Learning the Structure of Sum-Product Networks
via an SVD-based Algorithm

Tameem Adel
Radboud University

Abstract

Sum-product networks (SPNis) are a recently de-
veloped class of deep probabilistic models where
inference is tractable. We present two new struc-
ture learning algorithms for sum-product net-
works, in the generative and discriminative set-
tings, that are based on recursively extracting
rank-one submatrices from data. The proposed
algorithms find the subSPNs that are the most co-
herent jointly in the instances and variables — that
is, whose instances are most strongly correlated
over the given variables.

Experimental results show that SPNs learned us-
ing the proposed generative algorithm have bet-
ter likelihood and inference results — and also
much faster — than previous approaches. Finally,
we apply the discriminative SPN structure learn-
ing algorithm to handwritten digit recognition
tasks, where it achieves state-of-the-art perfor-
mance for an SPN.

1 INTRODUCTION

Sum-product networks (SPNs), introduced in Poon and
Domingos [2011], provide compact, tractable representa-
tions of probability distributions. Layers of hidden vari-
ables are added to the model so long as they maintain com-
pactness whilst keeping inference tractable.

In this work, we present a new SPN structure learning algo-
rithm that constructs an SPN by identifying coherent sub-
SPNs that are sought concurrently across both the instance
and variable dimensions. The subSPN search procedure
aims at compactly and tractably representing the data and
is capable of splitting the data matrix across both dimen-
sions at once, if this leads to a better data representation.

Contribution. We make two main contributions. The
first is SPN-SVD, a new SPN structure learning algorithm

David Balduzzi
Victoria University of Wellington

Ali Ghodsi
University of Waterloo

based on rank-one (rank-1) submatrix extraction. The
problem of finding subSPNs is reformulated as a problem
of finding approximate rank-1 submatrices of the data ma-
trix. An important feature of the approach is that it splits
the data along two dimensions (variables and instances) si-
multaneously when doing so optimises the objective. In
contrast, previously developed approaches to learning the
structure of SPNs split the data across one dimension only,
at a time, without taking into consideration that such local
improvement might drift the overall resulting SPN away
from the optimal representation.

The second main contribution is an extension of our struc-
ture learning algorithm to the setting of discriminative
learning [Gens and Domingos, 2012]. The discrimina-
tive structure learning algorithm, DSPN—-SVD, first extracts
the features that are the most dependent on the labels,
where dependence is measured via the Hilbert-Schmidt In-
dependence Criterion (HSIC), and then recursively applies
SPN-SVD. To the best of our knowledge, it is the first struc-
ture learning algorithm designed for discriminatively train-
ing SPNs.

The performance of both algorithms is extensively evalu-
ated. When evaluated on the Caltech-101 and Olivetti im-
age datasets, SPN-SVD outperforms other SPN algorithms,
with higher log-likelihood (LL) values and much faster per-
formance. The discriminative structure learning algorithm
achieves state-of-the-art performance on handwritten digit
classification when compared with other SPN algorithms.

2 SUM-PRODUCT NETWORKS

SPNs are built by composing tractable distributions. A
tractable distribution is a distribution whose partition func-
tion and mode can be computed in time O(1) [Gens and
Domingos, 2013]. A tractable univariate distribution, Dy,
is an SPN. SPNs provide a representation in which single
tractable distributions of the form Dx are combined into
a richer and more complex distribution, provided that the
resulting distribution remains tractable.

An SPN is a rooted directed acyclic graph (DAG), Gr,
whose leaves are univariate distributions, and whose inter-
nal nodes are sum and product nodes. Edges from a sum
node to its children are assigned positive weights, . Let
Br(.S) denote the branches (children) of S. The scope, sc,
of a sum-product network, S(Gr, W), is the set of vari-
ables that appear in the leaf nodes of the SPN [Poon and
Domingos, 2011]. Sum nodes are denoted by Sum;(Br; :
wy, Bra @ wa,...), where Bry, Bro, ... are the branches
and w; and wsy are their respective weights. Similarly,
product nodes are denoted by Prd;(Bry, Bra,...).

The two composition rules used in SPNs are defined as fol-
lows. Firstly, a product, Prd, of SPNs, suby, ..., sub,
over disjoint scopes, is an SPN, rooted by Prd:

Vsub;, sub; € Br(Prd) : sc(sub;) N sc(sub;) =¢ (1)

A decomposable SPN is one in which each product node
satisfies Eq. (1).

Secondly, a positive weighted sum, Sum, of SPNs over the
same scope is an SPN rooted by Sum [Gens and Domin-
gos, 2013]:

Vsub;, sub; € Br(Sum) : sc(sub;) = sc(subj) (2)

A complete SPN is one in which each sum node satisfies
Eq. (2). A sum node, Sum, can be thought of as the result
of summing out a hidden variable. The sum of weights
of all the branches of a sum node is always equal to 1

(ZsubEBr(Sum) Wsub = 1)

2.1 Related Work on Structure Learning

The emphasis in the SPN literature has recently shifted
from learning parameters to learning the structure of mod-
els. Parameter learning algorithms assume a fixed struc-
ture and learn weights using either generative [Poon and
Domingos, 2011] or discriminative [Gens and Domingos,
2012] training. A hard EM algorithm is used by Poon and
Domingos [2011] to perform generative parameter learn-
ing on SPNs. Deep SPNs are learned successfully using
hard EM with a pre-defined network structure. A discrim-
inative parameter learning algorithm based on gradient de-
scent was introduced in Gens and Domingos [2012].

