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Abstract

We develop a model where reward-based crowdfunding enables firms to obtain a reliable
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sample of target consumers pre-ordering a new product. Learning from the crowdfunding sample
creates a valuable real option as firms invest only if updated expectations about total demand
is suffi ciently high. This is particularly valuable for firms facing a high degree of uncertainty
about consumer preferences, such as developers of innovative consumer products. Learning also
enables firms to overcome moral hazard. The higher the funds raised, the lower the firms’
incentives to divert them, provided third-party platforms limit the sample size by restricting
campaign length. While the probability of campaign success decreases with sample size, the
expected funds raised are maximized at an intermediate sample size. Our results are consistent
with stylized facts and lead to new empirical implications.
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1 Introduction

Reward-based crowdfunding platforms enable firms to raise funds directly from future consumers,

typically in exchange for the promise to deliver a new product in the future. While they have been

seen as means for artists and credit constrained firms to seek support for their projects, primary

beneficiaries of these platforms appear to be firms that develop innovative consumer products.

Data we have obtained from Kickstarter, arguably the largest reward-based crowdfunding plat-

form, show that as of August 8, 2018, i) 65% of the $3.4 billion successfully raised have gone to

firms selling technology, design or gaming products, and ii) an average successfully funded project

raised $93K, $63K and $55K in technology, design and games, respectively, but only $10K across

all other categories, and iii) 284 out of the 310 projects that have raised over $1 million (4, 147 out

of the 5, 265 projects that have raised over $100K) were in the three categories aforementioned.

In this paper we develop a theoretical model to understand prime sources of value creation in

reward-based crowdfunding, and why it is particularly attractive for innovative projects. We argue

that reward-based crowdfunding platforms play an important role in enabling firms to test out their

market at an early stage of product development. Pre-selling a product through these platforms

acts as a credible consumer survey where firms learn about consumer preferences before making

their investment decisions. We show that this creates a substantial real option value of learning:

observing the decisions of a random sub-sample of consumers (backers) enables the firm to update its

beliefs about the preferences of all their future consumers, including those outside the crowdfunding

sample. There is value in both success and failure: regardless of whether the project seems profitable

ex-ante, firms either benefit from learning that demand for their product is suffi ciently high or save

on investment costs. We show that this real option value of learning is maximized at an intermediate

level of the investment cost and that it increases with uncertainty about consumer preferences. This

can explain why innovative products with most demand uncertainty are likely to benefit most from

reward-based crowdfunding.

While there is value in learning, crowdfunding may be hampered by a well-known moral hazard

problem (Tirole, 2006): firms may be tempted to divert the funds they have raised instead of deliv-

ering the products and if anything, innovative firms may be particularly prone to moral hazard and

informational frictions (Bussgang 2014, Lerner et. al. 2012). Further, reward-based crowdfunding

platforms are not legally responsible for guaranteeing the delivery of rewards and proving that a

firm has committed a fraud is diffi cult.1 Yet, the vast majority of projects do deliver the promised

1Kickstarter makes it clear that legal protection is limited and that the relationship relies primarily on in-
teractions between the firm and backers "Backers must understand that Kickstarter is not a store. When you
back a project, you’re helping to create something new – not ordering something that already exists.", see
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rewards. For example, Mollick (2014) finds that only 3.6% of successful Kickstarter projects have

failed to deliver them.

We show that the real option value of learning is a powerful force that enables firms to endoge-

nously overcome moral hazard. After its crowdfunding campaign, a firm that expects there to be

high future consumer demand will choose to not divert funds, even if it is costless to do so. Since a

firm that faces greater demand uncertainty has a greater option value, it can also overcome moral

hazard more easily. We allow the firm to set a target of funds to be raised and to solicit the platform

to return the funds to backers if that target is not met. If the firm sets a low or zero target, it

can invest and deliver the product in some states and divert funds in other states. We prove that

the firm chooses an "All-or-Nothing" (AoN) crowdfunding scheme with a suffi ciently high target

so that it has incentives to invest after a successful campaign. AoN dominates "Keep-it-All" (KiA)

where all funds raised are passed on to the firm regardless of the success of the campaign. Under

KiA, the discount the firm needs to offer is too high compared to the expected benefit of diverting

funds. We also discuss the robustness of our main findings to variable costs and uncertainty about

the firm’s ability to develop its product.

We further investigate the relationship between crowdfunding outcomes and the crowdfunding

sample size, which can be proxied by the campaign length. Under moral hazard, it is neither feasible

nor optimal to pre-sell the product to all potential consumers. It then benefits the firm to have a

third-party platform that ensures that the campaign targets a limited size sample. We show that

in the presence of moral hazard, shorter campaigns are more likely to succeed and the expected

funds raised are maximized at an intermediate sample size. This implies that proportional platform

fees (charged by Kickstarter and many other platforms) are also maximized at intermediate sample

size, and may explain why Kickstarter has set a limit to maximum campaign length. We further

show that whether or not a firm is constrained by such limit or prefers an even smaller sample size

depends on how costly it is for the firm to fail to meet its crowdfunding target.

Our model can explain a number of stylized facts about reward-based crowdfunding. An im-

portant and potentially surprising stylized fact, consistent with our model, is that successful AoN

crowdfunding campaigns systematically raise more funds than the target set at the beginning of the

campaign. This pattern is present in all categories, but is most pronounced in the case of Technol-

ogy projects. As illustrated on Figure 1, which plots Kickstarter projects in the first three quarters

of 2015, around 40% of successful projects raised at least twice the target, around 20% raised at

least four times the target, etc. Appendix A.1 confirms this pattern with another sample period

https://www.kickstarter.com/help/faq/kickstarter%20basics.
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Figure 1: "Oversubscribed" technology projects. The figure includes all successful USD denomi-
nated technology projects on Kickstarter between 1 January, 2015 and 17 September, 2015.

for all categories, illustrating that projects that are likely to involve high demand uncertainty such

as technology, design or gaming products are most "overfunded".

Earlier theoretical explanations of reward-based crowdfunding have focused on backer prefer-

ences rather than learning and moral hazard. For example, Belleflamme, Lambert, and Schwien-

bacher (2014) assume that participation in crowdfunding provides backers with an additional utility

compared to their valuation for the product, which enables firms to raise funds and to price-

discriminate. Varian (2013) endogenizes this additional utility by deriving an equilibrium in which

seemingly altruistic backer preferences are due to each of them having a pivotal role in ensuring

that the firm has enough funds to invest and to produce the product that the backer values. Yet,

these important consumer side effects alone cannot explain some important patterns of successful

crowdfunding campaigns, such as products being sold at par or at a discount, and the fact that

many products are oversubscribed multiple times over the target.

A few contemporaneous theoretical papers also consider producer side effects of reward-based

crowdfunding. Ellman and Hurkens (2016) focuses on price discrimination which can arise when

the firm commits to invest only if the number of backers who bid in excess of the crowdfunding price

is suffi ciently high. There is no learning about consumer preferences except in their Section 5.2, in

which learning affects price dynamics during the crowdfunding campaign rather than investment

decisions. Further, their setting rules out moral hazard by assuming high reputation costs. We

suggest tests for the presence of moral hazard by deriving empirical patterns that should only

be observed under moral hazard, some of which have indeed been documented. Strausz (2017)

does consider moral hazard and argues that it needs to be mitigated by deferred payments and/or
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by conditional pledging where backers stop making contributions after the firm meets its target.

Yet Kickstarter does not impose deferred payments and the systematic overpledging observed on

this platform (Figure 1 and Appendix A1) is broadly inconsistent with conditional pledging where

backers stop contributing after the target is met. This is important given that "overpledging" is

most pronounced in innovative categories that raise most funds. Strausz (2017) also assumes credit

constraints and that the distribution of consumer preferences is known, which implies that learning

from a sample of backers does not reveal information about consumer preferences out of sample. In

our model, we show that in the limit case where the distribution of consumer preferences is known,

the benefit of learning is significantly reduced and crowdfunding either brings no value added to an

unconstrained firm or is not possible under severe moral hazard. Chang (2016) considers a common

value setting in which a firm funds its project via crowdfunding. In his model, backers are assumed

to cooperate in deciding whether to invest after observing a common noisy signal about the value

of the project and the firm will only use crowdfunding to cover the difference between the project

cost and other sources of funding. Our paper also differs from these theoretical contributions in

that we analyse the relationship between the size of the crowdfunding sample and crowdfunding

outcomes. Our model explains why firms selling innovative products benefit from crowdfunding

more than sellers of other products. Further, we derive empirical predictions that can be used to

test our model against the alternative theoretical models discussed above.

We also contribute to the literature that points out that investing in entrepreneurial projects en-

ables firms to experiment new technologies (Hellmann 2002, Gromb and Scharfstein 2005, Bettignies

and Chemla 2008, Manso 2016, Kerr, Nanda, and Rhodes-Kropf 2014). We show that crowdfunding

is an effi cient mechanism to learn about demand with minimal experimentation costs. This further

relates to the trade-off between exploration and exploitation emphasized in Manso (2011, 2016).

Indeed, crowdfunding allows for more effective experimentation than outright entrepreneurship for

two reasons: first, it provides tolerance for early failure as the cost of a failed AoN campaign is

zero to backers and generally low for the firm; second, crowdfunding allows for timely feedback on

performance through an early proof of concept.

Our theory of crowdfunding also relates to the industrial organization literature (Crawford and

Shum, 2005, Chu and Zhang, 2011), which primarily views the pre-selling of existing products as a

price-discrimination mechanism. A notable exception that analyzes pre-selling at an earlier stage

of the product cycle is Cornelli (1996) who highlights the value of pre-selling in a pre-crowdfunding

environment. In her paper as in our setting, firms that face high enough fixed costs benefit most

from such pre-selling. The added benefit of crowdfunding is its role in facilitating commitment to
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pre-sell the product being developed to a limited sample, which in turn makes it easier for firms to

extract surplus.

Our paper can also be related to the strands of corporate finance and monetary economics that

view asymmetric information and moral hazard as major sources of financial constraints (Myers

1977, Stiglitz and Weiss 1981, Hart 1995, Tirole 2006, Kiyotaki and Moore 2002). The campaign

itself may either provide actual funding or alleviate the root causes of financial constraints. For

example, if financial constraints are driven by asymmetric information about demand between

investors and the firm, then the crowdfunding campaign that generates public information about

demand alleviates these constraints.2 This may generate a complementarity between reward-based

crowdfunding and traditional outside financing. There are indeed reported cases where firms, after

succeeding in reward-based crowdfunding, obtain further funding from angels, venture capitalists

or investor-based crowdfunding.3 Relatedly, investor-based crowdfunding highlights the benefits of

learning public information from the "crowd" in terms of screening credit-worthiness (see Iyer et

al 2015) and the signaling of loan quality (Hildendbrand, Puri, and Rocholl 2016).

2 The Model

We consider a three-date model in which a firm has a new product idea, and can learn about

demand after observing consumer decisions at date 0. At date 1, the firm updates its beliefs and

decides whether or not to invest I ≥ 0. At date 2 production takes place and the firm sets the

product price p2. For now, the firm’s marginal cost of production is zero. All agents are risk neutral

and the discount rate is normalized to 1. We do not impose financial constraints.

The firm’s potential market consists of N consumers. Each consumer i ∈ {1, ..., N} has private

valuation vi ∈ {0, 1} for one unit of the product and 0 for any additional unit. We refer to a

consumer with valuation vi = 1 (resp. vi = 0) as a 1-consumer (resp. a 0-consumer). Private

valuations are conditionally i.i.d., which implies that consumer i’s valuation is a Bernoulli trial

drawn from the true distribution, i.e., Pr
(
vi = 1|θ

)
= θ. The probability θ that consumer i is a

1-consumer (and the aggregate share of 1-consumers) is unknown to the firm and it follows a beta

2Further, publicly disclosing information about consumer preferences can alleviate information asymmetry in an
unbiased manner. In contrast, any information revealed publicly through the actions of privately informed entrepre-
neurs may distort both firm value and investment decisions. For example, Myers and Majluf (1984) argue that equity
issuance announcements convey negative information to investors, while Tinn (2010) and Angeletos, Lorenzoni and
Pavan (2010) show that technology investments can be perceived as a positive public signal.

3Brunstein, Joshua, 2014, "How Kickstarter turned into the Venture Capitalist’s Best Friend?",
Bloomberg Business, August 11, http://www.bloomberg.com/bw/articles/2014-08-11/kickstarter-successes-pivot-
from-crowdfunding-to-venture-capital

6



distribution, the p.d.f. of which is

fθ (θ) =
θα−1 (1− θ)β−1

B (α, β)
, (1)

where α, β are positive parameters and B (α, β) is the beta function. Beta distributions enable us

to capture different distributions of prior beliefs, be they U-shaped, hump-shaped, or uniform. For

the sake of clarity, we write α = θ0λ and β = (1− θ0)λ, where θ0 ∈ (0, 1) and λ > 0 and finite,

such that

E [θ] =
α

α+ β
= θ0; V ar [θ] =

αβ

(α+ β)2 (α+ β + 1)
=
θ0 (1− θ0)

(λ+ 1)
.

