrete follow a multi-

variate Gaussian distribution, p(x|y) = N (µ(y), B−1). Each of these Gaussian distributions share

the same inverse covariance matrix B but differ in the mean parameter, since all the parameters

are pairwise. By standard multivariate Gaussian calculations,

p(x|y) = N (B−1γ(y), B−1) (4)

{γ(y)}s = αs +
∑
j

ρsj(yj) (5)

p(y) ∝ exp

(
q∑
j=1

j∑
r=1

φrj(yr, yj) +
1

2
γ(y)TB−1γ(y)

)
(6)

Thus we see that the continuous variables conditioned on the discrete are multivariate Gaussian

with common covariance, but with means that depend on the value of the discrete variables. The

means depend additively on the values of the discrete variables since {γ(y)}s =
∑r

j=1 ρsj(yj).

The marginal p(y) has a known form, so for models with few number of discrete variables we can

sample efficiently.

2.1 Related work on mixed graphical models

Lauritzen (1996) proposed a type of mixed graphical model, with the property that conditioned

on discrete variables, p(x|y) = N (µ(y),Σ(y)). The homogeneous mixed graphical model enforces

common covariance, Σ(y) ≡ Σ. Thus our proposed model is a special case of Lauritzen’s mixed

model with the following assumptions: common covariance, additive mean assumptions and the

marginal p(y) factorizes as a pairwise discrete Markov random field. With these three assumptions,

the full model simplifies to the mixed pairwise model presented. Although the full model is more

general, the number of parameters scales exponentially with the number of discrete variables, and

the conditional distributions are not as convenient. For each state of the discrete variables there is
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a mean and covariance. Consider an example with q binary variables and p continuous variables;

the full model requires estimates of 2q mean vectors and covariance matrices in p dimensions. Even

if the homogeneous constraint is imposed on Lauritzen’s model, there are still 2q mean vectors for

the case of binary discrete variables. The full mixed model is very complex and cannot be easily

estimated from data without some additional assumptions. In comparison, the mixed pairwise

model has number of parameters O((p+ q)2) and allows for a natural regularization scheme which

makes it appropriate for high dimensional data.

An alternative to the regularization approach that we take in this paper, is the limited-order

correlation hypothesis testing method Tur and Castelo (2012). The authors develop a hypothesis

test via likelihood ratios for conditional independence. However, they restrict to the case where

the discrete variables are marginally independent so the maximum likelihood estimates are well-

defined for p > n.

There is a line of work regarding parameter estimation in undirected mixed models that are

decomposable: any path between two discrete variables cannot contain only continuous variables.

These models allow for fast exact maximum likelihood estimation through node-wise regressions,

but are only applicable when the structure is known and n > p (Edwards, 2000). There is also

related work on parameter learning in directed mixed graphical models. Since our primary goal is

to learn the graph structure, we forgo exact parameter estimation and use the pseudolikelihood.

Similar to the exact maximum likelihood in decomposable models, the pseudolikelihood can be

interpreted as node-wise regressions that enforce symmetry.

To our knowledge, this work is the first to consider convex optimization procedures for learning

the edge structure in mixed graphical models.
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3 Parameter Estimation: Maximum Likelihood and Pseu-

dolikelihood

Given samples (xi, yi)
n
i=1, we want to find the maximum likelihood estimate of Θ. This can be

done by minimizing the negative log-likelihood of the samples:

`(Θ) = −
n∑
i=1

log p(xi, yi; Θ) where (7)

log p(x, y; Θ) =

p∑
s=1

p∑
t=1

−1

2
βstxsxt +

p∑
s=1

αsxs +

p∑
s=1

q∑
j=1

ρsj(yj)xs

+

q∑
j=1

j∑
r=1

φrj(yr, yj)− logZ(Θ) (8)

The negative log-likelihood is convex, so standard gradient-descent algorithms can be used for

computing the maximum likelihood estimates. The major obstacle here is Z(Θ), which involves

a high-dimensional integral. Since the pairwise mixed model includes both the discrete and con-

tinuous models as special cases, maximum likelihood estimation is at least as difficult as the two

special cases, the first of which is a well-known computationally intractable problem. We defer

the discussion of maximum likelihood estimation to Appendix 9.5.

3.1 Pseudolikelihood

The pseudolikelihood method Besag (1975) is a computationally efficient and consistent estimator

formed by products of all the conditional distributions:

˜̀(Θ|x, y) = −
p∑
s=1

log p(xs|x\s, y; Θ)−
q∑
r=1

log p(yr|x, y\r; Θ) (9)

The conditional distributions p(xs|x\s, y; θ) and p(yr = k|y\r,, x; θ) take on the familiar form of

linear Gaussian and (multiclass) logistic regression, as we pointed out in (2) and (3). Here are the

details:

• The conditional distribution of a continuous variable xs is Gaussian with a linear regression

model for the mean, and unknown variance.

p(xs|x\s, y; Θ) =

√
βss√
2π

exp

(
−βss

2

(
αs +

∑
j ρsj(yj)−

∑
t6=s βstxt

βss
− xs

)2
)

(10)
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• The conditional distribution of a discrete variable yr with Lr states is a multinomial distribu-

tion, as used in (multiclass) logistic regression. Whenever a discrete variable is a predictor,

each of its levels contribute an additive effect; continuous variables contribute linear effects.

p(yr|y\r,, x; Θ) =
exp

(∑
s ρsr(yr)xs + φrr(yr, yr) +

∑
j 6=r φrj(yr, yj)

)
∑Lr

l=1 exp
(∑

s ρsr(l)xs + φrr(l, l) +
∑

j 6=r φrj(l, yj)
) (11)

Taking the negative log of both gives us

− log p(xs|x\s, y; Θ) = −1

2
log βss +

βss
2

(
αs
βss

+
∑
j

ρsj(yj)

βss
−
∑
t6=s

βst
βss

xt − xs

)2

(12)

− log p(yr|y\r,, x; Θ) = − log
exp

(∑
s ρsr(yr)xs + φrr(yr, yr) +

∑
j 6=r φrj(yr, yj)

)
∑Lr

l=1 exp
(∑

s ρsr(l)xs + φrr(l, l) +
∑

j 6=r φrj(l, yj)
) (13)

A generic parameter block, θuv, corresponding to an edge (u, v) appears twice in the pseudolikeli-

hood, once for each of the conditional distributions p(zu|zv) and p(zv|zu).