The first algorithm to learn the structure of an SPN from
data was proposed by Dennis and Ventura [2012]. The
algorithm first clusters data instances and creates a corre-
sponding sum node. Then, it clusters variables in a top-
down approach, creating product nodes. There are three
potential problems with the algorithm. The first is that
any context-specific independences that appear after the
first clustering are not taken into consideration because in-
stances are not clustered after the first step. Secondly, the
algorithm is based on a clustering method that ignores cor-
relation between variables. It will therefore tend to place

dissimilar, but strongly correlated, variables in different
clusters. Finally, the structure and weights are learned us-
ing two distinct methods.

A bottom-up approach, based on greedily merging small
image regions into larger regions, was introduced in Peharz
et al. [2013]. An online learning algorithm was proposed
by Lee et al. [2013], where the problem was cast as an on-
line clustering problem. They develop an incremental SPN
structure learning algorithm based on dynamically modify-
ing the number of clusters based on incoming data.

The most prominent general SPN structure learning algo-
rithm was proposed by Gens and Domingos [2013]. It ap-
plies a recursive top-down approach which, at each step,
checks whether variables can be split into approximately
independent subsets — in which case a product node is con-
structed. Otherwise, the current instances are clustered,
and a sum node is returned with weights proportional to
the number of instances in each cluster. The algorithm
greedily optimises the log-likelihood and overcomes sev-
eral limitations in Dennis and Ventura [2012]. However,
it only searches locally for the ideal splitting candidate at
each step, see discussion of Table 1 below.

To the best of our knowledge, the most recent algorithm for
general SPN structure learning was proposed in Rooshenas
and Lowd [2014]. The authors adapt a method based on
mixture modelling and arithmetic circuit learning. It does
not only apply local modifications in the search of an op-
timal model as arithmetic circuit learning could lead to
global changes. However, a global search over the data is
neither systemic nor guaranteed.

Peharz et al. [2014] learn the structure of a restricted class
of SPNs, where each sum node can have no more than one
branch with a non-zero output for a certain input. Nath
and Domingos [2014] develop an algorithm that learns the
structure of relational SPNs.

Our focus is on learning the structure of general SPNs in
both the generative and discriminative settings.

3 LEARNING THE STRUCTURE OF AN
SPN

Previous SPN structure learning algorithms cluster in-
stances without ensuring that the clustering respects
context-specific independences (independences that hold
only among instances of a specific context or cluster). In
contrast, our proposed algorithm (SPN-SVD) concurrently
checks the data matrix across both the instance and vari-
able dimensions, looking for coherent subSPNs in the form
of rank-1 submatrices.

Motivating Example. It is useful to consider a simple
example in detail, so as to understand how SPN-SVD dif-
fers from SPN-Gens. Tables 1 & 2 contrast the steps

taken by SPN-SVD and SPN-Gens [Gens and Domingos,
2013]. Table 1(A) shows the data matrix, which consists
of 6 instances with 4 variables each. SPN-Gens clusters
the data into 2 clusters, as shown in Table 1(B) and in Fig-
ure 1. In the example, the cluster of elements with value 18
is split.

Table 1: SPN-Gens on an Example Data Matrix. Rows
are instances and columns are variables.

40 40 40 40 40 40 40 40

40 18 18 40 40 18 18 40
20 18 18 20 20 18 18 20
20 20 20 20 20 20 20 20

40 [40 40) 40
40 [40| 40| 40
40 [18 | 18] 40
2018 | 18| 20
20020) 20 (Z0
20 (20| 20| Z0

40 | 40 | 40| 40
40 | 40 | 40 | 40
40 | 18 | 18 | 40

20|18 | 18 | 20
20| 20) 20| 20
201 20 | 20| 20

Figure 1: The SPN Structure Learned from Table 1 by
SPN-Gens.

SPN-SVD deals with the same data quite differently, as
shown in Table 2. The algorithm simultaneously searches
over instances and variables and therefore immediately
identifies the submatrix with all entries equal to 18, chooses
it as a rank-1 submatrix. The algorithm then decomposes
the original matrix into three components and acts recur-
sively on each.

The crucial difference between the two algorithms is that
SPN-SVD identifies the submatrix of entries with value
18 as an “atom” in the data, resulting in a graph struc-
ture that captures an important feature of the data, whereas
SPN-Gens does not. Quantitatively, the final LL value for
SPN-Gens is —2 whereas for SPN-SVD itis —1.39.

Table 2: SPN-SVD Applied to the Matrix from Table 1.

40 40 40 40 [40 40 40 40
40 40 40 40 |40 40 40 40
40 [18 18|40 [40[18 1840

‘ ‘ 20 |20 ‘ 18 18 ‘ 20
20 20 20 20 [20 20 20 20
20 20 20 20 [20 20 20 20

A B
18 | 18
18 | 18
4/‘”/ +5‘___A
18 | 18
18 | 18
e—X—
18 | 18 18 | 18
16 | 18 18 | 18

Figure 2: The SPN Structure Learned from Table 1 by
SPN-SVD.