That is, θ0 is the prior mean and a higher λ implies a lower level of uncertainty based on prior

beliefs. All agents know the prior distribution. Consumer i knows his own valuation for the product.

Importantly, this information structure captures a realistic feature of learning where observing

the preferences of a subsample of consumers reveals information about the preferences of other, out

of sample, consumers. If the firm observes that consumer i values the product highly, it Bayesian up-

dates its beliefs about the valuation of all other, j 6= i, consumers: Pr
(
vj = 1|vi = 1

)
= λθ0+1

λ+1 > θ0.

The higher uncertainty (lower λ), the more learning. At the limit, when λ → ∞ , the consumer

preference distribution becomes public information, and learning about preferences of one con-

sumer reveals no information about preferences of other consumers, i.e., lim
λ→∞

Pr
(
vj = 1|vi = 1

)
=

lim
λ→∞

λθ0+1
λ+1 = θ0. While we maintain the assumption that λ is finite, Section 5 considers the special

case where λ→∞.

As a benchmark we consider a frictionless consumer survey where M ≤ N consumers truthfully

and costlessly reveal their preferences at date 0. The firm makes an investment decision based

on updated beliefs about consumer preferences at date 1, and provided it invests, it delivers the

product to consumers at date 2. Such frictionless consumer survey is diffi cult in practice because

consumers face zero cost when overstating their interest in the product. In contrast, reward-based

crowdfunding enables the firm to ensure that consumers who make pledges are not 0-consumers

as these would lose money by pre-ordering the product. Sections 3 to 5 consider a fixed M and

Section 6 analyzes how crowdfunding outcomes vary with M .

The players are the firm and N potential consumers of the firm’s product. If the product is

produced, then all consumers can buy it at date 2, while only a random subset of these consumers

are potential backers who can pre-order the product through crowdfunding at date 0. Because

pre-ordering takes place before the firm decides whether or not to invest, it involves a potential

risk that the product will not be produced and the consumer loses his contribution. Without loss

of generality, we index consumers who can participate in crowdfunding as i = {1, ...,M}. Let us
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Figure 2: Timing of events under crowdfunding.

denote m the number of 1-consumers in set {1, ...,M}, and mB the number of consumers in set

{1, ...,M} who choose to pre-order the product. We denote the pledging decision of consumer

i = {1, ...,M} with an indicator function

1i0 ≡
{

1 if consumer i chooses to pledge
0 otherwise.

The crowdfunding platform is an interface that, first, enables the firm to post the project at

date 0 in the morning, second, collects pledges during the campaign which takes place at date 0

during daytime, and, third, passes on the funds collected to the firm at date 0 in the evening. The

platform also enables the firm to commit to a target number of backers m̄T , which implies that any

funds raised during the campaign get automatically returned to the consumers if the firm fails to

meet the target.

We denote the event that the firm meets its target with an indicator function

Tm̄T ≡
{

1 if mB ≥ m̄T

0 if mB < m̄T
.

The target choice is also, de facto, a choice between AoN and KiA, as the firm can set any finite

target m̄T under AoN and by construction KiA boils down to m̄T = 0. Indeed, under KiA a "target"

has no economic meaning as the funds raised are passed on to the firm regardless of whether or not

this "target" is met.4

The firm decides whether to invest at date 1 and its decision to invest is denoted with

1F1 ≡
{

1 if the firm invests I
0 otherwise.

If the firm invested at date 1, it sets a price p2 for the product at date 2, and consumers choose

whether to buy the product. Denote 1i2 the choice of consumer i = 1, ..., N, at date 2, with 1i2 = 1

if the consumer buys the product and 0 otherwise. The timing of events is illustrated on Figure 2

Since a consumer will not buy the product twice, we must have

Tm̄T · 1i0 + 1i2 ≤ 1 for any i ∈ {1, ...,M} .
4 In our model, the firm does not invest in its own campaign. In practice, the firm could set a positive target and

contribute its own funds to meet its campaign target with probability 1. This would boil down to setting a target of
funds raised from backers other than the firm to m̄T = 0.
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Given these actions the payoff to a firm that chooses to participate in crowdfunding is

πF = Tm̄T · p0m
B + 1F1 ·

(
p2

N∑
i=0
1i2 − I

)
− (1− Tm̄T ) · ς · 1F1 , (2)

where ς > 0 is a cost of investing after a campaign that failed to meet its pre-set target. Our main

model in Sections 3-4 considers a parametric restriction ς ≤ ς̄M ≡ λ+M
N−M

(
I − λθ0(N−M)

λ+M

)
whenever

I > λθ0(N−M)
λ+M . A positive ς guarantees that the firm strictly prefers to meet its crowdfunding

target to failing to meet it.5 A small ς is realistic for two reasons. First, platforms like Kickstarter

take active steps to make it more diffi cult to find information about failed campaigns, which is

likely to greatly limit any pure reputation costs of failure. Second, empirical evidence suggests that

many firms complete their projects after a failed campaign (see Section 7), which we will show is

consistent with small values of ς. Sections 5 and 6 further consider the effect of ς ≥ ς̄M . The payoff

function (2) captures the moral hazard problem: if the firm does not invest at date 1, i.e., 1F1 = 0,

it diverts Tm̄T · p0m
B ≥ 0 at zero cost.

The payoff to a consumer who belongs to a set of potential backers, i ∈ {1, ...,M}, is

ui = Tm̄T · 1i0 ·
(
1F1 · vi − p0

)
+ 1F1 · 1i2 ·

(
vi − p2

)
, (3)

where 1i0 ·
(
1F1 · vi − p0

)
means that pledging, 1i0 = 1, comes with the risk of paying p0 and not

getting the product if the firm does not invest after the firm meets its target. The consumer can

choose to not pledge at date 0, i.e., he can set 1i0 = 0, and wait until date 2 to decide whether

or not to purchase the product. Whether there is a product to purchase at date 2 depends on

1F1 . However, the consumer faces zero risk of no delivery at date 2. The payoff to consumer

i = {M + 1, ..., N} who cannot participate in crowdfunding in date 0 is

ui = 1iF · 1i2 ·
(
vi − p2

)
. (4)

In order to derive a Perfect Bayesian Equilibrium (PBE) of this game, we need to specify the

information sets to all players at different dates. Both the firm and consumers know the parameters

of the model and the distribution of vi. When choosing p0 and m̄T at date 0 in the morning, the

firm only knows the prior distribution (1) and parameters of the model. During daytime at date 0,

consumer i’s information set is Ωi
0 =

{
p0, m̄T , v

i
}
. When deciding whether to invest at date 1 the

firm has the information set ΩF
1 =

{
p0, m̄T ,m

B
}
. At date 2 uncertainty is resolved.

Denote bi
(
Ωi

0

)
the probability with which a consumer i ∈ {1, ...,M} expects to receive the

product at date 2 if he pledges at date 0. His beliefs depend on m̄T and his own valuation vi.
5This assumption rules out the deviating strategy whereby the firm sets an infinite target, perfectly learns consumer

preferences and proceeds without raising any funds. Such possibility would make it impossible for crowdfunding
platforms to have a viable business model.
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On (and off) the equilibrium path, he may also need to form expectations about the strategies of

other consumers which depend on their valuation vj , j 6= i. If so, his beliefs must be consistent

with Bayes’rule, i.e., the consumer assigns Pr
(
vj = 1|vi

)
= λθ0+vi

λ+1 and takes the strategies of other

consumers as given. We denote bF
(
m|mB

)
the firm’s beliefs about the total number of 1-consumers

in set i ∈ {1, ...,M} conditional on consumers who backed the project.

Denote the equilibrium quantities with "∗" and alternative strategies without "∗". To shorten

the notation, we express the players’expected payoffs as a function of their actions only. In any

PBE where the firm chooses to participate in crowdfunding, its equilibrium pricing and target

{p∗0, m̄∗T } choice must satisfy

E
[
πF
(
p∗0, m̄

∗
T ,1

F∗
1 , p∗2

)]
≥ E

[
πF
(
p0, m̄T ,1

F∗
1 , p∗2

)]
, (5)

its equilibrium investment decision, 1F∗1 , must satisfy

E
[
πF
(
p∗0, m̄

∗
T ,1

F∗
1 , p∗2

)
|ΩF

1

]
≥ E

[
πF
(
p∗0, m̄

∗
T ,1

F
1 , p

∗
2

)
|ΩF

1

]
(6)

and its date 2 pricing choice, p∗2, must satisfy:

πF
(
p∗0, m̄

∗
T ,1

F∗
1 , p∗2

)
≥ πF

(
p∗0, m̄

∗
T ,1

F∗
1 , p2

)
(7)

The pledging strategy of consumer i ∈ {1, ...,M}, 1i∗0 , must satisfy

E
[
ui
(
1i∗0 ,1

i∗
2

)
|Ωi

0

]
≥ E

[
ui
(
1i0,1

i∗
2

)
|Ωi

0

]
(8)

and the date 2 buying strategy of consumer i ∈ {1, ..., N}, 1i∗2 , must satisfy

ui
(
1i∗0 ,1

i∗
2

)
≥ ui

(
1i∗0 ,1

i
2

)
if i ∈ {1, ...,M} (9)

ui
(
1i∗2
)
≥ ui

(
1i2
)
if i ∈ {M + 1, ..., N} .

The firm may also choose not to participate in crowdfunding. It is easy to see that all 1-

consumers then buy the product at date 2 as long as 0 < p2 ≤ 1, and it is optimal for the firm to

set p2 = 1. This implies that the NPV of the project is −I + NE [θ] = −I + Nθ0, and the firm

invests if, and only if, I ≤ Nθ0. We will refer to this benchmark firm as the reference firm. Its

expected value is

πFref ≡ max [0, (Nθ0 − I)] .

This implies that the firm benefits from crowdfunding if its expected payoff satisfies

UF ≡ E
[
πF
(
p∗0, m̄

∗
T ,1

F∗
1 , p∗2|Ω0

)]
− πFref > 0. (10)
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In any PBE, the strategies and beliefs must satisfy both sequential rationality and the consis-

tency of beliefs, i.e., at date 0 the firm anticipates that each consumer i ∈ {1, ...,M} will follow the

equilibrium strategy given his type vi, and each consumer i ∈ {1, ...,M} anticipates the firm’s op-

timal investment decision given mB. We focus on deriving a fully revealing PBE in pure strategies.

Since all consumers of the same type are identical, we expect there to be a symmetric equilibrium.

If the symmetric PBE is fully revealing, then consistency of beliefs requires that the firm’s beliefs

on the equilibrium path are skeptical, which means that observing mB, the firm considers that

all the backers who did not pledge were 0-consumers, i.e., bF
(
m|mB

)
= Pr

(
m = mB

)
= 1. We

consider the off-equilibrium beliefs to be the same.

3 Benchmark and the value of learning

3.1 Updated beliefs

Before analyzing the crowdfunding game described in Section 2, we consider the benchmark of the

frictionless survey, where at date 0 the firm observes sample M and learns the preferences of each

consumer i ∈ {0, 1, ...,M}. After the firm observes the number m of 1-consumers in this sample, it

updates its expectations about the share of 1-consumers in the entire target market, N . Since vi|θ

is a Bernoulli trial, m|θ follows the binomial distribution. Bayes’rule implies that the posterior

distribution is also Beta, with θ|m ∼ Be (λθ0 +m,λ (1− θ0) +M −m). Therefore, the posterior

expectations of the share of 1-consumers out of sample is

E [θ|m] =
λθ0 +m

λ+M
, (11)

which is monotonically increasing in m. We derive the distribution of m

qm ≡ Pr (m) = E [Pr (m|θ)] =

∫ 1

0
Pr (m|θ) f (θ) dθ (12)

=

(
M

m

)
B (λθ0 +m,λ (1− θ0) +M −m)

B (λθ0, λ (1− θ0))
,

which means that m is a beta-binomial random variable. The shape of the beta-binomial distribu-

tion replicates the shape of the underlying prior beta distribution. Unconditional central moments

of the beta-binomial variable can be written

E [m] = Mθ0 and V ar [m] =
M (λ+M) θ0 (1− θ0)

(λ+ 1)
= M (λ+M)V ar [θ] . (13)

The expected m is proportional to the prior mean of the share of 1-consumers, θ0, and for any

M > 1, an increase in λ leads to a decrease in uncertainty about both θ and m.
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3.2 Benchmark investment decision

The profit of a firm is given by 1F1

(
p2

N∑
i=0

1i2 − I
)
. At date 2, the firm can only sell its product

at price p2 > 0 to 1-consumers. Each of these consumers then obtains a surplus 1 − p2. If the

firm invests at date 1, its expected profit is p2 (m+ (N −M)E [θ|m]) − I, where m consumers

are known to value the product and (N −M)E [θ|m] other future consumers are expected to be

1-consumers. Both the firm value and the joint surplus, i.e. the sum of the payoff to the firm and

of the consumer surplus, are maximized when p2 = 1. The firm extracts all consumer surplus and

invests in all projects that are non-negative NPV based on updated beliefs.

