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Learning through ferroelectric domain dynamics
in solid-state synapses
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In the brain, learning is achieved through the ability of synapses to reconfigure the strength by

which they connect neurons (synaptic plasticity). In promising solid-state synapses called

memristors, conductance can be finely tuned by voltage pulses and set to evolve according

to a biological learning rule called spike-timing-dependent plasticity (STDP). Future

neuromorphic architectures will comprise billions of such nanosynapses, which require a

clear understanding of the physical mechanisms responsible for plasticity. Here we report on

synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from

inhomogeneous polarization switching. Through combined scanning probe imaging, electrical

transport and atomic-scale molecular dynamics, we demonstrate that conductance variations

can be modelled by the nucleation-dominated reversal of domains. Based on this physical

model, our simulations show that arrays of ferroelectric nanosynapses can autonomously

learn to recognize patterns in a predictable way, opening the path towards unsupervised

learning in spiking neural networks.
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C
ortical information flows from neuron to neuron through
synapses of variable connection strength. The overall
distribution of the synaptic strengths provides the neural

network with memory, while learning is achieved through
the synapses’ reconfiguration (that is, plasticity)1. Several
mechanisms regulating the evolution of the synaptic strengths
have been proposed2. A particularly promising one is spike-
timing-dependent plasticity3 (STDP) through which the synaptic
strengths evolve depending on the timing and causality of
electrical signals from neighbouring neurons4 (sketch in Fig. 1a).
As observed in biological systems5, STDP enables learning
without any external control on the synaptic strengths or any
previous knowledge of the information to be processed. This
makes STDP the basis for autonomous, unsupervised learning6.
The implementation of STDP in artificial neural networks thus
emerges as a crucial milestone towards the realization of self-
adaptive electronic architectures.

An electronic equivalent of the synapse for artificial neural
networks is the memristor7, a nanoscale device whose resistance
depends on the history of electrical signals it was previously
subjected to (ref. 8). Memristors thus exhibit plasticity and their
conductance can emulate synaptic strength, so that a low
resistance corresponds to a strong synaptic connection and a
high resistance corresponds to a weak synaptic connection,
respectively. Most memristors operate through the motion of ions
or atoms in binary oxides (TiO2 (refs 9,10), Ta2O5 (ref. 11) and so
on), Ag-Si/Ag-S nanocomposites12 or phase change materials13.
Recently, STDP was demonstrated in individual devices based on
such memristor technologies, confirming the potential of
memristors for autonomous learning13–20. However, the
connection between the STDP process and the physical
mechanisms underlying resistance changes in these memristors
is unclear7. In addition, continual variations of the memristor

conductance are required for learning new features under an
incessant information flow. Here we show that resorting to purely
electronic memristors with a high endurance, operating on well-
established physical principles is a decisive asset for the future
implementation of unsupervised learning21 in high-density
memristive crossbar arrays22.

Results
Ferroelectric synapses. We work with purely electronic mem-
ristors based on ferroelectric tunnel junctions (FTJs), in which an
ultrathin ferroelectric film is sandwiched between two electro-
des23,24. In such devices, sketched in Fig. 1b, the junction
resistance sensitively depends on the relative fraction of
ferroelectric domains with polarization pointing towards one or
the other electrode25. Applying voltage pulses to the device
modifies the domain population, thereby inducing resistance
changes25. Furthermore, supertetragonal BiFeO3 (BFO) tunnel
barriers combined with (Ca,Ce)MnO3 (CCMO) bottom and Co
top electrodes give rise to OFF/ON resistance ratios up to 104

(ref. 26) paired with high endurance and operation speed27.
Figure 1c shows the dependence of the junction resistance with

the amplitude of 100 ns voltage pulses in a Co/BFO/CCMO
junction (Methods). In this hysteresis cycle, one clearly notes the
existence of voltage thresholds V þ

th V �
th

� �
beyond which

switching between low- and high- (high- and low-) resistance
states occurs. The existence of such well-defined voltage thresh-
olds (associated with the coercivity of the ferroelectric) makes it
possible to implement STDP28 in these FTJs. According to STDP,
if the pre-neuron spikes just before the post-neuron—indicating a
‘causal’ relationship—the synapse should be strengthened
whereas if the pre-neuron spikes just after the post-neuron—
indicating an ‘anticausal’ relationship—the synapse should be
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Figure 1 | Artificial synapses based on FTJs. (a) Sketch of pre- and post-neurons connected by a synapse. The synaptic transmission is modulated by the