In essence, SPN-SVD and SPN-Gens are motivated by
two different extreme cases.

SPN-Gens is inspired by the observation that if variables
are independent, then they can be decomposed into separate
(branches or) leaves of an SPN product node.

In contrast, SPN-SVD is inspired by a complementary
observation: if a subset of variables is perfectly corre-
lated over a subset of data, then it forms a rank-1 sub-
matrix. These rank-1 submatrices are the “atoms” out
of which SPN-SVD builds an SPN. Whereas SPN-Gens
searches for independencies; SPN-SVD searches for corre-
lated components.

Searching for rank-1 submatrices instead of independent
variables has three potential advantages. Firstly, correla-
tions are easier to estimate than independence. Secondly,
the search for rank-1 submatrices occurs jointly over vari-
ables and instances, whereas clustering and identifying in-
dependencies are two unrelated procedures. Thirdly, ex-
tracting correlated submatrices reduces redundant compu-

tations, resulting in a faster algorithm, see Lemma 1 below.

3.1 Extracting a Rank-1 Submatrix

The main subroutine of SPN-SVD is a rank-1 extraction
algorithm based on singular value decomposition (SVD).
The approach derives from an algorithm for nonnega-
tive matrix factorization (NMF) developed in Biggs et al.
[2008a].

Let X € R™*" denote a data matrix containing m in-
stances and n variables. We denote by X;, the ith row
of the matrix, corresponding to the it" instance of the data,
and by X,; the j th column of the matrix, corresponding to
the j*" variable.

In the generative training case, assume the labels, if pro-
vided, are included in X. We introduce the notation
X(a,) to refer to the submatrix of X consisting of rows
M c{1,...,m}and columns N C {1,...,n}.

The algorithm extracts the submatrix of the data matrix X
that is closest to having rank-1, denoted by B;, by max-
imising

B; := argmax ||X(M7N)H§,—7||X(M’N) — O‘U’UTH;, 3)

X(m,N)

where ¢ is the maximum singular value of the submatrix
X,y and v € R™,v € R™ are the dominant sin-
gular vectors of of X vy, and || @ || is the Frobenius
norm. Recall that the Frobenius norm is the root sum of the
squared singular values.

The second term in Eq. (3) thus encourages the optimiza-
tion to find a submatrix that is close to rank-1. The first
term ensures the submatrix is biased towards having large
singular values; «y controls the penalty incurred as X/ n)
deviates from being rank-1.

Algorithm 1 details the subroutine, ext ractR1, used to
extract approximate rank-1 submatrices. For fixed M and
N, extractR1 exactly coincides with the SVD power
method. However, instead of fixing M and N, the in-
ner loop searches for the submatrix with the closest rank-
1 approximation. Lines 6 and 8 show a heuristic used
to solve the NP-hard problem defined in Eq. (3) [Biggs
et al., 2008a]. The criterion in lines 6 and 8 of Algo-
rithm 1 decides whether or not to include one column or
row separately. This makes the subroutine parallelisable
and highly scalable in terms of memory and processing
power. extractR1 computes the dominant singular vec-
tors of a submatrix, which are less prone to perturbations
by noise than the full matrix [Biggs et al., 2008b].

3.2 Generative SPN Structure Learning Algorithm
(SPN-SVD)

SPN-SVD recursively extracts “atomic” submatrices from
the input matrix. Each extraction breaks the input ma-

Algorithm 1 Function extractR1(X)

Input: X € R™*" v >1
Output: [M, N, Stop]

1: Select jo € {1,...,n} to maximise ||X(. ;llr
22 M ={1,2,...,m}, N ={jo}
3w =X, jo)
4: repeat

. — u(M)
50 v=Xwyr onTr

. 2 2

6 N={j:w() - Xarylr >0}

. — v(N
7: u = X(:JV) . HU(QT)HF ,

8 M ={i:yu(i)” — | Xumlr >0}
9: until M, N, u, v do not change
10: if X7, n) = X or (|M| = 0 and [N| = 0) then
11: Stop = true
12: else
13: Stop = false
14: end if

trix into three pieces, which are glued together as sum and
product nodes.

Algorithm 2 details the main steps of SPN-SVD. Rows
are instances and columns are variables. Each variable is
divided by its standard deviation before extracting rank-1
submatrices. The normalised values are used in the sub-
routine ext ractR1 only, and are not returned or updated
in the matrix. Normalisation helps discover correlated sets
of variables.

Given an input matrix, subroutine ext ractR1 recursively
extracts an approximate rank-1 submatrix B;. The ma-
trix is then split into three components: the submatrix By,
submatrix Bs consisting of other variables on the same in-
stances as B, and finally submatrix Bs consisting of the
remaining instances.

The optimization in (3) ensures that variables in B; are
maximally correlated and the remaining variables, captured
by B», are largely uncorrelated with B;. The algorithm
therefore combines B; and Bs via a product node

PTd(Bl, BQ)

Finally, the remaining instances, captured by Bs, are added
via a sum node

Sum(Bg :wy, Prd(By, Bs) : wg),
|M]|

where wy = — and wy =1 — wsq.

The algorithm proceeds recursively by feeding B, B and
B3 back into the algorithm as input matrices until one of
three base cases is reached:

1. The input matrix contains a single variable:

The remaining vector represents a univariate distribu-
tion and a leaf node is created (line 2).