Denoting d.e the ceiling function, i.e., the nearest integer rounded up, we obtain:

Proposition 1 At date 1, the first best investment decision is as follows: If I ≤ I0 ≡ λθ0(N−M)
λ+M ,

then the firm invests regardless of the realization of m. If I > I0, the firm invests if, and only if,

m ≥ m̃ ≡
⌈
λ+M

λ+N
(I − I0)

⌉
. (14)

When the firm invests, its NPV at date 1 is

D (m) = m+ (N −M)E [θ|m]− I =
λ+N

λ+M
m+ I0 − I (15)

Proof. Follows from (11), the NPV being non-negative at date 1 and m being an integer.

The first part of Proposition 1 highlights that if N > M , then the firm with an investment

cost lower than I0 does not benefit from learning about consumer preferences as it invests even if

m = 0. However, when the fixed cost is suffi ciently high, learning affects investment.

3.3 The real option value of learning under the benchmark

At date 0, the firm’s expected utility equals its value of learning, i.e., its expected profits with

learning minus the profit of the reference firm. From (13) and (15) the unconditional expectation

is E [D (m)] = Nθ0 − I and the value of learning about demand is

UFB =

{
UFB,I if I < Nθ0

UFB,NI if I ≥ Nθ0
, where (16)

UFB,I ≡ E [D (m) |m ≥ m̃] Pr (m ≥ m̃)− (Nθ0 − I) = −E [D (m) |m < m̃] Pr (m < m̃) (17)

UFB,NI ≡ E [D (m) |m ≥ m̃] Pr (m ≥ m̃) , (18)

and the subscripts "I" and "NI" denote whether or not the reference firm invests. Since D (m) <

(>) 0 for any m < (>) m̃ and D (m) ≥ 0 if m = m̃, both UFB,I and U
F
B,NI are positive. Further, U

F
B,I

12



Figure 3: First-best value of learning

and UFB,NI represent both the value of learning for the firm and the joint surplus from learning for

both the firm and consumers. From (14), the value of learning is positive if

I0 < I < I0 +M
λ+N

λ+M
.

This guarantees that the investment threshold m̃ ∈ {1, 2, ...,M}.

Proposition 2 The value of learning is maximized when I = Nθ0. Further, UFB,I is increasing in

I and UFB,NI is decreasing in I.

Proof. See Online Appendix B.2.

Proposition 2 shows that a firm that expects to break even based on prior beliefs has most to gain

from learning, while the overall relationship between I and the value of learning is hump-shaped.

If I < Nθ0, the firm benefits from avoiding a sub-optimal investment. This benefit increases with

the investment cost that it expects to save. If I > Nθ0, the firm can learn that investment is worth

undertaking and thus the higher I the lower the returns from the investment. The opportunity to

learn about demand provides the firm with a real option.

Proposition 3 The value of learning increases with the degree of prior uncertainty about demand,

i.e., it decreases with λ.

Proof. See Online Appendix B.3.

Proposition 3 shows that the more uncertain the firm about the preferences of its target con-

sumers, the higher its expected gain from learning. Since innovative consumer products (e.g., new

technology gadgets) are more likely to be characterized by high demand uncertainty (low λ), we

expect innovative firms to benefit most from learning. Uncertainty affects the firm value through

13



three channels. First, an increase in uncertainty increases the difference between the firm prior

and updated beliefs about the share of 1-consumers, i.e., |E [θ|m]− E [θ]| = |m−Mθ0|
M+λ . Second, from

(14), higher uncertainty may affect the threshold, m̃, at which the firm finds it optimal to invest.

Third, the distribution of m with a higher λ second order stochastically dominates the one with

a lower λ. Overall, these effects ensure that the effect of an increase in uncertainty increases the

value of learning.

Figure 3 illustrates these comparative statics by plotting the value of learning about demand as

a function of λ and I. We consider two possible prior distributions with the same mean (θ0 = 1
2)

and different values of λ: λ1 = 1.5 < λ2 = 50 so that the distribution with λ1 is U-shaped and the

one with λ2 is hump-shaped, as illustrated on Panel 1. The figure assumes θ0 = 1
2 , M = 200, and

N = 2000. The firm breaks even if I = 1000 for both λ = λ1 and λ = λ2. The value of learning

is positive if I ∈ (7, 1993) for λ = λ1, and if I ∈ (180, 1820) for λ = λ2. Panel 2 plots the value of

learning about demand as a function of I for both λ1 and λ2.

Overall, this analysis shows that both fixed costs and the degree of uncertainty about con-

sumer preferences are important drivers of the value of learning. These features are likely to be

characteristic to technology, design and gaming products.

4 Reward-based crowdfunding

While a survey may not induce consumers to truthfully reveal their valuation, pre-ordering decisions

may generate credible information as only 1-consumers might pre-order the product at p0 > 0. As

Proposition 1 showed that a firm with a low investment cost does not benefit from learning, we

consider only the interesting case where I > I0 = λθ0(N−M)
λ+M in this Section. This section explores

the existence of a fully revealing PBE of the crowdfunding game specified in Section 2.

4.1 Firm’s investment decision.

At date 2, it clearly remains optimal for the firm to extract all consumer surplus and to set p2 = 1.

Given skeptical beliefs b
(
m|mB

)
= Pr

(
m = mB

)
= 1, and (6), the firm chooses to invest at date

1 if, and only if,

mB ≥ m̄T and p0m
B + (N −M)E

[
θ|mB

]
− I ≥ p0m

B, or (19)

mB < m̄T and mB + (N −M)E
[
θ|mB

]
− I − ς ≥ 0

If mB ≥ m̄T there is a moral hazard problem because the firm has already received an amount

p0m
B, which it can divert at no extra cost. The firm’s incentives to invest in these states are
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preserved when expected future demand by the (N −M) consumers that did not have the chance

to participate in crowdfunding is suffi ciently high, i.e., (19) implies that if mB ≥ m̄T , then the

incentive compatibility constraint can be written

(N −M)
λθ0 +mB

λ+M
− I ≥ 0. (20)

Learning about future consumer preferences is essential here as the firm’s expected future demand

is proportional to E
[
θ|mB

]
= λθ0+mB

λ+M , which is increasing in mB as long as λ is finite.

Whether or not the firm always collects funds is the crucial difference between AoN and KiA.

Under KiA (m̄T = 0) the firm’s investment decision is always distorted by the moral hazard problem.

In contrast, under AoN, the firm may still choose to invest if its campaign fails, asmB < m̄T implies

that it will invest if, and only if,

mB + (N −M)
λθ0 +mB

λ+M
− I − ς ≥ 0, (21)

which is a less restrictive condition than (20) whenever ς ≤ ς̄M .

Lemma 4 The firm invests if, and only if

mB ≥
{
m̃Y if mB ≥ m̄T

m̃N if mB < m̄T
, (22)

where

m̃Y ≡
⌈
λ+M

(N −M)
(I − I0)

⌉
=

⌈
λ+M

(N −M)
· I − λθ0

⌉
. (23)

and

m̃N =

⌈
λ+M

λ+N
(I + ς − I0)

⌉
(24)

We have m̃Y ≥ m̃N ≥ m̃.

Proof. Follows from (20) and (21), E
[
θ|mB

]
= λθ0+mB

λ+M , I0 = λθ0(N−M)
λ+M and the constraint that

any threshold needs to be a integer. The claim m̃Y ≥ m̃N follows from the condition ς ≤ ς̄M

defined in Section 2, and the comparison of (23), (24), and m̃N ≥ m̃ from (14), (24), and ς > 0.

Lemma 4 shows that if the firm meets its target m̄T it invests if m ≥ m̃Y . The threshold

m̃Y is typically higher than the optimal investment threshold. Yet, this does not necessarily imply

suboptimal investment decisions. A firm that fails to meet its target will invest if the NPV based on

posterior beliefs is positive. That firm received no funding and faces no moral hazard, its investment

threshold is m̃N , which converges to the first best threshold when ς → 0.

Lemma 4 also shows that if M → N raising funds via crowdfunding becomes impossible, which

suggests that limiting the campaign length is essential to ensure that crowdfunding is feasible.
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4.2 Backer pledging decisions

From (3), the expected utility to consumer i = {1, ...,M} is

E
[
ui|Ωi

0

]
= E

[
Tm̄T · 1i0 ·

(
1F1 · vi − p0

)
|Ωi

0

]
+ E

[(
1− 1i0

)
· 1F1 · 1i2 ·

(
vi − p2

)
|Ωi

0

]
.

Since p2 = 1 and 1i2 = 0 for any 0-consumer, the second term is zero for all consumers. Hence

1-consumer i = {1, ...,M} sets 1i0 = 1 if, and only if, E
[
Tm̄T

(
1F1 · vi − p0

)
|Ωi

0

]
≥ 0, which by the

law of iterated expectations becomes

Pr
(
Tm̄T = 1&1F1 = 1|Ωi

0

)
vi − p0 Pr

(
Tm̄T = 1|Ωi

0

)
≥ 0 (25)

As consumer i must have consistent beliefs, he correctly anticipates the firm’s decisions as described

in Lemma 4 and Bayes’s rule requires that consumer i’s beliefs satisfy

bi
(
Ωi

0

)
= Pr

(
Tm̄T = 1&1F1 = 1|Ωi

0

)
=

{
Pr
(
Tm̄T = 1|Ωi

0

)
if m̄T ≥ m̃Y

Pr
(
Tm̄T = 1|Ωi

0

)
Pr
(
1F1 = 1|Ωi

0, Tm̄T = 1
)
if m̄T < m̃Y

In a fully revealing equilibrium, each 1-consumer expects all other 1-consumers to pledge and all

0-consumers not to pledge. We denote the total pledges of all consumers except i with m−i =
M∑

j=1,j 6=i
vj . Consumer i expects the total pledges to be m = mB = m−i + 1i0. Bayes’rule implies

that conditional on his own type, i’s beliefs about θ are θ|vi ∼ Be
(
λθ0 + vi, λ (1− θ0) + 1− vi

)
and his beliefs about other consumer pledges, m−i|vi, follow a beta-binomial distribution with

parameters M − 1, λθ0 + vi and λ (1− θ0) + 1− vi.

Lemma 5 Each consumer i ∈ {1, ...,M} with vi = 0 chooses 1i0 = 0.

Each consumer i ∈ {1, ...,M} with vi = 1 sets 1i0 = 1 either if

m̄T ≥ m̃Y and p0 ≤ 1 (26)

or if

m̄T < m̃Y and p0 ≤
Pr
(
m−i ≥ m̃Y − 1|vi = 1

)
Pr (m−i ≥ m̄T − 1|vi = 1)

(27)

and sets 1i0 = 0 otherwise.

Proof. See Online Appendix B.4.

Lemma 5 shows that if the firm has set a target that is suffi ciently high to ensure that the firm

has incentives to invest at date 1, then each consumer is insured against the risk of no investment

and is willing to make a pledge as long as the pre-selling price is not above his private valuation

for the product. This case requires the firm to set a positive target as m̄T ≥ m̃Y > 0, which is
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only possible with an AoN crowdfunding campaign. If the firm has set a target that is lower than

m̃Y , the consumer is still willing to participate as long as he can pre-order the product at a large

enough discount that compensates for the risk of the firm failing to invest. Notice that under a

KiA scheme, we would always have m̄T = 0 < m̃Y .

4.3 The fully revealing equilibrium

The firm faces a trade-off between target and discount. On the one hand, the firm can set a target

m̄T ≥ m̃Y and pre-sell the product at no discount, p0 = 1. On the other hand, it can set a lower

target, sell the product at a larger discount and divert some funds raised following some outcomes

of its crowdfunding campaign.

Lemma 6 The firm optimally sets p0 = 1 and m̄T = m̃Y . The date 0 expected value of participation

in AoN crowdfunding is

UF = UFB − E [D (m) |m̃ < m ≤ m̃N ] Pr (m̃ < m ≤ m̃N )− Pr (m̃N ≤ m < m̃Y ) ς (28)

where UFB is the first best utility defined in (16) and m̃N and m̃Y are defined in (23) and (24).

When ς → 0 the investment target after a failed campaign is the same as the optimal target m̃

defined in (14) and the gains from crowdfunding are lim
ς→0

UF = UFB .

Proof. See Appendix A.2.

Lemma 6 shows that the firm’s utility from crowdfunding is maximized when it chooses AoN and

sets a target that is high enough to not have incentives to divert funds after a successful campaign.