causality (Dt) of neuron spikes. (b) Sketch of the ferroelectric memristor where a ferroelectric tunnel barrier of BiFeO3 (BFO) is sandwiched between a

bottom electrode of (Ca,Ce)MnO3 (CCMO) and a top submicron pillar of Pt/Co. YAO stands for YAlO3. (c) Single-pulse hysteresis loop of the ferroelectric

memristor displaying clear voltage thresholds (V þ
th and V �

th ). (d) Measurements of STDP in the ferroelectric memristor. Modulation of the device

conductance (DG) as a function of the delay (Dt) between pre- and post-synaptic spikes. Seven data sets were collected on the same device showing the

reproducibility of the effect. The total length of each pre- and post-synaptic spike is 600 ns.
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weakened. We emulate the spikes from pre- and post-neurons
(sketched in Fig. 1a) by the waveforms shown in Fig. 1b:
rectangular voltage pulses followed by smooth slopes of opposite
polarity. Importantly, the voltage never exceeds Vth, so that a
single spike cannot induce a change in resistance.

When both pre- and post-neuron spikes reach the memristor
with a delay Dt, their superposition produces the waveforms
(Vpre�Vpost) displayed in the inset of Fig. 1d. The resulting
combined waveform transitorily exceeds the threshold voltage,
leading to an increase (DG40, synapse strengthening) or a
decrease (DGo0, synapse weakening) of the FTJ conductance
(G), depending on the sign of Dt. As can be seen from the
experimental STDP curve in Fig. 1d, only closely timed spikes
produce a conductance change whereas long delays leave the
device unchanged.

Domain dynamics probed by tunnelling. Modelling the shape of
the STDP curve requires understanding the physical process
underlying the time-dependent variation of the FTJ conductance
while the waveform is applied. For this purpose, we image the
pseudo real-time evolution of the ferroelectric domain config-
uration by means of stroboscopic piezoresponse force microscopy
(PFM)29, while simultaneously measuring the electrical properties
of the device. Figure 2a shows the PFM phase and amplitude
signals after cumulative pulses of constant amplitude (1V) from
the ON to the OFF state. The evolution of the phase images in
stroboscopic PFM reveals the gradual reversal of the polarization
from up (dark domains) to down (bright domains) and is
reminiscent of the polarization reversal with increasing voltages
previously observed by PFM26. The weak amplitude signal during
reversal (for example, stages 2 and 3) indicates that the
ferroelectric system is split into many small (t10 nm) domains
and that polarization switching is governed by the
inhomogeneous nucleation of new domains rather than by the
expansion of existing ones. We complemented these experiments
by molecular dynamics (MD) simulations (Methods) on defect-
free supertetragonal BFO films. These computations also yield an
inhomogeneous character for polarization switching
(Supplementary Fig. 1), therefore implying that this process is
intrinsic in nature, that is, one does not require the presence of
defects to obtain an inhomogeneous switching in supertetragonal
BFO. Such findings contrast with the case of bulk-like BFO
(rhombohedral phase) for which a homogeneous switching
was recently predicted30 as a result of large oxygen octahedra
tilts that provide a specific homogeneous path for polarization
reversal.

We extract the normalized reversed area S from the phase
images and plot it as a function of the cumulated pulse duration
in Fig. 2b (black squares). Owing to the direct link between the
junction resistance R and this normalized reversed area S (well
described by a simple model of parallel resistances,
1=R¼G¼ð1� SÞ�1=RON þ S�1=ROFF, ref. 25), one can also
extract S from measurements of the junction resistance after
consecutive pulses of 1 V (green squares in Fig. 2b; note the
excellent agreement between the PFM and transport data).
Figure 2c shows transport data sets at different pulse amplitudes.
They follow a systematic trend where, for a given cumulated pulse
duration, the switched area is larger under higher voltages.

In ferroelectrics, inhomogeneous polarization switching can be
described by a nucleation-limited model, which considers that the
ferroelectric film is composed of different zones with independent
switching kinetics31,32. Assuming for each voltage V a broad
Lorentzian distribution of the logarithm of nucleation times—
with width G(V) and centred at log(tmean(V))—the normalized
reversed area S can be approximated as a function of time t and

applied voltage V (ref. 31):