Algorithm 2 Function SPN-SVD(A)

Input: A € R™*" v > 1

Output: Sum-product network S representing A
1: if #columns(A) = 1 then

2: return univariate distribution on variable.

3: else if #rows(A) = 1 then

4: return return Prd(variables in A).

5

6

7

. end if
: [M, N, Stop] =extractR1(A,~)
: Set B = A(J\LN)’ By = A(JW,NC) and By =
A(pe (1..m})
8: if Stop = true then
9: return multivariate distribution MVLN(A)
10: else
11: Construct Prd(B;, Bs)
12: Call SPN-SVD(B;) and SPN-SVD(Bs)
13: Construct
m

- = |M|,Prd(B1,Bg) : |M|)
m m

Sum (B3 :

14: Call SPN-SVD(B3)
15: end if

2. The input matrix contains a single instance:

All variables are independent and a product node is
created (line 4). Its leaves are the relevant variables.

3. The entire input matrix is extracted.:

The variables in A are highly correlated since A has
rank-1. The algorithm therefore constructs a sum node
with a branch per instance in A, followed by product
nodes over the variables. We refer to the node as a
multivariate leaf node or MV LN .

More precisely, if A € RM*Y and B; = A then for
each instance j form product node

Ty = PT’dj(Ajl, ey AjN)-
Combine the product nodes by summing over in-
stances:

MVLN(A) := Sum(ry : w,...,ry s w), (4)

where w = |—]\1ﬂ
Variables in a rank-1 submatrix cannot be indepen-
dent. SPN-SVD achieves significant speedups by avoid-
ing redundant searches for independencies and returning
MVLNSs. In contrast, when SPN-Gens encounters a rank-
1 submatrix, it recursively searches for independences and
clusters across its subsets, which leads to a slower imple-
mentation and also an SPN with a more complicated struc-
ture. The speedup from using MVLNSs is reported in the
experimental results below.

A commonly used assumption is that data is clustered in
strongly correlated groups. For example, algorithms such
as the group Lasso seeks solutions where groups of vari-
ables are zero together [Bach, 2008]. The following simple
Lemma illustrates how large MVLNSs arise in the more gen-
eral setting where groups of variables receive the same, or
even approximately the same, values.

Lemma 1. Let X € R™*"™ be a data matrix consisting of
m instances. Suppose that X contains a group of instances
G C {1,...,m} with similarity pattern K¢ = {k|X;;, =
Xk foralli,j € G}. Then SPN-SVD will find a multi-
variate leaf node satisfying

|[MVLN| > |K¢g| - |G|.

Proof. The result follows immediately since the algorithm
will either find the MVLN corresponding to the group, or a
larger MVLN.]

An interesting question, deferred to future work, is to char-
acterise the collections of groups with similarity patterns
that are best suited to the SPN-SVD algorithm. It is also
worth investigating how robustly MVLNs are extracted in
the presence of noise.

3.3 Discriminative SPN Structure Learning
Algorithm (DSPN-SVD)

Finally, we consider the setting of discriminative learn-
ing, where the algorithm is provided with labeled data.
Discriminative learning models the conditional distribu-
tion P(Y|X), rather than the joint distribution P(X,Y").
Discriminative SPNs combine the flexibility of select-
ing/extracting relevant features, with the tractability and
representational prowess of SPNs. They can achieve high
classification or regression accuracy by selecting variables
that are dependent on Y. They were first introduced
by Gens and Domingos [2012], where parameters were
learned on a pre-defined structure.

We propose a new discriminative SPN structure learning
algorithm, referred to as DSPN-SVD. We assume the la-
bels are discrete, and belong to the set C = {1,...,1}.
The algorithm extracts features Z from the input matrix,
X, that are maximally correlated (in a suitable sense) with
the labels Y. The algorithm then applies SPN-SVD to
the learned features to construct a collection of generative
SPNs, one per conditional distribution P(Z|Y = j) for
j € C, that are combined by a single sum-node.

Extracting Z requires a measure of dependence between
variables. We use the Hilbert-Schmidt independence crite-
rion (HSIC), which we briefly recall [Gretton et al., 2005].

Let k(x,2’) and I(y, ') be kernels on the input space X’
and the label space), with corresponding feature maps ¢ :

X — Fand ¢ : Y — G respectively. The Hilbert-Schmidt
Independence Criterion is

HSIC(k,l, Pxy) :=||Cyyllp, where

Coyi= B (0() =) © (0(y) =)]

is the cross-covariance operator [Fukumizu et al., 2004].
We apply the HSIC for supervised feature selection follow-
ing Song et al. [2007].

Let IT := {W € R"*4 : (W,;, W,;) = 6;;} denote the set
of orthogonal projections from R™ = X to R?. Given the
standard dot product (e, @) on R%, each projection induces
akernel Ky (z,y) := (Wz, Wy) on X.

Let L(y,y) = dy,, be the Kronecker kernel, which is 1 if
y = 3y’ and O otherwise. The Kronecker kernel is suitable
for the categorical variable, Y &€ C, because it expresses
precisely whether or not two labels are equal. It is easy
to extend to real-valued or structured labels by employing
more sophisticated kernels.