Proposition 1. The negative log pseudolikelihood in (9) is jointly convex in all the parameters

{βss, βst, αs, φrj, ρsj} over the region βss > 0.

We prove Proposition 1 in the Supplementary Materials.

3.2 Separate node-wise regression

A simple approach to parameter estimation is via separate node-wise regressions; a generalized

linear model is used to estimate p(zs|z\s) for each s. Separate regressions were used in Meinshausen

and Bühlmann (2006) for the Gaussian graphical model and Ravikumar et al. (2010) for the Ising

model. The method can be thought of as an asymmetric form of the pseudolikelihood since

the pseudolikelihood enforces that the parameters are shared across the conditionals. Thus the

number of parameters estimated in the separate regression is approximately double that of the

pseudolikelihood, so we expect that the pseudolikelihood outperforms at low sample sizes and

low regularization regimes. The node-wise regression was used as our baseline method since it

is straightforward to extend it to the mixed model. As we predicted, the pseudolikelihood or

joint procedure outperforms separate regressions; see top left box of Figures 4 and 5. Liu and
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Ihler (2012, 2011) confirm that the separate regressions are outperformed by pseudolikelihood in

numerous synthetic settings.

Concurrent work of Yang et al. (2012, 2013) extend the separate node-wise regression model

from the special cases of Gaussian and categorical regressions to generalized linear models, where

the univariate conditional distribution of each node p(xs|x\s) is specified by a generalized lin-

ear model (e.g. Poisson, categorical, Gaussian). By specifying the conditional distributions,

Besag (1974) show that the joint distribution is also specified. Thus another way to justify

our mixed model is to define the conditionals of a continuous variable as Gaussian linear re-

gression and the conditionals of a categorical variable as multiple logistic regression and use

the results in Besag (1974) to arrive at the joint distribution in (1). However, the neighbor-

hood selection algorithm in Yang et al. (2012, 2013) is restricted to models of the form p(x) ∝

exp
(∑

s θsxs +
∑

s,t θstxsxt +
∑

sC(xs)
)
. In particular, this procedure cannot be applied to edge

selection in our pairwise mixed model in (1) or the categorical model in (2) with greater than 2

states. Our baseline method of separate regressions is closely related to the neighborhood selec-

tion algorithm they proposed; the baseline can be considered as a generalization of Yang et al.

(2012, 2013) to allow for more general pairwise interactions with the appropriate regularization

to select edges. Unfortunately, the theoretical results in Yang et al. (2012, 2013) do not apply to

the baseline nodewise regression method, nor the joint pseudolikelihood.

4 Conditional Independence and Penalty Terms

In this section, we show how to incorporate edge selection into the maximum likelihood or pseu-

dolikelihood procedures. In the graphical representation of probability distributions, the absence

of an edge e = (u, v) corresponds to a conditional independency statement that variables xu and

xv are conditionally independent given all other variables (Koller and Friedman, 2009). We would

like to maximize the likelihood subject to a penalization on the number of edges since this results

in a sparse graphical model. In the pairwise mixed model, there are 3 type of edges

1. βst is a scalar that corresponds to an edge from xs to xt. βst = 0 implies xs and xt are

conditionally independent given all other variables. This parameter is in two conditional
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distributions, corresponding to either xs or xt is the response variable, p(xs|x\s, y; Θ) and

p(xt|x\t, y; Θ).

2. ρsj is a vector of length Lj. If ρsj(yj) = 0 for all values of yj, then yj and xs are conditionally

independent given all other variables. This parameter is in two conditional distributions, cor-

responding to either xs or yj being the response variable: p(xs|x\s, y; Θ) and p(yj|x, y\j; Θ).

3. φrj is a matrix of size Lr × Lj. If φrj(yr, yj) = 0 for all values of yr and yj, then yr and yj

are conditionally independent given all other variables. This parameter is in two conditional

distributions, corresponding to either yr or yj being the response variable, p(yr|x, y\r; Θ) and

p(yj|x, y\j; Θ).

For edges that involve discrete variables, the absence of that edge requires that the entire matrix

φrj or vector ρsj is 0. The form of the pairwise mixed model motivates the following regularized

optimization problem

minimize
Θ

`λ(Θ) = `(Θ) + λ

(∑
s<t

1[βst 6= 0] +
∑
sj

1[ρsj 6≡ 0] +
∑
r<j

1[φrj 6≡ 0]

)
(14)

All parameters that correspond to the same edge are grouped in the same indicator function.

This problem is non-convex, so we replace the l0 sparsity and group sparsity penalties with the

appropriate convex relaxations. For scalars, we use the absolute value (l1 norm), for vectors we

use the l2 norm, and for matrices we use the Frobenius norm. This choice corresponds to the

standard relaxation from group l0 to group l1/l2 (group lasso) norm (Bach et al., 2011; Yuan and

Lin, 2006).

minimize
Θ

`λ(Θ) = `(Θ) + λ

(
p∑
s=1

s−1∑
t=1

|βst|+
p∑
s=1

q∑
j=1

‖ρsj‖2 +

q∑
j=1

j−1∑
r=1

‖φrj‖F

)
(15)

5 Calibrated regularizers

In (15) each of the group penalties are treated as equals, irrespective of the size of the group.