The reason why the optimal target is not lower, allowing for some fraud to arise in some states in

equilibrium, is that backers would then back the project only when there is a high enough discount

(Lemma 5). We prove that the discount that the firm needs to offer is too large to outweigh the

benefits of diverting funds. The same argument explains why KiA is not optimal in our framework.

The reason why the optimal target is no higher than m̃Y is that setting the target at m̃Y minimizes

the risk of crowdfunding campaign failure, which matters for the firm as long as there is any, even

arbitrarily small, costs associated with such failure. Indeed, Lemma 6 highlights that the cost of

investment under a failed campaign, ς, is the only reason why there is a wedge between the firm’s

utility under crowdfunding and under the benchmark of a frictionless consumer survey. When ς

is small then the firm’s utility from crowdfunding is almost as high as under the benchmark case.

The derivation of the PBE then follows from consolidating lemmas 4, 5 and 6.
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Proposition 7 There is a fully revealing PBE of the crowdfunding game where

1) all 1-consumers in set {1, ...,M} pledge at date 0 and purchase the product at date 2 if the firm

fails to meet its crowdfunding target and invests. All 1-consumers in set {M + 1, ..., N} purchase

the product at date 2 if the firm invests. 0-consumers neither pledge nor purchase the product;

2) The firm with UF > 0 participates in crowdfunding and chooses an AoN campaign with crowd-

funding target m̄T = m̃Y , sets prices {p0, p2} = {1, 1} and invests as long as mB ≥ m̃N .

5 Discussion of the main model

Limit case with λ→∞ As highlighted in Section 2 at this limit the firm does not learn from

sample M about out of sample consumer preferences, i.e., lim
λ→∞

E [θ|m] = θ0 and the distribution

qm (12) converges to a binomial distribution with parameters M and θ0.6

Proposition 3 states that the value of learning is lower if there is less uncertainty (higher λ),

which implies that the value of learning is minimized when λ→∞. Further, our results in Sections

2-4 imply that a firm with λ → ∞ that can finance its project without crowdfunding either does

not benefit from crowdfunding or cannot crowdfund under moral hazard. To see this recall from

Proposition 1 that firms with I ≤ I0 ≡ λθ0(N−M)
λ+M have zero value of learning and note that

lim
λ→∞

I0 = θ0 (N −M). Hence any firm with I ≤ θ0 (N −M) does not benefit from crowdfunding

and is better off not crowdfunding its project if there are any, albeit small, costs associated with

running a campaign (e.g., preparing its crowdfunding page). At the same time consider a firm with

I > θ0 (N −M). As we showed in Section 3 and 4 moral hazard implies that the firm would need to

set a target m̄T = m̃Y and from (23) we have lim
λ→∞

m̃Y →∞ when I > θ0 (N −M). Such target can

clearly never be met, which renders crowdfunding impossible for such firm. Crowdfunding in such

an environment would require credit constraints (as firms with I ≤ I0 ≡ λθ0(N−M)
λ+M can commit

to deliver), high enough reputation costs as in Ellman and Hurkens (2016), and/or conditional

pledging behavior whereby backers coordinate not to give more than target funds to the firm as

advocated by Strausz (2017). As further discussed in Section 7, these assumptions would not

explain a number of documented empirical patterns. In contrast, suffi ciently high uncertainty and

a suffi ciently small sample size M relative to N , guarantee that crowdfunding is possible and close

to effi cient without imposing these assumptions (Section 4). In particular, when λ is finite, then

I0 < θ0 (N −M) and firms with I0 < I ≤ θ0 (N −M) benefit from learning and set an achievable

crowdfunding target as m̃Y ≤ dMθ0e ≤ M . Firms with θ0 (N −M) < I < N −M set a target

6This distribution is assumed in the baseline setting of Ellman and Hurkens’ (2016) and in Strausz’s (2015)
working paper version. Additionally, Strausz (2017) considers other distributions with this property, and Section 5.2
in Ellmann and Hurkens (2016) allow θ to take two values.
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m̃Y ≤M as long as λ ≤M N−M−I
I−(N−M)θ0

.

High cost of failure In our main model we assume that the cost of a failed campaign is small,

i.e., ς ≤ ς̄M = λ+M
N−M

(
I − λθ0(N−M)

λ+M

)
= λ+M

N−M (I − I0). This guarantees that m̃N ≤ m̃Y , so that

the firm may be willing to complete the project even after failing to meet its crowdfunding target

m̄T = m̃Y . While we consider this setting more realistic, our model also enables us to analyze the

case where ς ≥ ς̄M . Then the investment thresholds (23) and (24) remain the same, and the only

change to Lemma 4 is that m̃N ≥ m̃Y . It then follows that the firm never invests after a failed

campaign. As in our main model, it remains optimal to set m̄T = m̃Y (see Appendix A.3 for a

formal proof in this environment). This implies that the firm’s utility from crowdfunding is

UF = UFB − E [D (m) |m̃ < m ≤ m̃Y ] Pr (m̃ < m ≤ m̃Y ) , (29)

which is lower than in our main model.

Communication In the main model, consumers only know their own preferences and have

beliefs about other consumer preferences and strategies when deciding whether or not to pledge. In

reality, platforms such as Kickstarter and Indiegogo make it possible for consumers to see pledges

that have been made on a running basis. However, each backer can make and withdraw his

pledge any time during the campaign and he becomes committed to his pledge only at the end

of the campaign when funds are taken from his account. One may view the interaction during

the campaign as "cheap talk", viewing pledges during the campaign as "messages" followed by a

pledging decision at the last moment of the campaign (see Farrell and Rabin, 1996). The equilibrium

derived in our main model then corresponds to a "babbling" equilibrium of the messaging game

where all potential backers disregard everyone else’s messages. Clearly, the PBE described in

Proposition 7 is also consistent with a fully revealing messaging game as consumers do not benefit

from hiding their type. What can change as a result of communication are the backer strategies on

an off-equilibrium path where the firm has set a target m̄T < m̃Y (see Lemma 5 in Section 4.2).

Revealing communication enables consumers to coordinate and not back a project with m < m̃Y .

Variable costs and uncertainty In the main model we considered a zero variable cost and

no uncertainty about the firm’s ability to successfully develop the product following an investment.

Suppose that the crowdfunding campaign takes place as in the main setting, and that after observing

the outcome of the campaign, the firm chooses whether to pay a fixed cost IF at date 1. Further

assume that the product development success is uncertain, i.e., conditional on investment at date

1, there will be a product to sell at date 2 with probability γ ∈ (0, 1], which is assumed to be

independent of other variables. Furhermore, if there is a product, producing one unit requires

paying a variable cost IV ∈ (0, 1) at date 2. Realistically, we assume that there is suffi cient
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consumer protection such that a firm, that has invested IF and successfully developed the product,

cannot avoid delivering it to backers while selling the product to the consumers who purchase at

t = 2. Writing I ≡ IF
γ(1−IV ) , the date 1 expected profit under the frictioness consumer survey is

γ (1− IV )D (m), where D (m) is as in (15). This implies that the first best investment threshold as

a function of I is the same as the one derived in Section 3 and related comparative statics remain

valid. Since I is increasing in IV and decreasing in γ, variable costs and uncertainty about product

development both increase the optimal investment threshold m̃.

Provided the firm invests, the date 1 profit under crowdfunding is now

−IF + p0m+ γ (−IVm+ (1− IV ) (N −M)E [θ|m]) = (p0 − γ)m+ γ (1− IV )D (m)

Both variable costs and uncertainty worsen moral hazard. The firm will now invest after a successful

campaign if

m ≥ m̃′Y =

⌈(
N −M
λ+M

− IV
(1− IV )

)−1

(I − I0)

⌉
.

and after a failed campaign if

m ≥ m̃′N =

⌈
λ+M

λ+N

(
I − I0 +

ς

γ (1− IV )

)⌉
. (30)

As in the main model, it remains optimal for the firm to pre-sell the product at the highest

possible price and to set a suffi ciently high target. As backers expect product development to

succeed only with probability γ, the highest possible pre-selling price is p0 = γ. Our results will

remain qualitatively similar, with higher thesholds and a quantitatively different effect of the cost

of campaign failure ς. Namely, if ς ≤ ς̄ ′M ≡
(
N−M
λ+M −

IV
(1−IV )

)−1
γ
(
I − λθ0(N−M)

λ+M

)
then the firm

invests after the failed campaign as long as (30) holds and if ς ≥ ς̄ ′M the firm only invests after

a campagn success. In both cases the target is m̄T = m̃′Y . Both uncertainty about the firm’s

ability to develop the product and variable costs make successful crowdfunding more diffi cult.

Uncertainty about product development additionally implies that the firm must offer a discount at

the crowdfunding stage.

6 Crowdfunding sample size and outcomes

This section extends the main setting and explores how the crowdfunding sample size, M , affects

the observable crowdfunding outcomes and the firm’s expected utility. An empirical proxy for the

sample size is campaign length. Real world AoN crowdfunding sites such as Kickstarter impose a

maximum limit to the campaign length and firms can commit to a shorter campaign length before

the campaign starts.
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We allow for both low and high values of ς. Note that the parametric restriction on ς̄M =

λ+M
N−M I−λθ0 adopted in Sections 2-4 is increasing inM : from (23) and (24) we have m̃Y ≤ (≥) m̃N if

ς ≤ (≥) ς̄M . Empirically observable variables of interest are the probability of crowdfunding success

Pr (m ≥ m̄T ), and the expected funds raised E [p0m|m ≥ m̄T ] Pr (m ≥ m̄T ). When analyzing these

variables we consider the PBE derived in Section 4.3, i.e., p0 = 1 and the firm sets the target

m̄T = m̃Y . As shown in Section 5, the same holds when ς ≥ ς̄M .

We consider the choice of an optimal sample size for both the platform and the firm. We assume

that the platform’s objective is to maximize the expected funds raised, which is consistent with

proportional fee structures observed on platforms like Kickstarter. As p0 = 1 the optimal sample

size for platform then maximizes

E [m|m ≥ m̃Y ] Pr (m ≥ m̃Y ) ,

subject to m̃Y defined in (23).

The firm chooses M to maximize its expected utility from crowdfunding anticipating its future

decisions according to the PBE derived, i.e., from (16)-(18), (28) and (29)

UF = 1m̃Y ≥m̃N (E [D (m) |m ≥ m̃N ] Pr (m ≥ m̃N )− ς Pr (m̃N ≤ m < m̃Y )) (31)

+ (1− 1m̃Y ≥m̃N )E [D (m) |m ≥ m̃Y ] Pr (m ≥ m̃Y )− πFref ,

subject to m̃Y and m̃N defined in (23) and (24) respectively and where 1m̃Y ≥m̃N is defined as an

indicator function that takes value 1 if, and only if, m̃Y ≥ m̃N (ς ≤ ς̄M ) and zero otherwise.

Online Appendix B.5 proves that when M increases, the probability of meeting a fixed target

is higher, but the probability of meeting a target that is at least one unit higher is lower. It is

important to emphasize that m̃Y increases in M at an increasing rate because the term inside the

ceiling function in (23) is increasing and convex in M

∂
(

λ+M
(N−M) · I − λθ0

)
∂M

=
I (λ+N)

(N −M)2 > 0;
∂2
(

λ+M
(N−M) · I − λθ0

)
∂M∂M

=
2I (λ+N)

(N −M)3 > 0.

This implies that the probability of crowdfunding success must be decreasing in sample size when

M is high enough. Online Appendix B.5 shows that this is a symptom of moral hazard: if there

was no moral hazard, the firm would set the first best target m̃ under which we would not observe

a systematic pattern between sample size and success probability. Online Appendix B.5 further

highlights the main forces through which a higher sample size affects the funds raised, and the firm’s

utility. Since this problem involves endogenous discrete variables, it is more intuitive to present the

results graphically.
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Figure 4: Probability of crowdfunding success, platform’s expected fee income and firm’s expected
utility from crowdfunding.

Recall that a firm with a break-even investment cost I = Nθ0 has most to gain from learning

about demand and therefore represents a typical crowdfunding participant. Figure 4 considers such

a firm under the same parameter values as Figure 3 and considers three examples of cost ς: ς → 0,

an intermediate value of ς and ς →∞. Panel 4.A of Figure 4 highlights the cost of increasing the

sample size as the probability of crowdfunding success decreases with the sample size. As a result

panel 4.B shows that the expected funds raised via crowdfunding are maximized at an intermediate

sample size. Intuitively, an increase in sample size increases the expected fee income conditional on

the firm meeting the target, but reduces the probability of crowdfunding success. If ς is small then

the firm’s utility does not depend much on whether it meets the target and its investment threshold

converges to the first best target, m̃N → m̃. Panel 4.C of Figure 4 shows that when ς → 0, the

firm’s utility increases with M , but the marginal benefit of a higher M quickly becomes negligible.