Let X € R™*" be a data matrix with labels Y € Y™,
yielding empirical distribution Pyxy. Construct the center-
ing matrix H = (Id,, —m~'11T) and empirical Kronecker
kernel L;j = 0y,=y, .

Lemma 2. Let V € R"* be the top d eigenvectors of
x =XTHLHX (5)
Then V maximizes the Hilbert-Schmidt dependence:

V = argmax HSIC(Kw, L, Pxy).
Well

Proof. The vectors Vi ;, 7 = 1,...,d, are the eigenvectors
of x. They therefore maximize the trace

argmax tr(VIXTHLHXYV)
%

Since tr(AB)
as:

= tr(BA), the objective can be rewritten

argmax (r(HXVVTXTHL) (6)
%

Following Barshan et al. [2011],let K = XV VTXT. The
objective in Eq. (6) is then

tr(HKHL),

which is the HSIC [Gretton et al., 2005]. O

The higher the HSIC value, the stronger the dependence
between the projected representation of the data 7 = XV
and Y, and thus the more useful the representation is for
discriminative learning.

Algorithm 3 Function DSPN-SVD

Input: X e R™** Y e Y™ v>1,d>1

Output: Sum-product network S representing Y| X

1: Construct kernel matrix L;; = (5% y7):n] , and cen-
tering matrix H = (Id,,, — m~111T).

2: Compute the d eigenvectors V' € R"™*?4 of y =
XTHLHX with the largest eigenvalues.

3: Set feature matrix Z,,«q < Xmxn * Vaxd

4: Construct sum node Sum,(Br; : wj), where Br;
contains all instances with label j, and weight w; =
F#instances labeled j

5: for label j in Y do

6: SPN-SVD(Brj,v)

7: end for

After extracting the features Z, there are two remaining
steps. The first step constructs the base node for the dis-
criminative SPN as a sum node that separates instances be-
longing to different labels. Nodes in the sum are weighted
by the number of instances. The resulting network is thus
automatically biased towards more common labels. The
second step applies the generative SPN-SVD algorithm to
each branch of the sum node using the extracted features in
Z.

The main steps of DSPN-SVD are shown in Algorithm 3.

Figure 3 shows an example with 2 labels and 3 variables.
As shown in the tables at the top of the figure, the X vari-
ables are replaced by a more suitable representation, Z.
The base sum node then places instances of each label on
separate branches, where each branch’s subSPN is in turn
learned by SPN-SVD. A simplified example of the feature
extraction process is shown in Figure 4. Since the first two
features convey no information about the labels, extracting
only the third feature, Z = X3, maximises the HSIC.

4 EXPERIMENTS

4.1 Generatively Trained SPNs

Our main evaluation of SPN-SVD is based on comparing
its accuracy and speed to other SPN structure learning algo-
rithms. Following prior work on structure learning [Gens
and Domingos, 2013, Rooshenas and Lowd, 2014], we re-
port accuracy in terms of the test-set log-likelihood (LL)
and query conditional log-likelihood (CLL). These values
are obtained from experiments on the Caltech-101 dataset
[Fei-Fei et al., 2004], the Olivetti face dataset [Salakhutdi-
nov and Hinton, 2009], and 20 binary datasets. Caltech-
101 is one of the most commonly used image datasets. It
contains images divided into 101 categories, e.g. airplanes,
cameras and faces. Each object category contains from 40
to 800 images. Images in Caltech-101 are 64 x 64 pixels.
The Olivetti dataset contains 400 face images of 64 x 64

Y=1 Y=1
Y=1 Y=1
Y=2 ; Y=2
Y=2 Y=2
Za=T(X)=XV. + Z.=F(X)=X Vg
|

Zy e Zy Zy 2y
¥=1 Y=1
¥=1 ¥=1
Y=2 Y=2
Y=2 Y=2

SPN-SVD SPN-SVD

Figure 3: The Discriminative SPN Prior to Running SPN-
SVD on Each Sum Node Branch.

X X, Koz Za

1 2 2 Y=1 2 Y=1
1 2 5 Y=2 5 Y=2
1 2 2 Y=1 % 2 ¥Y=1
1 2 5 Y=2 5 Y=2

Figure 4: An Example of X, Y and Z where
m=4n=3,d=1.7Z=XV=X[001]".

pixels. Importantly, these datasets are not binary, in con-
trast to previous datasets used for SPN structure learning.
The datasets are discrete-valued. Extending to the contin-
uous case is straightforward. 60% of the instances of each
object category are used for training, 10% for validation
(needed mainly for WinMine) and 30% for testing.

Accuracy. For Caltech-101, values of LL and inference
are displayed as average values across all object categories,
as well as averages for some of the individual object cat-
egories, while only the grand average is displayed for
Olivetti. By “average”, we mean that the LL values dis-
played represent their respective summation of LL values
divided by the number of test instances. Univariate leaf dis-
tributions are multinomials with Laplace smoothing (add
0.1).

We compared SPN-SVD with four algorithms: (1)
SPN-Gens [Gens and Domingos, 2013], with code avail-
able online; (2) ID-SPN [Rooshenas and Lowd, 2014]
by the Libra toolkit; (3) SPN-Dennis [Dennis and Ven-

tura, 2012], which was implemented via algorithms 1, 2
& 3 of Dennis and Ventura [2012]; (4) Bayesian network
structure learning with the WinMine toolkit [Chickering,
2002], which was chosen because it can express context-
specific independence.