We suggest a calibration or weighting scheme to balance the load in a more equitable way. We
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Figure 1: Symmetric matrix represents the parameters Θ of the model. This example has p = 3, q = 2,

L1 = 2 and L2 = 3. The red square corresponds to the continuous graphical model coefficients B and the

solid red square is the scalar βst. The blue square corresponds to the coefficients ρsj and the solid blue

square is a vector of parameters ρsj(·). The orange square corresponds to the coefficients φrj and the

solid orange square is a matrix of parameters φrj(·, ·). The matrix is symmetric, so each parameter block

appears in two of the conditional probability regressions.

introduce weights for each group of parameters and show how to choose the weights such that

each parameter set is treated equally under pF , the fully-factorized independence model 2

minimize
Θ

`(Θ) + λ

(
p∑
t=1

s−1∑
t=1

wst|βst|+
p∑
s=1

q∑
j=1

wsj ‖ρsj‖2 +

q∑
j=1

j−1∑
r=1

wrj ‖φrj‖F

)
(16)

Based on the KKT conditions (Friedman et al., 2007), the parameter group θg is non-zero if∥∥∥∥ ∂`∂θg
∥∥∥∥ > λwg

where θg and wg represents one of the parameter groups and its corresponding weight. Now ∂`
∂θg

can

be viewed as a generalized residual, and for different groups these are different dimensions—e.g.

scalar/vector/matrix. So even under the independence model (when all terms should be zero), one

might expect some terms
∥∥∥ ∂`
∂θg

∥∥∥ to have a better random chance of being non-zero (for example,

those of bigger dimensions). Thus for all parameters to be on equal footing, we would like to

choose the weights w such that

EpF

∥∥∥∥ ∂`∂θg
∥∥∥∥ = constant× wg

2Under the independence model pF is fully-factorized p(x, y) =
∏p

s=1 p(xs)
∏q

r=1 p(yr)

11



However, it is simpler to compute in closed form EpF

∥∥∥ ∂`
∂θg

∥∥∥2

, so we choose

wg ∝

√
EpF

∥∥∥∥ ∂`∂θg
∥∥∥∥2

where pF is the fully factorized (independence) model. In Appendix 9.6, we show that the weights

can be chosen as

wst = σsσt

wsj = σs

√∑
a

pa(1− pa)

wrj =

√∑
a

pa(1− pa)
∑
b

qb(1− qb)

σs is the standard deviation of the continuous variable xs. pa = Pr(yr = a) and qb = Pr(yj = b) .

For all 3 types of parameters, the weight has the form of wuv = tr(cov(zu))tr(cov(zv)), where z

represents a generic variable and cov(z) is the variance-covariance matrix of z.

6 Model Selection Consistency

In this section, we study the model selection consistency, the correct edge set is selected and the

parameter estimates are close to the truth, of pseudolikelihood and maximum likelihood. We will

see that the consistency can be established using the framework first developed in Ravikumar et al.

(2010) and later extended to general m-estimators by Lee et al. (2013). The proofs in this section

are omitted since they follow from a straightforward application of the results in Lee et al. (2013);

the results are stated for the mixed model to show that under certain conditions the estimation

procedures are model selection consistent. We also only consider the uncalibrated regularizers to

simplify the notation, but it is straightforward to adapt to the calibrated regularizer case.

First, we define some notation. Recall that Θ is the vector of parameters being estimated

{βss, βst, αs, φrj, ρsj}, Θ? be the true parameters that estimated the model, and Q = ∇2`(Θ?).

Both estimation procedures can be written as a convex optimization problem of the form

minimize `(Θ) + λ
∑
g∈G

‖Θg‖2 (17)
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where `(θ) = {`ML, `PL} is one of the two log-likelihoods. The regularizer

∑
g∈G

‖Θg‖ = λ

(
p∑
s=1

s−1∑
t=1

|βst|+
p∑
s=1

q∑
j=1

‖ρsj‖2 +

q∑
j=1

j−1∑
r=1

‖φrj‖F

)
.

The set G indexes the edges βst, ρsj, and φrj, and Θg is one of the three types of edges.

It is difficult to establish consistency results for the problem in Equation (17) because the

parameters are non-identifiable. This is because `(Θ) is constant with respect to the change of

variables ρ′sj(yj) = ρsj(yj) + c and similarly for φ, so we cannot hope to recover Θ?. A popular

fix for this issue is to drop the last level of ρ and φ, so they are only indicators over L− 1 levels

instead of L levels. This allows for the model to be identifiable, but it results in an asymmetric

formulation that treats the last level differently from other levels. Instead, we will maintain the

symmetric formulation by introducing constraints. Consider the problem

minimize
Θ

`(Θ) + λ
∑
g∈G

‖Θg‖2

subject to CΘ = 0.

(18)

The matrix C constrains the optimization variables such that∑
yj

ρsj(yj) = 0

∑
yj

φrj(yr, yj) = 0.

The group regularizer implicitly enforces the same set of constraints, so the optimization problems

of Equation (18) and Equation (17) have the same solutions. For our theoretical results, we will

use the constrained formulation of Equation (18), since it is identifiable.

We first state some definitions and two assumptions from Lee et al. (2013) that are necessary

to present the model selection consistency results. Let A and I represent the active and inactive

groups in Θ, so Θ?
g 6= 0 for any g ∈ A and Θ?

g = 0 for any g ∈ I. The sets associated with the

active and inactive groups are defined as

A = {Θ ∈ Rd : max
g∈G
‖Θg‖2 ≤ 1 and ‖Θg‖2 = 0, g ∈ I}

I = {Θ ∈ Rd : max
g∈G
‖Θg‖2 ≤ 1 and ‖Θg‖2 = 0, g ∈ A}.
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Let M = span(I)⊥ ∩ Null(C) and PM be the orthogonal projector onto the subspace M . The

two assumptions are

1. Restricted Strong Convexity. We assume that

sup
v∈M

vT∇2`(Θ)v

vTv
≥ m (19)

for all ‖Θ−Θ?‖2 ≤ r. Since ∇2`(Θ) is lipschitz continuous, the existence of a constant m

that satisfies (19) is implied by the pointwise restricted convexity

sup
v∈M

vT∇2`(Θ?)v

vTv
≥ m̃.