Higher sample size enables the firm to learn more precise information. However, learning from a

small sample is amplified because the firm also learns noisy information about the preferences of

N −M out of sample consumers, and this amplification effect diminishes when the sample becomes

a large fraction of the firm’s entire target market. In contrast, when ς is non-negligible, then the

probability of meeting the target m̃Y is important to the firm, which creates an additional negative

force which leads the firm to prefer a smaller sample size. Panel 4.D and 4.E of Figure 4 shows that

the firm prefers a sample size that is suffi ciently large to learn about demand but no larger than

that. Appendix A.4 provides further confirmation of these patterns and additional comparative

statics by further considering higher and lower values of investment cost I and prior mean θ0.

Figure 4 also suggests that if the platform were to limit the maximum campaign length to the

level that maximizes its fee income then a low ς would imply that firms are bound by this target and

may invest also after a failed campaign; and a high ς would imply that the firm prefers a smaller

22



Figure 5: Optimal sample size for the firm and platform at different parameter values.

sample size compared to the platform. Figure 5 confirms this intuition by showing the relationship

between the sample sizes that maximize fee income and firm’s utility under different values on

ς. The baseline assumptions for this figure (black lines) are the same as the high uncertainty

case (λ = 1.5) in Figure 4. Panels 5.A and 5.B additionally consider the effect of distributional

parameters λ and θ0. Both lower uncertainty and higher prior mean reduce the sample size that

maximizes funds raised and the platform’s fee income. Furthermore, low uncertainty widens the

range of cost ς under which the firm prefers a larger sample than the platform. If the cost ς is high

enough then the break-even firm benefits from a smaller sample than the platform and its preferred

sample size tends to be smaller if there is less uncertainty and the prior mean θ0 is higher. Panel

5.C in Figure 4 keeps distributional parameters fixed and considers a higher investment cost, i.e., a

firm that would not invest without crowdfunding. Then both the firm (provided ς is high enough)

and the platform prefer a smaller sample size. The intuition for this is that under moral hazard,

the endogenous crowdfunding target m̃Y increases faster when the investment cost is higher, which

makes it increasingly likely that the firm will fail to meet its crowdfunding target whenM increases.

While the sample size that maximizes the firm’s utility is highly sensitive to the cost ς, a low

value of ς is consistent with the empirical observation regarding firms that complete the project

after failing to meet their crowdfunding targets.

7 Empirical implications

As we discuss below, our model of crowdfunding is consistent with existing empirical evidence and

our findings suggest some new avenues for further empirical research.

Existing empirical evidence: Mollick (2014) shows that very few successful Kickstarter

projects (3.6%) fail to deliver their promised rewards. Our analysis highlights the reasons why the
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existing crowdfunding mechanisms are effi cient enough to endogenously overcome (even an extreme

form of) moral hazard. We also argue that the real option value of learning, rather than credit

constraints, is the main value driver of crowdfunding. Mollick and Kuppuswamy (2014) survey

Kickstarter participants who had completed their campaign before mid 2012 in the technology,

project design, and video games categories. They present evidence that the number one reason

why both successful and unsuccessful firms in sought crowdfunding was "to see if there is demand

for the project" (68% and 60% of successful and unsuccessful projects agreeing, respectively).

Financing the project was only the fourth reason cited, while marketing and connecting with the

firm’s community of fans and supporters were ranked second and third, respectively. Mollick and

Kuppuswamy (2014) also find that 30% of firms continue to pursue their projects after failing

to meet their target. Xu (2017) finds further evidence of Bayesian learning among Kickstarter

participants. As our model predicts, Cumming et. al. (2015) finds evidence that AoN crowdfunding

dominates KiA. Mollick (2014) find that shorter campaigns succeed with a higher probability than

longer campaigns. In fact, Kickstarter itself shortened its maximum campaign duration from 90 to

60 days in 2011 referring to the observation that shorter campaigns are more likely to succeed.7

New empirical avenues: Uncertainty about target consumer preferences plays a central role

in our model, and would warrant further empirical investigation. We predict that more uncertain

projects should be relatively more "overfunded" compared to less uncertain projects as the wedge

E
[
p0m
p0m̄T

|p0m ≥ p0m̄T

]
− p0m̄T is increasing in the degree of uncertainty. This is consistent with

stylized facts presented in our Introduction. We also analyzed all successfully funded Kickstarter

projects between January 1, 2015 and September 17, 2015 in extreme opposite categories: Technol-

ogy and Theatre, and constructed unconditional distributions. Online Appendix B.6 confirms that

Technology projects are more uncertain than Theatre ones in the sense of second order stochastic

dominance, and our data indicates that the average successful US-based technology project raised

5.8 times its target, while the average successful US-based theatre project raised 1.3 times its target.

Our model also predicts that firms with uncertain projects should participate more often.

Our model also provides a structure to test the severity of moral hazard and/or the importance

of reputation costs and legal enforcement. We have shown that firms that benefit the most from

crowdfunding are those with a break-even investment cost without crowdfunding. Hence these

firms are likely to represent the typical crowdfunding participant. In the absence of moral hazard,

these firms set the optimal target m̄T = m̃ such that E
[
p0m
p0m̄T

]
= E

[
p0m
p0m̃

]
= 1, i.e., the average

completion ratio, pledgestarget , across all projects should be one as well. Instead, under moral hazard

7https://www.kickstarter.com/blog/shortening-the-maximum-project-length
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such typical firm would set a target p0m̄T = p0m̃Y > p0m̃, which implies a completion ratio below

one. Indeed, Cumming et. al. (2015) analyze AoN and KiA projects at Indiegogo, and report an

average completion ratio, pledgestarget = p0m
p0m̄T

, of 0.403, ranging from 0.337 to 0.617 across innovative,

creative, and social categories and with both KiA and AoN schemes.

In addition to distinguishing projects according to preference uncertainty, it would also be

interesting to distinguish projects according to variable costs. Our model suggests that firms with

higher variable costs face a higher degree of moral hazard, and are thus less likely to participate,

set a higher target if they participate, and fail to meet their target with a higher probability.

Our off-equilibrium path results further suggest that projects that do not set ambitious targets

are more likely to be fraudulent, unless they offer a bigger discount, and non-fraudulent KiA projects

should offer larger discounts than comparable AoN projects.

Empirical patterns that distinguish our paper from other theoretical models: Ell-

man and Hurkens (2016) argue that reputation costs are high enough to overcome moral hazard.

However, data suggests that the average completion ratio is below one and there is a positive corre-

lation between the success rate and shorter campaign length, which we have shown to be symptoms

of moral hazard. Strausz (2017) and Varian (2013) predict that successful campaigns should not

exhibit large overpledging. Strausz (2017) argues that backers pursue a conditional pledging strat-

egy to overcome moral hazard, Varian (2013) allows for some over-pledging, but only to the degree

that each pivotal individual wants to obtain the full gift for his contribution. The magnitude of the

over-pledging observed, especially for technology projects, suggests that backers do not become less

willing to participate after the firm has met its target. Rather, our model suggests that backers face

less risk and are more willing to participate if a firm raises more funds during a limited length cam-

paign. The argument that successful campaigns "tend to succeed by a small margin" often refers

to Mollick’s (2014) exploratory study of Kickstarter projects from 2009 to 2012. However, a more

careful look at the data that this argument builds upon reconciles his findings with our setting:

Figure 1 in Mollick (2014) does not show an absence of substantial overpledging. Rather, little

overpledging is more likely than large overpledging (e.g., pledges to target ratios of 100-120% are

observed more frequently than 120-140%). From a purely statistical perspective, the distribution

of pledges to target among successful projects is proportional to the right tail of the distribution

of pledges, qm. Thus our model generates this pattern whenever the prior, and thus also the dis-

tribution of pledges qm, is hump-shaped. As Mollick’s finding uses Kickstarter projects across all

categories, it is indeed likely that an average project involves noticeable but not extremely high

uncertainty about demand, consistently with a hump-shaped distribution on average. Our analysis
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further suggests that the degree of overpledging should differ across Kickstarter categories and be

more pronounced in the case of innovative projects, as we show on Figure A.1. Indeed, Mollick

(2014) further highlights that projects that do overpledge most frequently belong to hardware,

software, games and product design categories, which is consistent with our predictions. Overall,

our model provides a framework that is consistent with both overpledging and empirical patterns

characteristic to moral hazard. We have also highlighted more nuanced patterns which arise from

considering the role of uncertainty.

Our model predicts that products are sold at par or at a discount at the crowdfunding stage

compared to the retail price. While we do not have enough data to test this, anecdotal evidence

based on firms’announced retail prices or on examples such as Pebble Watch suggests that this

may be the case. With more systematic data, our predictions could be tested as alternatives to

those in Belleflamme et. al. (2013) who explain crowdfunding as a means to price-discriminate

individuals who enjoy the crowdfunding experience. In contrast to our model, their results imply

that the prices would be set at the crowdfunding stage at a premium over the retail price.

8 Concluding remarks

In our model, the firm can learn about its total demand from a limited sample. We show that

firms that face highly uncertain demand benefit most from reward-based crowdfunding. We have

shown that these firms can also overcome moral hazard most easily. In reality, the benefits can

extend to learning about consumer preferences about the specifications of the product, e.g., the

color of new widget or the features of a new game.8 We argue that to fully understand the success

of reward-based crowdfunding, it is important to consider its role as a learning device, rather than

focusing on a mere funding scheme.

Our model can explain the following stylized facts: 1) a noticeable proportion of firms that fail to

meet their target in a crowdfunding campaign still complete the project, 2) many successful projects,

in particular those belonging to innovative categories, receive amounts significantly higher than the

target amount, 3) firms that develop riskier products that involve suffi ciently high investment

costs and have high demand uncertainty, e.g. technology gadgets, appear to seek reward-based

crowdfunding most often. We also predict that firms offer products at par or at a discount rather

than premium during crowdfunding campaigns. These features are specific to our model and would

enable to test our predictions relative to alternative papers.

8 Interestingly, new projects can then lead to the development of new products that can be either spawned or
retained (Habib, Hege, and Mella-Barral 2013).
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Some established firms may incur high reputation costs. Indeed Sony and Apple routinely

pre-sell products on their own websites rather than third-party platforms. However, most firms

are largely unknown, do not have much reputation to lose, and cannot pre-commit to money-

back guarantees. We have shown that third-party crowdfunding platforms are valuable to those

firms because they facilitate commitment to features. In particular, crowdfunding targets and

the limited campaign length help them to overcome moral hazard. We have shown that with the

currently prevailing fee structure where platforms charge fees from successful campaigns only that

are proportional to the funds raised, platforms do indeed have an incentive to limit the campaign

length and set it at an intermediate level. We identify conditions under which the firm is bound

by this limit or benefits from an even smaller sample size. This helps a firm to overcome the

commitment problem that would prevail if it were to crowdfund a project on its own website.

Without commitment, the firm may be tempted to keep the campaign running with the purpose

of diverting funds should the product fail to attract enough consumer interest.
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A Appendix

A.1 "Oversubscription" across Kickstarter categories

The figures use a sample of 100 successful projects in each category completed by October 30, 2014.

The classification to "most", "middle" and "least" oversubscribed projects is based on median values

conditional on success.

A.2 Proof of Lemma 6

On the equilibrium path the firm anticipates that all 1-consumers in set {1, ...,M} choose to pledge

and E
[
πF |ΩF

1

]
= 1F1 ·D (m)+Tm̄T

(
p0 − 1F1

)
m−(1− Tm̄T ) ς ·1F1 . From the law of total expectations

the expected value of E
[
πF |ΩF

1

]
is

E
[
πF
]

= Pr
(
1F1 = 1&Tm̄T = 1

)
E
[
D (m) + (p0 − 1)m|1F1 = 1&Tm̄T = 1

]
(32)

+ Pr
(
1F1 = 1&Tm̄T = 0

)
E
[
D (m)− ς|1F1 = 1&Tm̄T = 0

]
+ Pr

(
1F1 = 0&Tm̄T = 1

)
E
[
p0m|1F1 = 0&Tm̄T = 1

]
Since ς ≤ ς̄M , m̃N ≤ m̃Y (see Section 2 and 4). This implies that the target set by the firm can

only be in the following intervals: m̄T ∈ [m̃Y ,∞), m̄T ∈ [m̃N , m̃Y ) and m̄T ∈ [0, m̃N ).