Table 3 shows the test-set LL values obtained for 18
example object categories from Caltech-101, the whole
Caltech-101 dataset and the Olivetti face dataset using
the SPN-SVD, SPN-Gens, ID-SPN, SPN-Dennis al-
gorithms and WinMine. The greater the LL, the better.
The total number of instances (training + test + validation)
in each category or dataset is shown in Table 3. Bold red
signifies that an algorithm is significantly better than com-
petitors on a category, whereas bold black indicates that an
algorithm is better than competitors on a category. Signif-
icant results are identified using a paired t-test (performed
in the log scale) with p = 0.05. Out of the 101 Caltech-101
categories, SPN-Gens is significantly better than its com-
petitors in 5 categories, WinMine in 9 categories, ID—SPN
in 12 categories while SPN—-SVD is significantly better in
42 categories, 9 of which are shown in Table 3.

Training time. An important advantage of SPN—-SVD is
its rapid training time. SPN-SVD took 2.5 hours with 1
CPU to build the SPN and calculate the test-set LL values
for Caltech-101 and Olivetti. In contrast, SPN-Gens took
13.5 hours, ID-SPN took 12 hours, and SPN-Dennis
took 7.5 hours to perform the same task. WinMine took
2.5 hours to build the Bayesian network and calculate LL
values.

Per the discussion of Lemma 1, we expect that larger
MV LN s lead to larger reductions in run-time. Our experi-
ments show a 3-fold speedup when comparing SPN-SVD’s
performance with and without MV LNs. Returning
MVLNSs thus accounts for most of the 4.5-fold speedup of
SPN-SVD compared to SPN-Gens.

Another major advantage of SPN—-SVD is that is has few
tuning parameters. The generative algorithm has one pa-
rameter, 7y, which controls the penalty for deviating from
rank-1, whereas DSPN-SVD has a 2" parameter: d, the
number of extracted features. In comparison, ID-SPN, for
example, has: L; prior parameters C7%, split penalty S P7¢,
maximum edges M E7% for each AC node, cluster penalty,
standard deviation of the Gaussian priors, and the number
of main iterations [Rooshenas and Lowd, 2014].

Queries. Next, we investigate the accuracy and speed of
queries. Queries are generated following Gens and Domin-
gos [2013]. Experiments are performed with a range of
query and evidence variables, see Table 4. A number of in-
stances are selected randomly from the test-set of each ob-
ject category or dataset, and then queries P(Q = ¢|E = e)
are created by randomly picking proportions of the vari-
ables. The average CLL log P(Q = ¢|E = e) is com-

Table 3: Test-set LL and Learning Time. Results are shown for 18 Caltech-101 Categories, Caltech-101 & Olivetti. Bold

red signifies that an algorithm significantly outperforms the rest.

Dataset # inst. | SPN-SVD | SPN-Gens | SPN-Dennis | ID-SPN WinMine
Faces 435 -1122.71 -1520.03 -1607.8 -1440.84 -1309.37
Faces-Easy 435 -1002.11 -1298.59 -1490.21 -1314.09 -1320.87
Accordion 55 -974.93 -1114.05 -1507.79 -1300 -1240
Airplanes 800 -587.4 -920.69 -1000.3 -898.7 -914.81
Anchor 42 -1315.71 -1420.1 -1392.28 -1404.12 -1239.8
Ant 42 -770.2 -1535.82 -1980.3 -1264.1 -1271.94
Background-Google 467 -1105.49 -1316.8 -2020.88 -1291.16 -1220
Barrel 47 -774.23 -1330.4 -1289.4 -1259.7 -1300.86
Bass 54 -1051.7 -1293.11 -1712.84 -1321.49 -1212.37
Beaver 46 -1167.33 -1570.26 -1487.79 -1290.1 -1012.03
Binocular 33 -907.48 -1390.3 -1600.3 -1400.44 -1309.4
Bonsai 128 -887.42 -1551.09 -1979.26 -1302.37 -1336.28
Brain 98 -1270.1 -1208.41 -1498 -1307.12 -1286.2
Brontosaurus 43 -837.02 -1288.13 -1600.26 -1393.9 -1410.61
Buddha 85 -1291.15 -1374.12 -1230.8 -1172.28 -1219
Butterfly 91 -1020.67 -1397.19 -1535.91 -1230.11 -1207.44
Camera 50 -1201.8 -1470.25 -1488.85 -1019.51 -1200.49
Cannon 43 -956.47 -1303.1 -1404.71 -1307.8 -1288.1
[Caltech-101 (All) | 9144 | -892.93 | -1492.12 | -1780.5 | -1250.6 | -1269.29 |
\ Olivetti [400 | -189.81 | -294.36 | -302.55 | -295.81 | -293.9 |
[Learning Time | | 25hours [13.5hours | 7.5hours [12hours [2.25 hours |
puted and normalised by the number of query variables by SPN-SVD.

following Gens and Domingos [2013]. Table 4 shows the
results, for varied proportions of evidence and query vari-
ables, in the form of the average CLL for both SPN-SVD
and SPN-Gens.