S� t;Vð Þ ¼ 1
2
� 1

p
arc tan

log tmeanðVÞð Þ� log tð Þ
GðVÞ ; ð1Þ

where the index relates to the sign of the applied voltage. Fits
obtained with this expression accurately reproduce the
experimental data of ferroelectric switching as a function of
time and voltage (black lines in Fig. 2c). Figure 2d displays several
representative distributions of switching times and illustrates the
main trends. For larger voltages, switching occurs earlier and in a
narrower time window (decrease of tmean and G), in agreement
with previous results obtained on thick ferroelectric capacitors32.
As shown in the inset of Fig. 2d, MD simulations performed at
10K confirm the relevance of equation (1) (Methods and
Supplementary Fig. 2) to characterize the switching process as
well as the measured trends of tmean and G with the magnitude of
the electric field. Figure 2e shows that the evolution of the
switching time (tmean) as a function of the inverse electric field,
extracted from transport measurements (Fig. 2c), follows the
characteristic Merz’s law32 for ferroelectric switching
(tmeanpexp(a/E)) where the activation field a is of the order of
3.0 V nm� 1. Due to the idealized nature of BFO during MD
simulations (no interface, no defects, no tunnel current), the
timescale for polarization switching is much shorter than in
experiments, while the electric field is larger. Nevertheless, Merz’s
law can be applied to the MD simulation results (inset of Fig. 2e)
and indicates an activation field of 2.4 V nm� 1, that is, in the
same range as for experimental results. These simulation results
strongly suggest that the experimentally observed inhomogeneous
polarization switching in ultrathin films of BFO has an intrinsic
origin.

Predictive modelling of synaptic learning. Because of the direct
relationship between S and R in these devices, the accurate
description of ferroelectric switching by the nucleation-limited
model can be further extended to the modelling of resistance
changes as a function of voltage amplitude. Figure 3a shows
nested resistance hysteresis loops as a function of voltage pulse
amplitude, characteristic of memristors. The STDP curve of the
same device is displayed in Fig. 3b. Using equation (1) in com-
bination with the parallel resistance model (Methods and
Supplementary Fig. 3), we simultaneously fit the resistance versus
voltage cycles and the STDP curve. Both resistance changes can
be accurately replicated (solid lines in Fig. 3a,b) using the same
set of parameters tmean(V) and G(V).

This full description for each memristor device makes it
possible to predict the conductance changes driving STDP
learning in ferroelectric synapses. In Fig. 3b–d, we apply different
voltage waveforms to our memristors to emulate various types of
pre- and post-neuron activities3. This procedure allows the
generation of biologically realistic2, though accelerated (Fig. 3b,c),
or artificially designed (Fig. 3d) STDP learning curves. Using our
model with the parameters extracted previously, we can now
predict the conductance changes for these specific types of STDP.
Figure 3c,d shows the excellent agreement between these
predictions and the measured conductance variations associated
with different STDP waveforms.

Discussion
We now use this physical model to simulate unsupervised
learning in a spiking neural network with ferroelectric synapses.
These simulations serve as a test bench to investigate the
influence of the STDP waveform shape on the ability of the
network to recognize patterns in images (here the horizontal,
diagonal, and vertical bars labelled A, B and C, as shown in the
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Figure 2 | A memristor governed by nucleation-limited ferroelectric domain switching. (a) Evolution of the PFM phase and amplitude signals of a

ferroelectric memristor under cumulated pulses of 1 V and 100ns. Cumulative pulses induce a progressive switching with multiple nucleation areas and

limited propagation of ferroelectric domains from up (dark phase) to down (bright phase) polarization. The scale bar is 50 nm. (b, top) Normalized

switched area as a function of cumulated pulse time calculated from time-dependent transport measurements of a ferroelectric memristor. The black

squares indicate the normalized switched area obtained from the PFM measurements in a. (bottom) Corresponding conductance (G) evolution measured

as a function of cumulated pulse time. (c) Normalized switched area as a function of cumulated pulse time calculated from time-dependent transport

measurements of a ferroelectric memristor at different pulse amplitudes. The black lines are fit results from the nucleation-limited switching model.

(d) Examples of Lorentzian distributions of switching times extracted from the fits in c at different pulse amplitudes and (inset) from the MD simulations