Consider the interval m̄T ∈ [m̃Y ,∞). Within this interval, Lemma 4 implies that the event{
1F1 = 1&Tm̄T = 1

}
occurs when m ≥ m̄T , the event

{
1F1 = 1&Tm̄T = 0

}
occurs when m̃N ≤ m <

m̄T , and the event
{
1F1 = 0&Tm̄T = 1

}
never occurs. From (32), we then obtain that the firm must

set {p0,m̄T } such that it maximizes

Pr (m ≥ m̃N )E [D (m) |m ≥ m̃N ] + (p0 − 1) Pr (m ≥ m̄T )E [m|m ≥ m̄T ]− ς Pr (m̃N ≤ m < m̄T )

subject to the consumer participation constraint p0 ≤ 1. The first and the last term of this

expression do not depend on p0 and m̄T . The price p0 only affects the second term, which is
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maximized when p0 = 1 for any m̄T , and the maximized value is zero. Further, the third term

decreases with m̄T and is maximized when m̄T = m̃Y . The firm’s payoff with m̄T = m̃Y is

E
[
πF
]
|m̄T=m̃Y = Pr (m ≥ m̃N )E [D (m) |m ≥ m̃N ]− ς Pr (m̃N ≤ m < m̃Y ) (33)

When m̄T ∈ [m̃N , m̃Y ) and m̄T ∈ [0, m̃N ), the pre-selling price must satisfy the constraint

p0 ≤
Pr(m−i≥m̃Y −1|vi=1)
Pr(m−i≥m̄T−1|vi=1)

(see Lemma 5), which can be expressed as9

p0 ≤
(
λθ0 + E [m|m ≥ m̃Y ]

λθ0 + E [m|m ≥ m̄T ]

)
· Pr (m ≥ m̃Y )

Pr (m ≥ m̄T )
. (34)

Since now m̄T ≤ m̃Y , we know from Lemma 8 in Online Appendix B.1 that E [m|m ≥ m̄T ] ≤

E [m|m ≥ m̃Y ]⇔ λθ0+E[m|m≥m̃Y ]
λθ0+E[m|m≥m̄T ] ≤

E[m|m≥m̃Y ]
E[m|m≥m̄T ] , which combined with (34) gives

p0 ≤
(
λθ0 + E [m|m ≥ m̃Y ]

λθ0 + E [m|m ≥ m̄T ]

)
· Pr (m ≥ m̃Y )

Pr (m ≥ m̄T )
≤ E [m|m ≥ m̃Y ]

E [m|m ≥ m̄T ]
· Pr (m ≥ m̃Y )

Pr (m ≥ m̄T )
. (35)

Suppose that the firm deviates from m̄T = m̃Y and sets m̄T ∈ [m̃N , m̃Y ), and denote the firm’s

profit under such deviating strategy with E
[
πF
]
|m̄T∈[m̃N ,m̃Y ). Then Lemma 4 implies that the event{

1F1 = 1&Tm̄T = 1
}
occurs when m ≥ m̃Y , the event

{
1F1 = 1&Tm̄T = 0

}
occurs when m̃N ≤ m <

m̄T , and the event
{
1F1 = 0&Tm̄T = 1

}
occurs when m̄T ≤ m < m̃Y . From (32) and (33), we obtain

E
[
πF
]
|m̄T∈[m̃N ,m̃Y ) − E

[
πF
]
|m̄T=m̃Y = −Pr (m̄T ≤ m < m̃Y )E [D (m)− ς|m̄T ≤ m < m̃Y ]

+ Pr (m ≥ m̄T )E [m|m ≥ m̄T ]

(
p0 −

E [m|m ≥ m̃Y ] Pr (m ≥ m̃Y )

E [m|m ≥ m̄T ] Pr (m ≥ m̄T )

)
As the firm’s pricing choice must satisfy the constraints (34) and (35), the second term is non-

positive. From (15), D (m)− ς = λ+N
λ+Mm+ I0 − I, and from m̄T ∈ [m̃N , m̃Y ) and (24)

E [(D (m)− ς) |m̄T ≤ m < m̃Y ] ≥ λ+N
λ+M m̄T +I0−I−ς ≥ λ+N

λ+M m̃N+I0−I−ς ≥ 0, which implies that

the first term is non-positive (and typically negative) too. This proves that setting m̄T ∈ [m̃N , m̃Y )

instead of m̄T = m̃Y is not profitable to the firm.

Finally, suppose that the firm sets m̄T ∈ [0, m̃N ). Lemma 4 now implies that the event{
1F1 = 1&Tm̄T = 1

}
occurs when m ≥ m̃Y , the event

{
1F1 = 1&Tm̄T = 0

}
never occurs, and the

event
{
1F1 = 0&Tm̄T = 1

}
occurs when m̄T ≤ m < m̃Y . Denoting the firm’s profit under this

9 In particular, Pr
(
m−i ≥ m̃Y − 1|vi = 1

)
= Pr

(
m−i + vi ≥ m̃Y |vi = 1

)
= Pr

(
m ≥ m̃Y |vi = 1

)
. From

Bayes’ rule Pr
(
m ≥ m̃Y |vi = 1

)
=

Pr(vi=1|m≥m̃Y ) Pr(m≥m̃Y )

Pr(vi=1)
and from the law of iterated expectations

Pr
(
vi = 1|m ≥ m̃Y

)
= E

[
Pr
(
vi = 1|θ,m ≥ m̃Y

)
|m ≥ m̃Y

]
= E [θ|m ≥ m̃Y ] = E [E [θ|m,m ≥ m̃Y ] |m ≥ m̃Y ] =

E
[
λθ0+m
λ+M

|m ≥ m̃Y

]
= λθ0+E[m|m≥m̃Y ]

λ+M
. Hence, Pr

(
m−i ≥ m̃Y − 1|vi = 1

)
= λθ0+E[m|m≥m̃Y ]

(λ+M) Pr(vi=1)
· Pr (m ≥ m̃Y ). Simi-

larly, Pr
(
m−i ≥ m̄T − 1|vi = 1

)
= λθ0+E[m|m≥m̄T ]

(λ+M) Pr(vi=1)
· Pr (m ≥ m̄T ).
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deviating strategy with E
[
πF
]
|m̄T∈[0,m̃N ) and using (32) and (33), we obtain

E
[
πF
]
|m̄T∈[0,m̃N ) − E

[
πF
]
|m̄T=m̃Y = −Pr (m̃N ≤ m < m̃Y )E [D (m)− ς|m̄N ≤ m < m̃Y ]

+ Pr (m ≥ m̄T )E [m|m ≥ m̄T ]

(
p0 −

E [m|m ≥ m̃Y ] Pr (m ≥ m̃Y )

E [m|m ≥ m̄T ] Pr (m ≥ m̄T )

)
,

which again is non-positive as (35) must hold, and as E [D (m)− ς|m̃N ≤ m < m̃Y ] ≥ λ+N
λ+M m̃N +

I0 − I − ς ≥ 0. This proves that the firm’s optimal strategy is to set {p0, m̄T } = {1, m̃Y }.

A.3 Optimal target with ς ≥ ς̄M

If ς ≥ ς̄M , then m̃N ≥ m̃Y and the possible targets can fall into the following intervals: m̄T ∈

[m̃N ,∞), m̄T ∈ [m̃Y , m̃N ) and m̄T ∈ [0, m̃Y ). Equation (32) also holds here. When m̄T ∈ [m̃N ,∞)

then the event
{
1F1 = 1&Tm̄T = 1

}
occurs when m ≥ m̄T , the event

{
1F1 = 1&Tm̄T = 0

}
occurs

when m̃N ≤ m < m̄T , and the event
{
1F1 = 0&Tm̄T = 1

}
never occurs. The backer participation

constraint is p0 ≤ 1, and the firm’s profit

E
[
πF
]
|m̄T∈[m̃N ,∞) = Pr (m ≥ m̃N )E [D (m) |m ≥ m̃N ]

+ (p0 − 1) Pr (m ≥ m̄T )E [m|m ≥ m̄T ]− ς Pr (m̃N ≤ m < m̃T ) ,

is maximized when p0 = 1 and m̃T = m̃N . The corresponding payoff is E
[
πF
]
|m̄T=m̃N =

Pr (m ≥ m̃N )E [D (m) |m ≥ m̃N ].

When m̄T ∈ [m̃Y , m̃N ) then the event
{
1F1 = 1&Tm̄T = 1

}
occurs whenm ≥ m̄T , and the events{

1F1 = 1&Tm̄T = 0
}
and

{
1F1 = 0&Tm̄T = 1

}
never occur. The backer participation constraint

remains p0 ≤ 1, and the firm’s profit

E
[
πF
]
|m̄T∈[m̃Y ,m̃N ) = Pr (m ≥ m̃T )E [D (m) |m ≥ m̃T ] + (p0 − 1) Pr (m ≥ m̄T )E [m|m ≥ m̄T ] ,

is maximized when p0 = 1 and m̃T = m̃Y . The latter holds because m̄T ≥ m̃Y > m̃, and

from Lemma 9 in Online Appendix B.1 Pr (m ≥ m̃T )E [D (m) |m ≥ m̃T ] is monotonically decreas-

ing in m̄T , and the corresponding utility E
[
πF
]
|m̄T=m̃Y = Pr (m ≥ m̃Y )E [D (m) |m ≥ m̃Y ] ≥

E
[
πF
]
|m̄T=m̃N as m̃N ≥ m̃Y (strict inequality whenever m̃N > m̃Y ).

When m̄T ∈ [0, m̃Y ) then the firm may divert funds and as in Appendix A.2, the inequali-

ties (34) and (35) must hold. The event
{
1F1 = 1&Tm̄T = 1

}
occurs when m ≥ m̃Y , the event{

1F1 = 1&Tm̄T = 0
}
never occurs, and the event

{
1F1 = 0&Tm̄T = 1

}
occurs when m̄T ≤ m < m̃Y .

We obtain

E
[
πF
]
|m̄T∈[0,m̃Y )−E

[
πF
]
|m̄T=m̃Y = Pr (m ≥ m̄T )E [m|m ≥ m̄T ]

(
p0 −

E [m|m ≥ m̃Y ] Pr (m ≥ m̃Y )

E [m|m ≥ m̄T ] Pr (m ≥ m̄T )

)
,

which from (35) is non-positive making this deviation unprofitable compared to m̃T = m̃Y .
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A.4 Sample size, crowdfunding outcomes and firm’s expected utility from crowd-
funding under different parameter values

The first row considers the benchmark parameter assumptions as in the main text, i.e., N = 2000,

θ0 = 0.5 and I = θ0N = 1000, it replicates Figure 4. The second and third row consider higher

and lower investment costs, I = 1100 and I = 800 respectively. The fourth and fifth row consider

a break-even firm with higher and lower values of prior mean, θ0 = 0.6 and θ0 = 0.4, respectively.
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B Online appendices

B.1 Useful general results

Lemma 8 For any c ∈ {0, 1, ...,M}, E [m|m ≥ c] is increasing in c.

Proof. Since c is an integer, it is suffi cient to show that for any c ∈ {0, 1, ...,M} we have

E [m|m ≥ c+ 1] > E [m|m ≥ c] ,

which can be expressed as∑M
m=c+1mqm∑M
m=c+1 qm

>

∑M
m=cmqm∑M
m=c qm

=
cqc +

∑M
m=c+1mqm

qc +
∑M

m=c+1 qm

Simplifying, we obtain

qc

M∑
m=c+1

mqm > cqc

M∑
m=c+1

qm ⇔ qc

M∑
m=c+1

(m− c) qm > 0,

where the inequality holds because m − c > 0 for any c + 1 ≤ m ≤ M and with a beta-binomial

distribution, qm > 0 for any m.

Lemma 9 For any c ∈ {0, 1, ...,M} , Pr (m ≥ c)E [D (m) |m ≥ c] is monotonically increasing (de-

creasing) in c for any c < (>) m̃; Pr (m ≥ c)E [D (m) |m ≥ c] is maximized when c = m̃, where m̃

is given by (14).

Proof. As c is an integer, consider the difference

Pr (m ≥ c+ 1)E [D (m) |m ≥ c+ 1]− Pr (m ≥ c)E [D (m) |m ≥ c]

=

M∑
m=c+1

D (m) qm −
M∑
m=c

D (m) qm = −D (c) qc.

Since qc > 0 for any c, the difference has the same sign as −D (c) qc. From (14) and (15), we obtain

D (c) < 0 if c < m̃
D (c) ≥ 0 if c = m̃
D (c) > 0 if c > m̃

,

which implies that Pr (m ≥ c)E [D (m) |m ≥ c] is indeed monotonically increasing (decreasing) in

c for any c < (>) m̃. This also implies that Pr (m ≥ c)E [D (m) |m ≥ c] is maximized when c = m̃.
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B.2 Proof of Proposition 2

We only need to consider I0 < I < I0 + M λ+N
λ+M , as the value of learning is zero otherwise. From

(14), it is clear that m̃ is weakly increasing in I.

Consider I < Nθ0. From (15) and (17), the expected value of learning is

UFB,I = −E [D (m) |m < m̃] Pr (m < m̃) = −
m̃−1∑
m=0

D (m) qm.

Since −D (m) =
(
I − λ+N

λ+Mm− I0

)
is positive and increasing in I for any m < m̃, and since m̃ is

weakly increasing in I, we obtain that UFB,I is increasing in I.

Consider I > Nθ0. From (15) and (18), the expected value of learning is

UFB,NI = E [D (m) |m ≥ m̃] Pr (m ≥ m̃) =
M∑

m=m̃
D (m) qm.