Both SPN-SVD and SPN-GENS achieve average dataset
CLL values that are significantly higher than the results
obtained by SPN-Dennis, ID-SPN and the conditional
marginal likelihood (CMLL) values of WinMine. The lat-
ter three results are therefore not reported to save space.
Similarly, we only show queries of 5 object categories,
rather than 18, along with the average CLL of the whole
Caltech-101 and Olivetti datasets.

Across all proportions of object categories, there are 84
categories in which SPN-SVD significantly outperforms
SPN-Gens, and 18 where the converse occurs. As in-
ference is linear in the number of edges of an SPN, there
is not a major difference between average query time for
SPN-SVD and SPN-Gens.

Image completion. To confirm that the LL values are vi-
sually meaningful, an image completion task was applied
to a select few images from Caltech-101. Two images are
shown in Figure 5, taken from one of the face categories of
Caltech-101, referred to as Faces-easy. The left half of each
test image is inferred after building an SPN using training
images from the same faces category. In each case, the
right half of the test image is given as evidence and the left
half is regarded as query variables, and inference is per-
formed by the SPN. The top part of Figure 5 displays the
original images and the bottom shows the images inferred

Binary datasets. In Table 5, we report the test-set LL
values of SPN-SVD, SPN-Gens and ID-SPN (LL val-
ues of SPN-Dennis are significantly lower) on 20 binary
datasets used in Gens and Domingos [2013], Rooshenas
and Lowd [2014]. The number of instances in a binary
dataset ranges from 2k to 388k, and the number of vari-
ables ranges from 16 to 1556 [Gens and Domingos, 2013].
Out of the 20 datasets, SPN—SVD outperforms the alterna-
tives in 7 datasets, whereas ID—SPN outperforms the rest in
6 datasets. Significant results are identified using a paired
t-test with p = 0.05.

The results on discrete and binary datasets indicate that
SPN-SVD achieves, by far, state-of-the-art performance
for an SPN on discrete datasets. This is where interpreting
correlations makes a huge difference. SPN—-SVD is also at
par with SPN state-of-the-art on binary datasets.

4.2 Discriminatively Trained SPNs

We present results obtained by applying discriminative
SPNs on two handwritten digit recognition datasets, USPS
[Hull, 1994] and MNIST [LeCun et al., 1998]. USPS con-
sists of 1100 images per digit for each of the 10 digits. Each
image is 16 x 16. For each digit, 800 images are assigned to
the training set and 300 to the test set. MNIST consists of
6000 training images per digit, each of size 28 x 28, and a
test set of 1000 images per digit. Discriminative SPN struc-
tures were learned by DSPN-SVD in both cases. The num-
ber of extracted features d was chosen by cross-validation.

Table 4: Average CLL & Query Time. Results are normalised by number of query variables. Results are shown for 5
Caltech-101 categories, Caltech-101 & Olivetti. SVD refers to SPN-SVD, and Gens to SPN-Gens.

30% Q., 50% Ev. 10% Q., 30% Ev. 30% Q., 30% Ev. 50% Q., 30% Ev.
Dataset SVD Gens SVD Gens SVD Gens SVD Gens
Faces -0.301 -0.318 -0.81 -0.96 -0.221 -0.319 -0.4 -0.53
Faces-Easy -0.118 -0.16 -0.86 -0.908 -0.238 -0.318 -0.511 -0.543
Accordion -0.314 -0.312 -0.88 -0.95 -0.284 -0.313 -0.47 -0.523
Airplanes -0.211 -0.221 -0.058 -0.074 -0.202 -0.222 -0.309 -0.371
Anchor -0.301 -0.419 -0.761 -0.944 -0.256 -0.331 -0.501 -0.569
Caltech-101 (AlD) -0.117 -0.24 -0.131 -0.204 -0.204 -0.34 -0.312 0.423
Olivetti -0.27 -0.289 -0.205 -0.234 -0.439 -0.472 -0.466 0.513
Avg. query time 31 ms 30 ms 29 ms 28 ms 30 ms 32 ms 26 ms 27 ms

Table 5: Test-set LL for 20 Binary Datasets. Bold red: an
algorithm significantly outperforms the rest.

Dataset SPN-SVD | SPN-Gens | ID-SPN
NLTCS -6 -6.11 -6.02
MSNBC -6.1 -6.11 -6.04
KDDCup 2k 2.2 -2.18 -2.13
Plants -11.99 -12.98 -12.54
Audio -41.02 -40.5 -39.79
Jester -41.11 -75.99 -52.86
Netflix -58.02 -57.33 -56.36
Accidents -24.87 -30.04 -26.98
Retail -10.6 -11.04 -10.85
Pumsb-star -23.7 -24.78 -22.4
DNA -80.07 -82.52 -81.21
Kosarak -10.57 -10.99 -10.6
MSWeb -9.22 -10.25 -9.73
Book -30.18 -35.89 -34.14
EachMovie -52.47 -52.49 -51.51

WebKB -153.5 -158.2 -151.84
Reuters-52 -82.1 -85.07 -83.35

20 Newsgrp. -152.39 -155.93 -151.47

BBC - 251 -250.69 -248.93

Ad -17.82 -19.73 -19

Table 6 shows the results for DSPN-SVD, SPN-SVD,
SPN-Gens and ID-SPN. Apart from boosting algorithms,
DSPN-SVD achieves higher accuracy than other algo-
rithms on USPS, including C4.5 as reported in Demiriz
et al. [2002]. As per MNIST, DSPN-SVD also achieves the
highest accuracy for an SPN, and 2.2% less than the cur-
rent overall state-of-the-art accuracy on MNIST (reported
as 99.79% by Wan et al. [2013] and 99.77% by Ciresan
et al. [2012]). The flexibility of extracting features and
building a discriminative SPN tailored for the respective
dataset makes DSPN—-SVD superior to SPN-SVD, as well
as SPN-Gens and ID-SPN on both USPS and MNIST.