For convenience, we will use the former.

2. Irrepresentable condition. There exist τ ∈ (0, 1) such that

sup
z∈A

V (PM⊥(∇2`(Θ?)PM(PM∇2`(Θ?)PM)†PMz − z)) < 1− τ, (20)

where V is the infimal convolution of ρI , the gauge of set I, and 1Null(C)⊥ :

V (z) = inf
z=u1+u2

{ρI(u1) + 1Null(C)⊥(u2)}.

Restricted strong convexity is a standard assumption that ensures the parameter Θ is uniquely

determined by the value of the likelihood function. Without this, there is no hope of accurately

estimating Θ?. It is only stated over a subspace M which can be much smaller than Rd. The

Irrepresentable condition is a more stringent condition. Intuitively, it requires that the active

variables not be overly dependent on the inactive variables. Although the exact form of the

condition is not enlightening, it is known to be ”almost” necessary for model selection consistency

in the lasso (Zhao and Yu, 2006) and a common assumption in other works that establish model

selection consistency (Ravikumar et al., 2010; Jalali et al., 2011; Peng et al., 2009). We also define

the constants that appear in the theorem:

1. Lipschitz constants L1 and L2. Let Λ(Θ) be the log-partition function. Λ(Θ) and `(Θ) are

twice continuously differentiable functions, so their gradient and hessian are locally Lipschitz

continuous in a ball of radius r around Θ?:

‖∇Λ(Θ1)−∇Λ(Θ2)‖2 ≤ L1 ‖Θ1 −Θ2‖2 , Θ1,Θ2 ∈ Br(Θ
?)∥∥∇2`(Θ1)−∇2`(Θ2)

∥∥
2
≤ L2 ‖Θ1 −Θ2‖2 , Θ1,Θ2 ∈ Br(Θ

?)
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2. Let τ̄ satisfy

sup
z∈A∪I

V (PM⊥(∇2`(Θ?)PM(PM∇2`(Θ?)PM)†PMz − z)) < τ̄.

V is a continuous function of z, so a finite τ̄ exists.

Theorem 2. Suppose we are given samples x(1), . . . , x(n) from the mixed model with unknown

parameters Θ?. If we select

λ =
2
√

256L1τ̄

τ

√
(maxg∈G |g|) log |G|

n

and the sample size n is larger than

max


4096L1L2

2τ̄
2

m4τ4

(
2 + τ

τ̄

)4
(maxg∈G |g|)|A|2 log |G|

2048L1

m2r2
(2 + τ

τ̄
)2(maxg∈G |g|)|A| log |G|,

then, with probability at least 1−2
(

maxg∈G |g|
)

exp(−cλ2n), the optimal solution to (17) is unique

and model selection consistent,

1. ‖Θ̂−Θ?‖2 ≤ 4
m

(
τ̄+1
2τ

)√256L1|A|(maxg∈G |g|) log |G|
n

,

2. Θ̂g = 0, g ∈ I and Θ̂g 6= 0 if
∥∥Θ?

g

∥∥
2
> 1

m

(
1 + τ

2τ̄

)√
|A|λ.

Remark 3. The same theorem applies to both the maximum likelihood and pseudolikelihood es-

timators. For the maximum likelihood, the constants can be tightened; everywhere L1 appears

can be replaced by L1/128 and the theorem remains true. However, the values of τ, τ̄ ,m, L1, L2

are different for the two methods. For the maximum likelihood, the gradient of the log-partition

∇Λ(Θ) and hessian of the log-likelihood ∇2`(Θ) do not depend on the samples. Thus the constants

τ, τ̄ ,m, L1, L2 are completely determined by Θ? and the likelihood. For the pseudolikelihood, the

values of τ, τ̄ ,m, L2 depend on the samples, and the theorem only applies if the assumptions are

made on sample quantities; thus, the theorem is less useful in practice when applied to the pseu-

dolikelihood. This is similar to the situation in Yang et al. (2013), where assumptions are made

on sample quantities.
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7 Optimization Algorithms

In this section, we discuss two algorithms for solving (15): the proximal gradient and the proximal

newton methods. This is a convex optimization problem that decomposes into the form f(x)+g(x),

where f is smooth and convex and g is convex but possibly non-smooth. In our case f is the

negative log-likelihood or negative log-pseudolikelihood and g are the group sparsity penalties.

Block coordinate descent is a frequently used method when the non-smooth function g is the

l1 or group l1. It is especially easy to apply when the function f is quadratic, since each block

coordinate update can be solved in closed form for many different non-smooth g (Friedman et al.,

2007). The smooth f in our particular case is not quadratic, so each block update cannot be

solved in closed form. However in certain problems (sparse inverse covariance), the update can be

approximately solved by using an appropriate inner optimization routine (Friedman et al., 2008b).

7.1 Proximal Gradient

Problems of this form are well-suited for the proximal gradient and accelerated proximal gradient

algorithms as long as the proximal operator of g can be computed (Combettes and Pesquet, 2011;

Beck and Teboulle, 2010)

proxt(x) = argmin
u

1

2t
‖x− u‖2 + g(u) (21)

For the sum of l2 group sparsity penalties considered, the proximal operator takes the familiar

form of soft-thresholding and group soft-thresholding (Bach et al., 2011). Since the groups are

non-overlapping, the proximal operator simplifies to scalar soft-thresholding for βst and group

soft-thresholding for ρsj and φrj.