Since D (m) =
(
λ+N
λ+Mm+ I0 − I

)
is positive and decreasing in I for any m ≥ m̃ and since m̃ is

weakly increasing in I, UFB,NI is decreasing in I. This implies that I = Nθ0 maximizes the expected

value of learning.

B.3 Proof of Proposition 3

For the sake of exposition, we have limited indexing the variables of interest in the main text and

only highlighted the dependence on m. For this proof it is necessary to consider the dependence

on λ. We denote

qm (λ) =

(
M

m

)
B (λθ0 +m,λ (1− θ0) +M −m)

B (λθ0, λ (1− θ0))
(36)

m̃ (λ) =

⌈
λ+M

λ+N
(I − I0 (λ))

⌉
D (m,λ) =

λ+N

λ+M
m+ I0 (λ)− I,

where I0 (λ) = λθ0(N−M)
λ+M . The equations in (36) are identical to (12), (14) and (15) respectively.

We also denote the cumulative distribution of m

Qm (λ) =
m∑
k=0

qk (λ) .

Since the distribution of m is beta-binomial, for any pair λ ∈ {λ1, λ2} such that λ2 > λ1, the

distribution with higher λ2 second order stochastically dominates (SOSD) the one with λ1, i.e.,

m∑
k=0

Qk (λ2) ≤
m∑
k=0

Qk (λ1) (37)
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for all m = {0, 1, ...,M}; the inequality is strict for m < M − 1.10

From (17) and (18), we obtain

UFB,I (λ) = −
m̃(λ)−1∑
m=0

D (m,λ) qm (λ) for I < Nθ0 (38)

UFB,NI (λ) = (Nθ0 − I)−
m̃(λ) −1∑
m=0

D (m,λ) qm (λ) for I ≥ Nθ0

From Abel’s Lemma11, and D (m+ 1, λ)−D (m,λ) = λ+N
λ+M ,

m̃(λ)−1∑
m=0

D (m,λ) qm (λ) = D (m̃ (λ) , λ)Qm̃(λ)−1 (λ)− λ+N

λ+M

m̃(λ)−1∑
m=0

Qm (λ) (39)

We can express the investment threshold as

m̃ (λ) =
λ+M

λ+N
(I − I0 (λ)) + ε (λ) , (40)

where 0 ≤ ε (λ) < 1 is the rounding error. Using (36) and (40) we obtain

D (m̃ (λ) , λ) =
λ+N

λ+M
m̃ (λ) + I0 (λ)− I =

λ+N

λ+M
ε (λ) (41)

Replacing (39) and (41) in (38), we express the firm’s expected value of learning as

UFB,I (λ) =
λ+N

λ+M

(
ε (λ)

m̃(λ)−2∑
m=0

Qm (λ) + (1− ε (λ))
m̃(λ)−1∑
m=0

Qm (λ)

)
, (42)

UFB,NI (λ) = (Nθ0 − I) +
λ+N

λ+M

(
ε (λ)

m̃(λ)−2∑
m=0

Qm (λ) + (1− ε (λ))
m̃(λ)−1∑
m=0

Qm (λ)

)
. (43)

From (36), we obtain

m̃ (λ2) ≤ m̃ (λ1) if I < Nθ0

m̃ (λ2) ≥ m̃ (λ1) if I > Nθ0,

If I = Nθ0, then m̃ (λ2) = m̃ (λ1) = dMθ0e =
⌈
IMN
⌉
is independent of λ. Since the effect of λ on

the firms that would break even without learning is different from its effect on the firms that would

not, we analyze these two cases separately.

Case 1: firms with I < Nθ0

In this case, we have m̃ (λ2) ≤ m̃ (λ1). We denote ∆m̃ = − (m̃ (λ2)− m̃ (λ1)), where ∆m̃ =

{0, 1, ...}. From (40), we obtain

ε (λ2) = ε (λ1)−∆m̃+
(λ2 − λ1) (N −M)

(λ2 +N) (λ1 +N)
(Nθ0 − I)

10This can be proved analytically from the fact that beta-binomial distributions have a unimodal likelihood ra-
tio, which implies second order stochastic dominance. See Hopkins, Kornienko, 2003 for the proof of continuous
distributions, the proof for discrete distributions is available upon request.
11∑N

i=0 aibi = ANbN −
∑N−1
i=0 Ai (bi+1 − bi), where An =

∑n
i=0 ai.
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This and (42) enable us to decompose the effect of an increase in λ as

UFB,I (λ2)− UFB,I (λ1) = − λ1 +N

λ1 +M

(
GI1 +GI2 +GI3

)
(44)

−(λ2 − λ1) (N −M)

(λ2 +N) (λ1 +M)

(
UFB,I (λ2) +Qm̃(λ2)−1 (λ2) (Nθ0 − I)

)
,

where

GI1 ≡ ε (λ1)

(
m̃(λ1)−2∑
m=0

Qm (λ1)−
m̃(λ2)−2∑
m=0

Qm (λ2)

)
,

GI2 ≡ (1− ε (λ1))

(
m̃(λ1)−1∑
m=0

Qm (λ1)−
m̃(λ2)−1∑
m=0

Qm (λ2)

)
,

GI3 ≡ −∆m̃Qm̃(λ2)−1 (λ2) .

The second term in (44) is non-positive and it is strictly negative if N < M , because UFB,I (λ2) > 0

and I < Nθ0. The sign of the first term in (44) is determined by GI1 +GI2 +GI3.

If ∆m̃ = 0, i.e., m̃ (λ1) = m̃ (λ2), then GI1 +GI2 +GI3 ≥ 0 follows from G3 = 0, and GI1, G
I
2 ≥ 0

due to second order stochastic dominance (37).

If ∆m̃ > 0, then we can further decompose

GI1 +GI2 +GI3 = ε (λ1)

(
m̃(λ1)−2∑
m=0

Qm (λ1)−
m̃(λ1)−2∑
m=0

Qm (λ2)

)

+ (1− ε (λ1))

(
m̃(λ1)−1∑
m=0

Qm (λ1)−
m̃(λ1)−1∑
m=0

Qm (λ2)

)

+
m̃(λ2) +∆m̃−2∑
m=m̃(λ2) −1

(
Qm (λ2)−Qm̃(λ2)−1 (λ2)

)
+ (1− ε (λ1))

(
Qm̃(λ2)+∆m̃−1 (λ2)−Qm̃(λ2)−1 (λ2)

)
,

which is non-negative for any ∆m̃ > 0, because of second order stochastic dominance (37) and

because the cumulative probability is increasing in m. Hence the value of learning decreases with

λ for all firms with I < Nθ0.

Case 2: firms with I ≥ Nθ0

In this case, we have m̃ (λ2) ≥ m̃ (λ1). We again denote ∆m̃ = m̃ (λ2) − m̃ (λ1), where ∆m̃ =

{0, 1, ...} and from (40) we obtain the following relationship between ε (λ1) and ε (λ2):

ε (λ1) = ε (λ2)−∆m̃+
(λ2 − λ1) (N −M) (I −Nθ0)

(λ2 +N) (λ1 +N)
. (45)

The above and (42) enable us to decompose again the effect of an increase in λ as
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UFB,NI (λ2)− UFB,NI (λ1) = − λ1 +N

λ1 +M

(
GNI1 +GNI2 +GNI3

)
(46)

−(λ2 − λ1) (N −M)

(λ2 +N) (λ1 +M)

(
UFB,NI (λ2) + (I −Nθ0)

(
1−Qm̃(λ1)−1 (λ1)

))
,

where

GNI1 ≡ ε (λ2)

(
m̃(λ1)−2∑
m=0

Qm (λ1)−
m̃(λ2)−2∑
m=0

Qm (λ2)

)
,

GNI2 ≡ (1− ε (λ2))

(
m̃(λ1)−1∑
m=0

Qm (λ1)−
m̃(λ2)−1∑
m=0

Qm (λ2)

)
,

GNI3 ≡ −∆m̃Qm̃(λ1)−1 (λ1) .

It is clear that the second term of (46) is non-positive and it is strictly negative if N < M,

because E
[
πF
]B,NI

(λ2) > 0, and I ≥ Nθ0. As in case 1, it is easy to see that if ∆m̃ = 0, then

m̃ (λ1) = m̃ (λ2) and GNI1 + GNI2 + GNI3 ≥ 0. If ∆m̃ > 0, then we can follow the same derivation

as before to prove that GNI1 +GNI2 +GNI3 ≥ 0 (keeping in in mind that now m̃ (λ2) > m̃ (λ1)).

This proves that the value of learning increases with the level of uncertainty, i.e., decreases with

λ.

B.4 Proof of Lemma 5

From (25) it is immediate that when vi = 0, pledging leads to a strictly negative expected payoff,

which proves the first sentence of Lemma 5. When m̄T ≥ m̃Y , the consumer anticipates the firm

will invest with probability 1 if it meets its target, which proves that 1i0 = 1 whenever (26) holds.

When m̄T < m̃Y , then

Pr
(
Tm̄T = 1|Ωi

0

)
= Pr

(
mB ≥ m̄T |vi = 1

)
= Pr

(
m−i + 1 ≥ m̄T |vi = 1

)
and

Pr
(
Tm̄T = 1|Ωi

0

)
Pr
(
1F1 = 1|Ωi

0, Tm̄T = 1
)

= Pr
(
mB ≥ m̃Y |vi = 1

)
= Pr

(
m−i ≥ m̃Y − 1|vi = 1

)
,

using (25), we then find 27. The last inequality follows from the fact that m̃Y − 1 > m̄T − 1 ⇐⇒

Pr
(
m−i ≥ m̃Y − 1|vi = 1

)
< Pr

(
m−i ≥ m̄T − 1|vi = 1

)
.

B.5 Analytical results for Section 6

We can highlight the main forces that drive the impact of an increase in M on campaign outcomes

and the firm’s utility. Because M affects the probability mass function (12), and thus expectations
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and probabilities, we use here notation ";M", ";M + 1" to highlight under which sample size the

distribution of the relevant variable is calculated. For this extension, let us denote q (m;M) the

probability mass function of m when the sample size isM , Q (c;M) =
c∑

m=0
q (m;M) the cumulative

distribution function, and Q̄ (c;M) =
M∑
m=c

q (m;M) the probability that m is above some integer

c = {0, ...,M}. Clearly Q (c− 1;M) + Q̄ (c;M) = 1. The following Lemma is important to

understand the main drivers

Lemma 10 For any integer c = {1, ...,M − 1} we have 1) Q̄ (c;M + 1) > Q̄ (c;M), and

2) Q̄ (c+ 1;M + 1) < Q̄ (c;M).

Proof. See B.5.1 below.

Lemma 10 provides an explanation for why the probability of meeting an endogenous crowd-

funding target m̄T = m̃Y becomes decreasing in M . It states that while the probability of meeting

a fixed target under the sample M + 1 is higher than under the sample M , whenever the target

increases at least by one unit12 then the probability of meeting this target decreases. As explained

in the main text when M increases then changes in m̃Y become increasingly frequent and larger,

hence to the probability of crowdfunding success must decrease when M becomes suffi cently high.

This also explains why the probability of meeting the target being decreasing in sample size is

a symptom of moral hazard. If there was no moral hazard, the firm could commit to a first best

target m̃ defined in (14). It is easy to confirm that the first best target of a breakeven firm with

I = Nθ0 is m̃ = dMθ0e. Consider the example with θ0 = 0.5. Due to the ceiling function m̃ remains

unchanged whenever M changes from being an odd number to an even one and increases whenever

M changes from even to odd. Hence the probability of meeting such target would alternate between

being decreasing and increasing leaving the overall probability of the event m ≥ m̃ constant on

average. A similar reasoning applies for other values of θ0. Higher (lower) investment costs would

make the probability of meeting this target increasing (decreasing) inM , because m̃Y is more (less)

sensitive to changes in M when I is larger (smaller). In an overall sample with many firms, we

should not find a systematic pattern between the sample size and the probability of crowdfunding

success if there was no moral hazard.

Lemma 10 further enables to identify the driving forces behind the relationship between the

sample size M , funds raised and the firm’s utility. Namely, from Abel’s Lemma for an integer

12Note that Q̄ (c+ k;M + 1) =
M∑
c+k

q (c;M) <
M∑
c+1

q (c;M) for any k > 1, which further implies Q̄ (c+ k;M + 1) <

Q̄ (c;M).
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c = {1, ...,M − 1} we have

E [m|m ≥ c;M ] Pr (m ≥ c;M) =
M∑
m=0

m · q (m;M)−
c−1∑
m=0

m · q (m;M) (47)

= M − (c− 1)Q (c− 1;M)−
M−1∑
m=0

Q (m;M) +
c−2∑
m=0

Q (m;M)

= M − cQ (c− 1;M)−
M−1∑
m=0

Q (m;M) +
c−1∑
m=0

Q (m;M)

= cQ̄ (c;M) +
M−1∑
m=c

Q̄ (m+ 1;M) ,

where the last equality uses Q (m;M) = 1− Q̄ (m+ 1;M).