Table 6: Classification of Handwritten Digits.

Dataset | DSPN-SVD | SPN-SVD | SPN-Gens | ID-SPN
USPS 92.4% 90.2% 79% 77.1%
MNIST 97.6% 85% 81.8% 83.4%

Figure 5: Face Image Completions. The top row shows the
original images; the bottom row shows images with the left
half inferred using SPN-SVD.

S CONCLUSION

State-of-the-art results when performing learning and in-
ference on image datasets and digit classification indicate
that the proposed SPN structure learning algorithms are ef-
fective.

Some important advantages of SPN-SVD over previously
developed approaches are that it: (i) does not depend on
local data splittings and instead globally splits the data
based on rank-1 submatrix extraction; (ii) is based on cor-
relations, which are easier to estimate than independences;
and (iii) achieves considerable speedups by detecting large
approximate rank-1 submatrices and avoiding redundant
computations.

Interesting directions for future research include extending
the discriminative setting to regression or structured-output
learning by plugging more sophisticated kernels into the
HSIC step, and enabling the SPN to model features opti-
mised for different labels.

References

F R Bach. Consistency of the Group Lasso and Multiple
Kernel Learning. JMLR, 2008.

E. Barshan, A. Ghodsi, Z. Azimifar, and M. Jahromi. Su-

pervised principal component analysis: visualization,
classification and regression on subspaces and submani-
folds. In Pattern Recognition, 44:1357-1371, 2011.

M. Biggs, A. Ghodsi, and S. Vavasis. Nonnegative matrix
factorization via rank-one downdate. In International
Conference on Machine Learning (ICML), 25, 2008a.

M. Biggs, A. Ghodsi, and S. Vavasis. Nonnega-
tive matrix factorization via rank-one downdate. In
http:/fwww.arxiv.org/abs/0805.0120, 2008b.

D. M. Chickering. The winmine toolkit. Microsoft, Red-
mond, WA MSR-TR-2002-103, 2002.

D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column
deep neural networks for image classification. In IEEE

Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3642-3649, 2012.

A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. Linear pro-
gramming boosting via column generation. In Machine
Learning, 46:225-254, 2002.

A. Dennis and D. Ventura. Learning the architecture of
sum-product networks using clustering on variables. In
NIPS, 25, 2012.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples. In proceed-
ings of CVPR Workshop on Generative Model-Based Vi-
sion, 2004.

K Fukumizu, F R Bach, and M I Jordan. Dimensionality re-
duction for supervised learning with reproducing kernel
Hilbert spaces. JMLR, 5:73-99, 2004.

R. Gens and P. Domingos. Discriminative learning of sum-
product networks. In NIPS, 25, 2012.

R. Gens and P. Domingos. Learning the structure of sum-
product networks. In International Conference on Ma-
chine Learning (ICML), 30, 2013.

A. Gretton, O. Bousquet, A. Smola, and B. Scholkopf. Sta-
tistical dependence with Hilbert-Schmidt norms. In Al-
gorithmic Learning Theory (ALT), 3734:63-77, 2005.

J. J. Hull. A database for handwritten text recognition re-
search. In IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(5):550-554, 1994.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. In Pro-
ceedings of the IEEE, 86(11):2278-2324, 1998.

S.-W. Lee, H. Min-Oh, and Z. Byoung-Tak. Online incre-
mental structure learning of sum—product networks. In
Neural Information Processing, 2013.

A. Nath and P. Domingos. Learning tractable statistical
relational models. In Workshop on Learning Tractable
Probabilistic Models (LTPM), 2014.

R. Peharz, B. C. Geiger, and F. Pernkopf. Greedy partwise
learning of sum-product networks. In Machine Learning

and Knowledge Discovery in Databases, 8189:612-627,
2013.

R. Peharz, R. Gens, and P. Domingos. Learning selec-
tive sum-product networks. In Workshop on Learning
Tractable Probabilistic Models (LTPM), 2014.

H. Poon and P. Domingos. Sum-product networks: A new
deep architecture. In UAIL 27, 2011.

A. Rooshenas and D. Lowd. Learning sum-product net-
works with direct and indirect variable interactions. In
International Conference on Machine Learning (ICML),
31, 2014.

R. Salakhutdinov and G. Hinton. Deep Boltzmann ma-
chines. In AISTATS, pages 448—455, 2009.

Le Song, Alex J. Smola, Arthur Gretton, Karsten Borg-
wardt, and Justin Bedo. Supervised Feature Selection
via Dependence Estimation. In ICML, 2007.

L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fer-
gus. Regularization of neural networks using DropCon-
nect. In International Conference on Machine Learning
(ICML), 30:1058-1066, 2013.