(Supplementary Fig. 2). (e) Evolution of the switching time (tmean) as a function of the inverse of the electric field (1/E) obtained from fits of the transport

data in c and (inset) from MD simulations.
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inset of Fig. 4a). The simulated network is built around a crossbar
of 9� 5 ferroelectric memristors (Fig. 4a). Each of the nine
spiking input neurons codes for one pixel of noisy images that
contain one out of the three patterns to recognize (Methods). The
output neurons integrate the input signals flowing through the
memristors along each row and fire when a threshold is reached.
Figure 4b shows that the recognition rate of the network increases
with the number of image presentations, reaching 100% for low
noise levels and almost 80% for high (of the order of the input
amplitude) noise levels. The evolution of the conductance of the
nine memristors in each row is shown in the inset of Fig. 4b as
coloured 3� 3 pixel images. As the network is learning, the
conductance images in rows 1, 2 and 4 each converge toward one
out of the three input patterns, whereas the memristor
conductances in rows 3 and 5 remain random. After learning,
as illustrated in Fig. 4c, three of the output neurons (neurons 1, 2
and 4 in this example) have specialized to each of the three input
patterns and fire when the corresponding input is presented. Our
simulations reveal that successful unsupervised learning is highly
dependent on the exact shape of the pre- and post-neuron
spike waveforms. Figure 4d shows that, for the case presented
before, the recognition rate reaches 100% for well-chosen post-
neuron spike amplitudes in the range of 0.82–0.98V. However,
when the amplitude of the post-neuron spike waveform is
only slightly lower or higher, the recognition rate rapidly
drops. Our simulations therefore emphasize the importance
of a precise knowledge of the memristor dynamics, and
therefore of its accurate description on the basis of a physical
model.

In summary, we have established that STDP can be harnessed
from intrinsically inhomogeneous polarization switching in
ferroelectric memristors. Combining time-dependent transport
measurements, ferroelectric domain imaging, and effective-
Hamiltonian-based atomistic MD simulations, we show that the
ferroelectric switching underlying resistive changes in these
devices can be described by a well-established nucleation-limited
model. Using this physical model, we can reliably predict the
conductance evolution of ferroelectric synapses with varying
neural inputs. These results pave the way toward low-power
hardware implementations of billions of reliable and predictable
artificial synapses33 (such as deep neural networks34) in future
brain-inspired computers.

Methods
Sample fabrication. The BiFeO3 (4.6 nm)/Ca0.96Ce0.04MnO3 (20 nm) thin films
are grown on YAlO3 (YAO) (001) substrates by pulsed laser deposition using a
Nd:YAG laser (details of the growth can be found in ref. 26). The thin films are
epitaxial and fully strained by the substrates as characterized by X-ray diffraction
experiments26 and scanning transmission electron microscopy on cross-section
samples35. The high compressive strain imposed by the YAO substrate on BiFeO3

(BFO) stabilizes the supertetragonal polymorph of BFO with giant tetragonality
and a potentially large polarization pointing initially towards the bottom electrode
of Ca0.96Ce0.04MnO3 (CCMO)35.

FTJs are then fabricated by defining Pt (10� 90 nm)/Co (5� 10 nm) nanopillar
electrodes (with diameters of 180–500 nm) on top of the unpatterned BFO/CCMO
heterostructure, combining conventional electron-beam lithography and lift-off
processes. For experiments involving electron transport and ferroelectric domain
imaging experiments (as in Fig. 2), arrays of nanopillars are electrically contacted
with a conducting atomic force microscopy tip26. For all other electronic transport
experiments presented in the manuscript, fully patterned junctions are defined by a
four-step lithography process following the definition of these nanopillars (details
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of the fabrication process can be found in ref. 27). Such fully patterned junctions
are macroscopically connected by standard radio frequency (RF) probes.

Physical measurements. Combined transport and PFM measurements are per-
formed using solid-state FTJs with diameters of 180 nm, as detailed in ref. 26. These
Pt/Co/BFO/CCMO junctions are connected electrically by a conductive atomic
force microscopy tip to allow resistance measurements under constant dc voltage
(� 0.1 V, time constant 100ms) and the application of 100-ns write pulses in
combination with subsequent PFM imaging (Vac¼ 0.6 V, Vdc¼ � 0.17V,
f¼ 14 kHz). The bias voltage is applied to the tip while the bottom electrode is
grounded.

The resistance–voltage cycles and STDP curves were obtained on fully
processed FTJs with diameters of 400 and 500 nm, described in ref. 27. The
resistance of the junctions was measured after each pulse at a low bias of � 200 mV
(time constant 100ms). To obtain the STDP curve, we always initialize the junction
to the ON state for Dto0 and to an intermediate resistance state between ON and
OFF for Dt40. The exact values of initial resistance states in each figure are

Figs 1d and 3b: Rinit(Dto0)¼ 6� 105O, Rinit(Dt40)¼ 1.2� 107O,
Fig. 3c: Rinit¼ 1.2� 107O,
Fig. 3d: Rinit(Dto0)¼ 6� 105O, Rinit(Dt40)¼ 1.2� 107O.