The class of proximal gradient and accelerated proximal gradient algorithms is directly appli-

cable to our problem. These algorithms work by solving a first-order model at the current iterate

xk

argmin
u

f(xk) +∇f(xk)
T (u− xk) +

1

2t
‖u− xk‖2 + g(u) (22)

= argmin
u

1

2t
‖u− (xk − t∇f(xk))‖2 + g(u) (23)

= proxt(xk − t∇f(xk)) (24)
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The proximal gradient iteration is given by xk+1 = proxt (xk − t∇f(xk)) where t is determined

by line search. The theoretical convergence rates and properties of the proximal gradient algo-

rithm and its accelerated variants are well-established (Beck and Teboulle, 2010). The accelerated

proximal gradient method achieves linear convergence rate of O(ck) when the objective is strongly

convex and the sublinear rate O(1/k2) for non-strongly convex problems.

The TFOCS framework (Becker et al., 2011) is a package that allows us to experiment with

6 different variants of the accelerated proximal gradient algorithm. The TFOCS authors found

that the Auslender-Teboulle algorithm exhibited less oscillatory behavior, and proximal gradi-

ent experiments in the next section were done using the Auslender-Teboulle implementation in

TFOCS.

7.2 Proximal Newton Algorithms

The class of proximal Newton algorithms is a 2nd order analog of the proximal gradient algo-

rithms with a quadratic convergence rate (Lee et al., 2012; Schmidt, 2010; Schmidt et al., 2011).

It attempts to incorporate 2nd order information about the smooth function f into the model

function. At each iteration, it minimizes a quadratic model centered at xk

argmin
u

f(xk) +∇f(xk)
T (u− xk) +

1

2t
(u− xk)TH(u− xk) + g(u) (25)

= argmin
u

1

2t

(
u− xk + tH−1∇f(xk)

)T
H
(
u− xk + tH−1∇f(xk)

)
+ g(u) (26)

= argmin
u

1

2t

∥∥u− (xk − tH−1∇f(xk)
)∥∥2

H
+ g(u) (27)

:= Hproxt
(
xk − tH−1∇f(xk)

)
where H = ∇2f(xk) (28)

The Hprox operator is analogous to the proximal operator, but in the ‖·‖H-norm. It simplifies to

the proximal operator if H = I, but in the general case of positive definite H there is no closed-form

solution for many common non-smooth g(x) (including l1 and group l1). However if the proximal

operator of g is available, each of these sub-problems can be solved efficiently with proximal

gradient. In the case of separable g, coordinate descent is also applicable. Fast methods for

solving the subproblem Hproxt(xk − tH−1∇f(xk)) include coordinate descent methods, proximal

gradient methods, or Barzilai-Borwein (Friedman et al., 2007; Combettes and Pesquet, 2011; Beck
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Algorithm 1 Proximal Newton

repeat

Solve subproblem pk = Hproxt
(
xk − tH−1

k ∇f(xk)
)
− xk using TFOCS.

Find t to satisfy Armijo line search condition with parameter α

f(xk + tpk) + g(xk + tpk) ≤ f(xk) + g(xk)−
tα

2
‖pk‖2

Set xk+1 = xk + tpk

k = k + 1

until ‖xk−xk+1‖
‖xk‖

< tol

and Teboulle, 2010; Wright et al., 2009). The proximal Newton framework allows us to bootstrap

many previously developed solvers to the case of arbitrary loss function f .

Theoretical analysis in Lee et al. (2012) suggests that proximal Newton methods generally

require fewer outer iterations (evaluations of Hprox) than first-order methods while providing

higher accuracy because they incorporate 2nd order information. We have confirmed empirically

that the proximal Newton methods are faster when n is very large or the gradient is expensive

to compute (e.g. maximum likelihood estimation). Since the objective is quadratic, coordinate

descent is also applicable to the subproblems. The hessian matrix H can be replaced by a quasi-

newton approximation such as BFGS/L-BFGS/SR1. In our implementation, we use the PNOPT

implementation (Lee et al., 2012).

7.3 Path Algorithm

Frequently in machine learning and statistics, the regularization parameter λ is heavily dependent

on the dataset. λ is generally chosen via cross-validation or holdout set performance, so it is

convenient to provide solutions over an interval of [λmin, λmax]. We start the algorithm at λ1 =

λmax and solve, using the previous solution as warm start, for λ2 > . . . > λmin. We find that this

reduces the cost of fitting an entire path of solutions (See Figure 3). λmax can be chosen as the

smallest value such that all parameters are 0 by using the KKT equations (Friedman et al., 2007).
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8 Conditional Model

We can generalize our mixed model, when there are additional features f , to a class of conditional

random fields. Conditional models only model the conditional distribution p(z|f), as opposed to

the joint distribution p(z, f), where z are the variables of interest to the prediction task and f are

features.

In addition to observing x and y, we observe features f and we build a graphical model for

the conditional distribution p(x, y|f). Consider a full pairwise model p(x, y, f) of the form (1).

We then choose to only model the joint distribution over only the variables x and y to give us

p(x, y|f) which is of the form

p(x, y|f ; Θ) =
1

Z(Θ|f)
exp

(
p∑
s=1

p∑
t=1

−1

2
βstxsxt +

p∑
s=1

αsxs +

p∑
s=1

q∑
j=1

ρsj(yj)xs

+

q∑
j=1

j∑
r=1

φrj(yr, yj) +
F∑
l=1

p∑
s=1

γlsxsfl +
F∑
l=1

q∑
r=1

ηlr(yr)fl

)
(29)

We can also consider a more general model where each pairwise edge potential depends on the

features

p(x, y|f ; Θ) =
1

Z(Θ|f)
exp

(
p∑
s=1

p∑
t=1

−1

2
βst(f)xsxt +

p∑
s=1

αs(f)xs

+

p∑
s=1

q∑
j=1

ρsj(yj, f)xs +

q∑
j=1

j∑
r=1

φrj(yr, yj, f)

)
(30)

(29) is a special case of this where only the node potentials depend on features and the pair-

wise potentials are independent of feature values. The specific parametrized form we consider

is φrj(yr, yj, f) ≡ φrj(yr, yj) for r 6= j, ρsj(yj, f) ≡ ρsj(yj), and βst(f) = βst. The node po-

tentials depend linearly on the feature values, αs(f) = αs +
∑F

l=1 γlsxsfl, and φrr(yr, yr, f) =

φrr(yr, yr) +
∑

l ηlr(yr).