This implies that whenever the threshold does not change, i.e., m̃Y (M + 1) = m̃Y (M), the

expected funds raised are increasing in M , i.e.,

∆Funds|m̃Y (M+1)=m̃Y (M) ≡ E [m|m ≥ m̃Y (M) ;M + 1] Pr (m ≥ m̃Y (M) ;M + 1)

−E [m|m ≥ m̃Y (M) ;M ] Pr (m ≥ m̃Y (M) ;M)

= Q̄ (M + 1;M + 1) + m̃Y (M)
(
Q̄ (m̃Y (M) ;M + 1)− Q̄ (m̃Y (M) ;M)

)
+

M−1∑
m=m̃Y (M)

(
Q̄ (m+ 1;M + 1)− Q̄ (m+ 1;M)

)
> 0

because the first term is a probability thus positive and the second and third term are positive

by Lemma 10. When then threshold does change, i.e., m̃Y (M + 1) > m̃Y (M), then the expected

funds raised is affected by a negative force due to the change of threshold, i.e.,

∆Funds ≡ E [m|m ≥ m̃Y (M + 1) ;M + 1] Pr (m ≥ m̃Y (M + 1) ;M + 1)

−E [m|m ≥ m̃Y (M) ;M ] Pr (m ≥ m̃Y (M) ;M)

= ∆Funds|m̃Y (M+1)=m̃Y (M) −
m̃Y (M+1)−1∑
m̃Y (M)

mq (m;M + 1)

This negative force becomes stronger whenM is larger as m̃Y (M) increases with M at an increasing

rate. This explains why the expected funds raised are inverted U-shaped in M .

Let us then analyze the firm’s utility. When ς is small, then 1m̃Y ≥m̃N = 1 and from (15), (31)

and (47) the firm’s utility is given by

UF (M) |low ς =

(
λ+N

λ+M
m̃N (M) + I0 (M)− I − ς

)
Q̄ (m̃N (M) ;M)

+
λ+N

λ+M

(
M−1∑

m=m̃N (M)

Q̄ (m+ 1;M)

)
+ ςQ̄ (m̃Y (M) ;M)− πFref .
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Furthermore, by (24)
(
λ+N
λ+M m̃N (M) + I0 (M)− I − ς

)
≈ 0 as the only difference comes from the

rounding error due to the ceiling function and therefore

UF (M) |low ς ≈
λ+N

λ+M

(
M−1∑

m=m̃N (M)

Q̄ (m+ 1;M)

)
+ ςQ̄ (m̃Y (M) ;M)− πFref .

Because m̃N (M) inceases slowly M the term
M−1∑

m=m̃N (M)

Q̄ (m+ 1;M) is increasing in M . There are

two negative forces. First, the term λ+N
λ+M is decreasing inM as a larger sample means that there are

fewer consumers who purchase the product after crowdfunding. Essentially the benefits of learning

are amplified when the sample size decreases. This explains why even when ς → 0, the benefits of

a higher sample size diminish whenM becomes large enough. If ς is positive then there is a further

negative effect via the last term ςQ̄ (m̃Y (M) ;M) as we have argued that meeting the endogenous

crowdfunding target becomes increasingly diffficult when the sample size increases. This prompts

a firm with high enough ς to also prefer a smaller sample size.

When ς is high then 1m̃Y ≥m̃N = 0 and from (15), (31) and (47)

UF (M) |high ς =

(
λ+N

λ+M
m̃Y (M) + I0 (M)− I

)
Q̄ (m̃Y (M) ;M)

+
λ+N

λ+M

(
M−1∑

m=m̃Y (M)

Q̄ (m+ 1;M)

)
− πref .

From (23)
(
λ+N
λ+M m̃Y (M) + I0 (M)− I

)
≈ m̃Y (M) where the only difference comes from the round-

ing error due to the ceiling function and therefore

UF (M) |high ς ≈ m̃Y (M) Q̄ (m̃Y (M) ;M) +
λ+N

λ+M

(
M−1∑

m=m̃Y (M)

Q̄ (m+ 1;M)

)
− πFref

= E [m|m ≥ m̃Y (M) ;M ] Pr (m ≥ m̃Y (M) ;M) +
N −M
λ+M

(
M−1∑

m=m̃Y (M)

Q̄ (m+ 1;M)

)
− πFref

Now the first term is the funds raised, i.e., the same as the platform’s objective, which we argued

above to be invested U-shaped in M . As above the term
M−1∑

m=m̃Y (M)

Q̄ (m+ 1;M) is increasing in M

if the threshold m̃Y (M) does not change, which is true in the case of a very small sample. When

m̃Y (M) increases due to an increase of M then the term
M−1∑

m=m̃Y (M)

Q̄ (m+ 1;M) is affected by an

additional negative force similarly to the funds raised. Additionally, the multiplier N−M
λ+M is also

decreasing in M . These negative forces lead the firm to prefer a small sample, and according to

our numerical results an even smaller sample than the platform.

40



B.5.1 Proof of Lemma 10

From (12), the definition of the beta function B (x, y) = Γ(x)Γ(y)
Γ(x+y) , and the fact that the gamma

function Γ (x) satisfies the recurrence relation Γ (x+ 1) = xΓ (x), the likelihood ratio is

q (m;M + 1)

q (m;M)
=

M + 1

M + 1−m ·
λ (1− θ0) +M −m

λ+M
(48)

and the likelihood ratio
q (m+ 1;M + 1)

q (m;M)
=
M + 1

m+ 1
· λθ0 +m

λ+M
. (49)

Proof of claim 1) of Lemma 10. Proving that Q̄ (c;M + 1) > Q̄ (c;M) is equivalent to prov-

ing Q (c− 1;M + 1) < Q (c− 1;M). Differentiating (48) with respect to m, we get
∂
q(m;M+1)
q(m;M)

∂m =

(M+1)(λ(1−θ0)−1)

(λ+M)(M−m+1)2 . Depending on the parameters of the model, the likelihood ratio is monotonically

decreasing (λ (1− θ0) < 1), constant (λ (1− θ0) = 1) or monotonically increasing (λ (1− θ0) > 1).

Suppose that λ (1− θ0) < 1. We find

Q (c− 1;M + 1) =
c−1∑
k=0

q (m;M + 1)

q (m;M)
q (m;M) ≤ q (0;M + 1)

q (0;M)
·Q (c− 1;M) ,

where the inequality holds because q(m;M+1)
q(m;M) is decreasing under these parameters. As q(0;M+1)

q(0;M) =

λ(1−θ0)+M
λ+M < 1⇔ θ0 > 0, Q (c− 1;M + 1) < Q (c− 1;M).

Suppose that λ (1− θ0) = 1 =⇒ λ = 1
(1−θ0) . Then

q(m;M+1)
q(m;M) = M+1

M+λ = M+1
1

1−θ0
+M

. Since

Q (c− 1;M + 1) =
c−1∑
m=0

q (m;M + 1)

q (m;M)
q (m;M) =

M + 1

M + λ
Q (c− 1;M)

and M+1
1

1−θ0
+M

< 1⇔ 0 < θ0 < 1, it follows that Q (c− 1;M + 1) < Q (c− 1;M).

Finally, consider λ (1− θ0) > 1. Because the likelihood ratio is now monotonially increasing,

we must have

Q (c− 1;M + 1) =
c−1∑
k=0

q (m;M + 1)

q (m;M)
q (m;M) ≤ q (c− 1;M + 1)

q (c− 1;M)
Q (c− 1;M) .

At the same time

1−Q (c− 1;M + 1) = q (M + 1;M + 1) +
M∑
m=c

q (m;M + 1)

= q (M + 1;M + 1) +
M∑
m=c

q (m;M + 1)

q (m;M)
q (m;M) ≥

≥ q (M + 1;M + 1) +
q (c;M + 1)

q (c;M)
(1−Q (c− 1;M)) ,

where again the inequality holds because the likelihood ratio is monotonically increasing. From

these two inequalities we obtain that for any c = {1, ...,M − 1}
Q (c− 1;M + 1)

Q (c− 1;M)
≤ q (c− 1;M + 1)

q (c− 1;M)
<

q (M + 1;M + 1)

(1−Q (c− 1;M))
+
q (c;M + 1)

q (c;M)
≤ 1−Q (c− 1;M + 1)

1−Q (c− 1;M)
,
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where the middle inequality holds because q(c−1;M+1)
q(c−1;M) < q(c;M+1)

q(c;M) and q(M+1;M+1)
(1−Q(c−1;M)) > 0. From here,

Q (c− 1;M + 1)

Q (c− 1;M)
<

1−Q (c− 1;M + 1)

1−Q (c− 1;M)
⇔ Q (c− 1;M + 1) < Q (c− 1;M) .

Proof of claim 2) of Lemma 10. Differentiating (49) with respect to m, we get
∂
q(m+1;M+1)
q(m;M)

∂m =

M+1
λ+M ·

1−λθ0

(m+1)2 , and we again have three possibilities, the likelihood ratio is monotonically increasing

(λθ0 < 1), constant (1 = λθ0), or monotonically decreasing (λθ0 > 1).

Suppose that λθ0 < 1. We find

Q̄ (c+ 1;M + 1) =
M∑
m=c

q (m+ 1;M + 1)

q (m;M)
q (m;M) ≤ q (M + 1;M + 1)

q (M ;M)
Q̄ (c;M) ,

where the inequality holds because q(m;M+1)
q(m;M) is increasing. As q(M+1;M+1)

q(M ;M) = λθ0+M
λ+M < 1⇔ θ0 < 1,

Q̄ (c+ 1;M + 1) < Q̄ (c;M).

Suppose that λθ0 = 1 =⇒ λ = 1
θ0
. Then q(m;M+1)

q(m;M) = M+1
M+λ = M+1

1
1−θ0

+M
. Since

Q̄ (c+ 1;M + 1) =

M∑
m=c

q (m+ 1;M + 1)

q (m;M)
q (m;M) =

M + 1

λ+M

M∑
m=c

q (m;M) =
M + 1

λ+M
Q̄ (c;M)

and M+1
1

1−θ0
+M

< 1⇔ 0 < θ0 < 1, it follows that Q̄ (c+ 1;M + 1) < Q̄ (c;M).

Finally, consider λθ0 > 1. Since the likelihood ratio is now monotonially decreasing

Q̄ (c+ 1;M + 1) =
M∑
m=c

q (m+ 1;M + 1)

q (m;M)
q (m;M) ≤ q (c+ 1;M + 1)

q (c;M)
Q̄ (c;M) .

At the same time

1− Q̄ (c+ 1;M + 1) =
c∑

m=0
q (m;M + 1) = q (0;M + 1) +

c−1∑
m=0

q (m+ 1;M + 1)

= q (0;M + 1) +
c−1∑
m=0

q (m+ 1;M + 1)

q (m;M)
q (m;M) ≥

≥ q (0;M + 1) +
q (c;M + 1)

q (c− 1;M)

(
1− Q̄ (c;M)

)
where again the inequality holds because the likelihood ratio is monotonically increasing. From

these two inequalities, we obtain

1− Q̄ (c+ 1;M + 1)(
1− Q̄ (c;M)

) ≥ q (0;M + 1)(
1− Q̄ (c;M)

) +
q (c;M + 1)

q (c− 1;M)
>
q (c+ 1;M + 1)

q (c;M)
≥ Q̄ (c+ 1;M + 1)

Q̄ (c;M)

where the middle inequality holds because q(c+1;M+1)
q(c;M) < q(c;M+1)

q(c−1;M) and
q(0;M+1)

(1−Q̄(c;M))
> 0. From here

Q̄ (c+ 1;M + 1)

Q̄ (c;M)
<

1− Q̄ (c+ 1;M + 1)(
1− Q̄ (c;M)

) ⇔ Q̄ (c+ 1;M + 1) < Q̄ (c;M) .
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B.6 Distribution of the ratio of pledges to target

The figures below are based on data from Kickstarter. The upper figure, which plots

Pr
(
pm
pm̄T
≤ x| pmpm̄T ≥ 1

)
, is constructed using all 2015 Technology and Theatre projects completed

from January 1, 2015 to September 17, 2015. We then constructed the unconditional distribution,

Pr
(
pm
pm̄T
≤ x

)
, thanks to the summary statistics available on Kickstarter on September 17, 2015.

This statistics cover the full history of Kickstarter, so we assume that the 2015 data is statistically

similar to earlier data. We use Pr
(
pm
pm̄T
≥ 1
)
reported on the site, which is 0.2018 for Technology

category and 0.6089 for Theatre, and the frequency of unsuccessful projects raising 0%, 1 − 20%,

..., 81− 99% in these categories. We then use the law of total expectations to find Pr
(
pm
pm̄T
≤ x

)
.
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