Molecular dynamics simulations. The switching process under dc electric fields is
simulated using a recently developed scheme36, in which the total energy is
provided by the first-principles-based effective Hamiltonian method of refs 37,38
and inserted into an original MD technique treating on the same footing dynamics
of ions and magnetic degrees of freedom. A periodic 48� 48� 6 supercell (69,120
atoms) of the supertetragonal BFO (P4mm space group) is adopted and the electric
field is constantly applied along the pseudocubic 00�1½ � direction (opposite to the
initial polarization direction). The temperature is kept at 10K so as to minimize
thermal fluctuations and the time step is set to 0.5 fs. Supplementary Fig. 1a shows
polarization patterns at different times under a dc electric field of 2.5 V nm� 1,
which illustrate the (intrinsic) inhomogeneous switching of polarization in bulk-
like supertetragonal BFO. The switched area as function of time is plotted in
Supplementary Fig. 1b. Note that the reversed area is defined as any polarization
that has a magnitude larger than 7 mC cm� 2 (it reaches 100 mC cm� 2 when being
fully switched) in the 00�1½ � direction. Simulation results of polarization switching
under different electric fields are summarized in Supplementary Fig. 2. Fits from
equation (1) are represented as black lines. Lorentzian switching distributions
resulting from the fits are displayed in the inset of Fig. 2d and the switching times
are plotted in the inset of Fig. 2e.

Domain dynamics model. The nucleation-limited model as expressed by
equation (1) describes the full reversal of the ferroelectric domains starting from a
uniform state under constant voltage amplitude. To describe the ferroelectric
switching dynamics under the influence of arbitrary voltage waveforms, the
waveform is numerically divided in short segments of width Dt (Supplementary
Fig. 3a). For sufficiently small Dt, we can then assume a constant applied voltage Vi.
As the reversal dynamics depends on the present domain configuration and
therefore on the value Si� 1 before the segment i, we compute the time offset toffseti
corresponding to a voltage Vi and can only then apply equation (1) to calculate the
value Si ¼ S toffseti þDt;Vi

� �
(Supplementary Fig. 3b). Owing to the highly non-

linear reversal dynamics of FTJs where high voltage amplitudes govern the reversal
process, the value of Dt has to be chosen small enough not to smear out these
maximal amplitudes. For the results presented here, we chose Dtr20 ns.

A simple yet rigorous model connects the electrical resistance R with the
ferroelectric domain configuration characterized by the normalized area of down
domains S. Assuming parallel conduction through areas with ferroelectric down
domains and areas with up domains allows to calculate one from another using the
relation 1=R ¼ ð1� SÞ�1=RON þ S�1=ROFF, where RON and ROFF are the
resistance values in the low- and high-resistance states, respectively.

Spiking neural network simulations. The simulated spiking neural network
consists of nine input neurons fully connected to five output neurons by a crossbar
of 9� 5 identical ferroelectric memristors, as depicted in Fig. 4a. Inputs are con-
secutively presented to the network in the form of grey-level images of 3� 3 pixels
composed of one of the three patterns to recognize (horizontal, diagonal, and
vertical bars labelled A, B and C in the inset of Fig. 4a) and an additional uniformly
distributed random noise of the specified amplitude. Subsequently, the values of
each image are normalized to the interval [0, 1]. Each individual pixel corresponds
to one input neuron that integrates the respective input value over time (using a
fixed time step) and spikes once it reaches a certain threshold Qth. This imple-
mentation effectively results in a frequency coding of the input pixel values. The
spikes from each input neuron are transmitted to all output neurons (as in a fully
connected network) that integrate them weighted by the corresponding connection
strength, that is, by the normalized conductance value of the respective FTJ. Once
an output neuron (#1 to #5 in Fig. 4) reaches the threshold value Qth, it spikes on
its part and generates an output spike. Lateral inhibition then resets all output
neurons. We use the first output spike after the presentation of a new input image
to determine if the network has successfully recognized the pattern (A, B or C as

shown in Fig. 4a) of the input image. As for unsupervised learning the labels of the
output neurons are not known beforehand, the labelling is done algorithmically for
each repetition of the simulation. We define a successful learning as when each
pattern is immediately recognized after 200 input image presentations. The
recognition rates shown in Fig. 4b,d are calculated as the mean of 100 simulation
runs for each parameter set. At the beginning of each simulation run, the mem-
ristor conductances are initialized to random values between those of their ON and
OFF states. Variations between the runs using identical parameters are therefore
due to the randomized initial conductance values of the synapses as well as the
random noise that is added to the input patterns.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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