9 Experimental Results

We present experimental results on synthetic data, survey data and on a conditional model.
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(a) Graph Structure with 4 continuous and 4 dis-

crete variables.
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(b) Probability of recovery

Figure 2: Figure 2a shows the graph used in the synthetic experiments for p = q = 4; the experiment

used p=10 and q=10. Blue nodes are continuous variables, red nodes are binary variables and the orange,

green and dark blue lines represent the 3 types of edges. Figure 2b is a plot of the probability of correct edge

recovery at a given sample size using Maximum Likelihood and Pseudolikelihood. Results are averaged

over 100 trials.

9.1 Synthetic Experiments

In the synthetic experiment, the training points are sampled from a true model with 10 continuous

variables and 10 binary variables. The edge structure is shown in Figure 2a. λ is chosen as

5
√

log p+q
n

as suggested by the theoretical results in Section 6. We see from the experimental

results that recovery of the correct edge set undergoes a sharp phase transition, as expected.

With n = 1000 samples, the pseudolikelihood is recovering the correct edge set with probability

nearly 1. The phase transition experiments were done using the proximal Newton algorithm

discussed in Section 7.2.

9.2 Survey Experiments

The census survey dataset we consider consists of 11 variables, of which 2 are continuous and 9 are

discrete: age (continuous), log-wage (continuous), year(7 states), sex(2 states),marital status (5

states), race(4 states), education level (5 states), geographic region(9 states), job class (2 states),
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Figure 3: Model selection under different training set sizes. Circle denotes the lowest test set negative

log pseudolikelihood and the number in parentheses is the number of edges in that model at the lowest test

negative log pseudolikelihood. The saturated model has 55 edges.

health (2 states), and health insurance (2 states). The dataset was assembled by Steve Miller

of OpenBI.com from the March 2011 Supplement to Current Population Survey data. All the

evaluations are done using a holdout test set of size 100, 000 for the survey experiments. The

regularization parameter λ is varied over the interval [5 × 10−5, 0.7] at 50 points equispaced on

log-scale for all experiments.

9.2.1 Model Selection

In Figure 3, we study the model selection performance of learning a graphical model over the

11 variables under different training samples sizes. We see that as the sample size increases, the

optimal model is increasingly dense, and less regularization is needed.

9.2.2 Comparing against Separate Regressions

A sensible baseline method to compare against is a separate regression algorithm. This algorithm

fits a linear Gaussian or (multiclass) logistic regression of each variable conditioned on the rest.

We can evaluate the performance of the pseudolikelihood by evaluating − log p(xs|x\s, y) for lin-

ear regression and − log p(yr|y\r, x) for (multiclass) logistic regression. Since regression is directly

optimizing this loss function, it is expected to do better. The pseudolikelihood objective is sim-
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ilar, but has half the number of parameters as the separate regressions since the coefficients are

shared between two of the conditional likelihoods. From Figures 4 and 5, we can see that the

pseudolikelihood performs very similarly to the separate regressions and sometimes even outper-

forms regression. The benefit of the pseudolikelihood is that we have learned parameters of the

joint distribution p(x, y) and not just of the conditionals p(xs|y, x\s). On the test dataset, we can

compute quantities such as conditionals over arbitrary sets of variables p(yA, xB|yAC , xBC ) and

marginals p(xA, yB) (Koller and Friedman, 2009). This would not be possible using the separate

regressions.

9.2.3 Conditional Model

Using the conditional model (29), we model only the 3 variables logwage, education(5) and

jobclass(2). The other 8 variables are only used as features. The conditional model is then

trained using the pseudolikelihood. We compare against the generative model that learns a joint

distribution on all 11 variables. From Figure 6, we see that the conditional model outperforms the

generative model, except at small sample sizes. This is expected since the conditional distribution

models less variables. At very small sample sizes and small λ, the generative model outperforms

the conditional model. This is likely because generative models converge faster (with less samples)

than discriminative models to its optimum.

9.2.4 Maximum Likelihood vs Pseudolikelihood

The maximum likelihood estimates are computable for very small models such as the conditional

model previously studied. The pseudolikelihood was originally motivated as an approximation

to the likelihood that is computationally tractable. We compare the maximum likelihood and

maximum pseudolikelihood on two different evaluation criteria: the negative log likelihood and

negative log pseudolikelihood. In Figure 7, we find that the pseudolikelihood outperforms max-

imum likelihood under both the negative log likelihood and negative log pseudolikelihood. We

would expect that the pseudolikelihood trained model does better on the pseudolikelihood evalu-

ation and maximum likelihood trained model does better on the likelihood evaluation. However,
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Figure 4: Separate Regression vs Pseudolikelihood n = 100. y-axis is the appropriate regression loss for

the response variable. For low levels of regularization and at small training sizes, the pseudolikelihood

seems to overfit less; this may be due to a global regularization effect from fitting the joint distribution as

opposed to separate regressions.
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Figure 5: Separate Regression vs Pseudolikelihood n = 10, 000. y-axis is the appropriate regression loss

for the response variable. At large sample sizes, separate regressions and pseudolikelihood perform very

similarly. This is expected since this is nearing the asymptotic regime.
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is evaluated on negative log pseudolikelihood of the conditional model. The conditional model outperforms

the full generative model at except the smallest sample size n = 100.
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we found that the pseudolikelihood trained model outperformed the maximum likelihood trained

model on both evaluation criteria. Although asymptotic theory suggests that maximum likeli-

hood is more efficient than the pseudolikelihood, this analysis is applicable because of the finite

sample regime and misspecified model. See Liang and Jordan (2008) for asymptotic analysis of

pseudolikelihood and maximum likelihood under a well-specified model. We also observed the

pseudolikelihood slightly outperforming the maximum likelihood in the synthetic experiment of

Figure 2b.
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Supplementary Materials

9.3 Proof of Convexity

Proposition 1.The negative log pseudolikelihood in (9) is jointly convex in all the parameters

{βss, βst, αs, φrj, ρsj} over the region βss > 0.

Proof. To verify the convexity of ˜̀(Θ|x, y), it suffices to check that each term is convex.

− log p(yr|y\r,, x; Θ) is jointly convex in ρ and φ since it is a multiclass logistic regression. We now

check that − log p(xs|x\s, y; Θ) is convex. −1
2

log βss is a convex function. To establish that

βss
2

(
αs
βss

+
∑
j

ρsj(yj)

βss
−
∑
t6=s

βst
βss

xt − xs

)2

is convex, we use the fact that f(u, v) = v
2
(u
v
− c)2 is convex. Let v = βss, u = αs +

∑
j ρsj(yj)−∑

t6=s βstxt, and c = xs. Notice that xs, αs, yj, and xt are fixed quantities and u is affinely

related to βst and ρsj. A convex function composed with an affine map is still convex, thus

βss
2

(
αs

βss
+
∑

j
ρsj(yj)

βss
−
∑

t6=s
βst
βss
xt − xs

)2

is convex.

To finish the proof, we verify that f(u, v) = v
2
(u
v
− c)2 = 1

2
(u−cv)2

v
is convex over v > 0. The

epigraph of a convex function is a convex set iff the function is convex. Thus we establish that

the set C = {(u, v, t)|1
2

(u−cv)2

v
≤ t, v > 0} is convex. Let A =

 v u− cv

u− cv t

 . The Schur

complement criterion of positive definiteness says A � 0 iff v > 0 and t > (u−cv)2

v
. The condition

A � 0 is a linear matrix inequality and thus convex in the entries of A. The entries of A are

linearly related to u and v, so A � 0 is also convex in u and v. Therefore v > 0 and t > (u−cv)2

v
is

a convex set.
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9.4 Sampling From The Joint Distribution

In this section we discuss how to draw samples (x, y) ∼ p(x, y). Using the property that p(x, y) =

p(y)p(x|y), we see that if y ∼ p(y) and x ∼ p(x|y) then (x, y) ∼ p(x, y). We have that

p(y) ∝ exp (
∑
r,j

φrj(yr, yj) +
1

2
ρ(y)TB−1ρ(y)) (31)

(ρ(y))s =
∑
j

ρsj(yj) (32)

p(x|y) = No(B−1(α + ρ(y)), B−1) (33)

The difficult part is to sample y ∼ p(y) since this involves the partition function of the discrete

MRF. This can be done with MCMC for larger models and junction tree algorithm or exact

sampling for small models.

9.5 Maximum Likelihood

The difficulty in MLE is that in each gradient step we have to compute T̂ (x, y)−Ep(Θ) [T (x, y)], the

difference between the empirical sufficient statistic T̂ (x, y) and the expected sufficient statistic. In

both continuous and discrete graphical models the computationally expensive step is evaluating

Ep(Θ) [T (x, y)]. In discrete problems, this involves a sum over the discrete state space and in

continuous problem, this requires matrix inversion. For both discrete and continuous models,

there has been much work on addressing these difficulties. For discrete models, the junction tree

algorithm is an exact method for evaluating marginals and is suitable for models with low tree

width. Variational methods such as belief propagation and tree reweighted belief propagation

work by optimizing a surrogate likelihood function by approximating the partition function Z(Θ)

by a tractable surrogate Z̃(Θ) Wainwright and Jordan (2008). In the case of a large discrete state

space, these methods can be used to approximate p(y) and do approximate maximum likelihood

estimation for the discrete model. Approximate maximum likelihood estimation can also be done

via Monte Carlo estimates of the gradients T̂ (x, y) − Ep(Θ)(T (x, y)). For continuous Gaussian

graphical models, efficient algorithms based on block coordinate descent Friedman et al. (2008b);

Banerjee et al. (2008) have been developed, that do not require matrix inversion.

32



The joint distribution and loglikelihood are:

p(x, y; Θ) = exp (−1

2
xTBx+ (α + ρ(y))Tx+

∑
(r,j)

φrj(yr, yj))/Z(Θ)

`(Θ) =

1

2
xTBx− (α + ρ(y))Tx−

∑
(r,j)

φrj(yr, yj)


+ log(

∑
y′

∫
dx exp (−1

2
xTBx+ (α + ρ(y′))Tx) exp(

∑
(r,j)

φrj(y
′
r, y
′
j)))

The derivative is

∂`

∂B
=

1

2
xxT +

∫
dx(
∑

y′ −
1
2
xxT exp(−1

2
xTBx+ (α + ρ(y))Tx+

∑
(r,j) φrj(y

′
r, y
′
j)))

Z(Θ)

=
1

2
xxT +

∫ ∑
y′

(−1

2
xxTp(x, y′; Θ))

=
1

2
xxT +

∑
y′

∫
−1

2
xxTp(x|y′; Θ)p(y′)

=
1

2
xxT +

∑
y′

∫
−1

2

(
B−1 +B−1(α + ρ(y′))(α + ρ(y′)T )B−1

)
p(y′)

The primary cost is to compute B−1 and the sum over the discrete states y.

The computation for the derivatives of `(Θ) with respect to ρsj and φrj are similar.

∂`

φrj(a, b)
= −1(yr = a, yj = b) +

∑
y′

∫
dx1(y′r = a, y′j = b)p(x, y′; Θ)

= −1(yr = a, yj = b) +
∑
y′

1(y′r = a, y′j = b)p(y′)

The gradient requires summing over all discrete states.

Similarly for ρsj(a):

∂`

ρsj(a)
= −1(yj = a)xs +

∑
y′

∫
dx(1(y′j = a)xs)p(x

′, y′; Θ)

= −1(yj = a)xs +

∫
dx
∑
y′\j

xsp(x|y′\j, y′j = a)p(y′\j, y
′
j = a)

MLE estimation requires summing over the discrete states to compute the expected sufficient

statistics. This may be approximated using using samples (x, y) ∼ p(x, y; Θ). The method in the
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previous section shows that sampling is efficient if y ∼ p(y) is efficient. This allows us to use

MCMC methods developed for discrete MRF’s such as Gibbs sampling.

9.6 Choosing the Weights

We first show how to compute wsj. The gradient of the pseudo-likelihood with respect to a

parameter ρsj(a) is given below

∂ ˜̀

∂ρsj(a)
=

n∑
i=1

−2× 1
[
yij = a

]
xis + EpF (1[yj = a]xs|yi\j, xi) + EpF (1[yj = a]xs|xi\s, yi)

=
n∑
i=1

−2× 1
[
yij = a

]
xis + xisp(yj = a) + 1

[
yij = a

]
µs

=
n∑
i=1

1
[
yij = a

] (
µ̂s − xis

)
+ xis

(
p̂(yj = a)− 1

[
yij = a

])
=

n∑
i=1

(
1
[
yij = a

]
− p̂(yj = a)

) (
µ̂s − xis

)
+
(
xis − µ̂s

) (
p̂(yj = a)− 1

[
yij = a

])
(34)

=
n∑
i=1

2
(
1
[
yij = a

]
− p̂(yj = a)

) (
µ̂s − xis

)
(35)

Since the subgradient condition includes a variable if
∥∥∥ ∂ ˜̀

∂ρsj

∥∥∥ > λ, we compute E
∥∥∥ ∂ ˜̀

∂ρsj

∥∥∥2

. By

independence,

EpF

∥∥∥∥∥
n∑
i=1

2
(
1
[
yij = a

]
− p̂(yj = a)

) (
µ̂s − xis

)∥∥∥∥∥
2
 (36)

= 4nEpF

(∥∥1[yij = a
]
− p̂(yj = a)

∥∥2
)
EpF

(∥∥µ̂s − xis∥∥2
)

(37)

= 4(n− 1)p(yj = a)(1− p(yj = a))σ2
s (38)

The last line is an equality if we replace the sample means p̂ and µ̂ with the true values p and

µ. Thus for the entire vector ρsj we have EpF

∥∥∥ ∂ ˜̀

∂ρsj

∥∥∥2

= 4(n− 1) (
∑

a p(yj = a)(1− p(yj = a))σ2
s .

If we let the vector z be the indicator vector of the categorical variable yj, and let the vector

p = p(yj = a), then EpF

∥∥∥ ∂ ˜̀

∂ρsj

∥∥∥2

= 4(n − 1)
∑

a pa(1 − pa)σ
2 = 4(n − 1)tr(cov(z))var(x) and

wsj =
√∑

a pa(1− pa)σ2
s .
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We repeat the computation for βst.

∂`

∂βst
=

n∑
i=1

−2xisxt + EpF (xisx
i
t|x\s, y) + EpF (xisx

i
t|x\t, y)

=
n∑
i=1

−2xisx
i
t + µ̂sx

i
t + µ̂tx

i
s

=
n∑
i=1

xit(µ̂s − xis) + xis(µ̂t − xit)

=
n∑
i=1

(xit − µ̂t)(µ̂s − xis) + (xis − µ̂s)(µ̂t − xit)

=
n∑
i=1

2(xit − µ̂t)(µ̂s − xis)

Thus

E

∥∥∥∥∥
n∑
i=1

2(xit − µ̂t)(µ̂s − xis)

∥∥∥∥∥
2


= 4nEpF ‖xt − µ̂t‖
2EpF ‖xs − µ̂s‖

2

= 4(n− 1)σ2
sσ

2
t

Thus EpF

∥∥∥ ∂`
∂βst

∥∥∥2

= 4(n− 1)σ2
sσ

2
t and taking square-roots gives us wst = σsσt.

We repeat the same computation for φrj. Let pa = Pr(yr = a) and qb = Pr(yj = b).

∂ ˜̀

∂φrj(a, b)
=

n∑
i=1

−1
[
yir = a

]
1
[
yij = b

]
+ E

(
1[yr = a]1[yj = b]|y\r, x

)
+ E

(
1[yr = a]1[yj = b]|y\j, x

)
=

n∑
i=1

−1
[
yir = a

]
1
[
yij = b

]
+ p̂a1

[
yij = b

]
+ q̂b1

[
yir = a

]
=

n∑
i=1

1
[
yij = b

]
(p̂a − 1

[
yir = a

]
) + 1

[
yir = a

]
(q̂b − 1

[
yij = b

]
)

=
n∑
i=1

(1
[
yij = b

]
− q̂b)(p̂a − 1

[
yir = a

]
) + (1

[
yir = a

]
− p̂a)(q̂b − 1

[
yij = b

]
)

=
n∑
i=1

2(1
[
yij = b

]
− q̂b)(p̂a − 1

[
yir = a

]
)

35



Thus we compute

EpF

∥∥∥∥∥ ∂ ˜̀

∂φrj(a, b)

∥∥∥∥∥
2

= E

∥∥∥∥∥
n∑
i=1

2(1
[
yij = b

]
− q̂b)(p̂a − 1

[
yir = a

]
)

∥∥∥∥∥
2


= 4nEpF ‖q̂b − 1[yj = b]‖2EpF ‖p̂a − 1[yr = a]‖2

= 4(n− 1)qb(1− qb)pa(1− pa)

From this, we see that EpF

∥∥∥ ∂ ˜̀

∂φrj

∥∥∥2

=
∑Lr

a=1

∑Lj

b=1 4(n− 1)qb(1− qb)pa(1− pa) and

wrj =

√∑Lr

a=1

∑Lj

b=1 qb(1− qb)pa(1− pa).
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