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We present a method for humanoid robots to quickly learn new dynamic tasks from
observing others and from practice. Ways in which the robot can adapt to initial and
also changing conditions are described. Agents are given domain knowledge in the form
of task primitives. A key element of our approach is to break learning problems up into
as many simple learning problems as possible. We present a case study of a humanoid
robot learning to play air hockey.
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1. Introduction

We are exploring learning from observation and learning from practice using primi-

tives. This paper presents a case study of humanoid learning: we describe a system

in which a robot learns to play air hockey from observing a human player and

from practice. It also shows how learning at the action generation level is used to

improve performance and quickly adapt to changing conditions. This research pro-

vides insight into how learning problems can be structured for quick learning from

observation and practice. It is our hope that our approach will also lead to ideas and

methods that can be used to automatically define primitives from observing a task.

In this research we found that quickly adapting to small changes in the task was

very important for acceptable performance by the humanoid robot. More generally,

for humanoid robots to be accepted as partners with humans they will be expected

to learn quickly and adapt to changes in ways similar to humans. Within a single

task there may be many things that can change as humans interact with the robot.

The placement of items within the workspace, the physics of the task, and the

reaction of the human to the robot’s movements are some examples of the things

which can vary during the interaction.

1.1. Why primitives?

We are exploring learning using primitives in both air hockey and a marble maze

task.4 The agents can perform surprisingly well using only observed information,

but are capable of even better performance if they are allowed to learn from prac-

ticing the task and adapt to any changes in task conditions. Using primitives in

learning is helpful in several ways: (i) it speeds up learning; (ii) primitives can

improve generalization to other tasks; (iii) we think humans use primitives, and we

are attempting to match our primitives to task-level primitives that we think the

humans are using. This helps our humanoid robot behave in a human-like fashion.

We have developed a three level approach (Fig. 1).4 The first level, Primitive

Selection, allows the robot to learn which type of primitive to use in any given situa-

tion. The second level, Subgoal Generation, allows the robot to learn which subgoals

a human tries to achieve. The third level, Action Generation, allows the robot to

learn how to achieve the desired subgoals. Having these three levels separates and

simplifies different learning problems: what kind of shot to take (behavior selec-

tion)? Where to aim the shot (parameter generation)? How to make that particular

shot (execution)? This paper discusses learning from observation at all three levels,

and learning from practice at the action generation level.

1.2. Why air hockey?

Air hockey is a game played by two players. They use round paddles to hit a flat

round puck across a table. Air is forced up through many tiny holes in the table’s

surface, which creates a cushion of air for the puck to slide on with relatively little
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Fig. 1. Our framework.

Fig. 2. Simulated air hockey (left) and playing air hockey with a humanoid robot (right). In the
simulated game the disc shaped object near the centerline is a puck that slides on the table and
bounces off the sides, and the other two disc shaped objects are the paddles. The virtual player
controls the far paddle, and a human player controls the near paddle by moving the mouse. The
object of the game is to score points by making the puck hit the opposite goal (the marked area at
the ends of the board). In the physical game the paddles are held by the human and the humanoid
robot, and the puck is about to be hit by the robot.

friction. The table has an edge around it that prevents the puck from going off the

table, and the puck bounces off this edge with little loss of velocity. At each end of

the table there is a goal area. The objective of the game is to hit the puck so that

it goes into the opponent’s goal area while also preventing it from going into your

own goal area.

A simulated and a hardware version of air hockey have been created as testbeds

for this research (Fig. 2).3 There are many reasons why air hockey is an inter-

esting task for this case study. It is a dynamic task where the puck is almost

always moving. It is fast, requiring rapid perception, thinking, and movements. It is
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demanding, requiring considerable movement accuracy. It is complex, when per-

ceptual and movement time delays, board placement and leveling, varying board

surface conditions and friction, air flow, temperature effects, and actuator dynamics

are taken into account. There are disturbances, modeling errors, and an adversary,

so there is much to learn. The task is small and simple enough to be implemented

on a computer in simulation and in a normal size laboratory. Since the playing area

is two-dimensional, sensing and moving is simplified. Air hockey is closely related

to racquet sports such as ping-pong and tennis, as well as other interactive games

such as playing catch. We believe that our approach to air hockey can generalize to

a wide range of intermittent dynamic tasks.

The air hockey task is also being explored by Spong and colleagues.6,11,12 Bishop

et al. discuss difficulties, such as table position errors and specifying a puck move-

ment model, that our learning and adaptation models try to overcome.6 Whereas the

research of Spong et al. provides insight into the physical interactions of air hockey,

our research seeks methods for humanoid robots to quickly learn task strategies and

models through observation and practice.

1.3. Why adaptive action generation?

In our approach much of the ability to rapidly adapt to changes in task conditions

is at the action generation level. We believe adaptive action generation is necessary

for successfully behaving in human environments, and it is an ability expected of

humanoid robots. We cannot rely on structuring the environment, as is done in

much factory automation.

2. The Air Hockey Task

The hardware air hockey task has been created using a humanoid robot (Fig. 2).1

The humanoid robot has 30 degrees of freedom and is 190 cm tall and weighs 85 kg.

It is hydraulically actuated and attached to a stable pedestal at the hips. The

robot is placed at one end of the table and plays the game using one arm. It views

the position of the objects using cameras that are on pan-tilt mechanisms on the

humanoid’s head.

The manually defined primitives that we are exploring for this task are:

• Straight Shot: A player hits the puck and it goes toward the opponent’s goal

without hitting a wall.

• Bank Shot: A player hits the puck and the puck hits a wall and then goes toward

the opponent’s goal.

• Defend Goal: A player moves to a position to prevent the puck from entering

their goal area.

• Slow Puck: A player hits a slow moving puck that is within their reach.

• Idle: A player rests their paddle while the puck is on the opponent’s side.
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This paper will focus on the selection and execution of the shot primitives

(Straight Shot and Bank Shot). The details of action generation will be pre-

sented to show how learning and adaptation are used. During the shot primitives

the puck and the robot are moving very quickly. Because movement errors and errors

in the prediction of the future puck state can have a large effect on the outcome,

the shot primitives provide a good opportunity for learning.

2.1. Perceiving the position of the objects

In order to play air hockey, the robot must be able to sense object locations in

real-time. The task is made more difficult because the robot uses its own eyes

(cameras) to see the game. Combined real world and camera motions lead to fast

image motions.

2.1.1. Calibration

Since air hockey is played on a flat surface, we can model the image plane to hockey

board mapping as a perspective mapping between two planes. It is well known that

such a mapping can be modeled by a 3×3 homography, which is defined up to a scale

factor and thus has eight degrees of freedom.18 Since this mapping is invertible, the

information from one eye (camera) suffices to uniquely determine the position of

the puck on the board. However, we must be able to update this mapping at every

measurement time because the robot’s head moves during the game. In theory, we

could do this by calibrating the camera at a preferred configuration and use forward

kinematics to calculate the current image-to-board mapping, but this is impractical

because the humanoid robot motion involves many degrees of freedom and is highly

nonlinear. It is therefore better to recalibrate the system at every time step. Since

every homography has eight degrees of freedom, we must know the position of at

least four points on the table and in the image to recalibrate the camera at every

measurement. This increases the number of objects that we need to track to at

least seven; four fixed points on the board for calibration, puck, and both paddles.

To make the recalibration more accurate and the tracking process more robust we

have created an implementation that uses six points to recalibrate the system.

A homography describing the perspective mapping between the image plane and

the hockey board is given by

sxi(t) = H(t)ui(t), i = 1, . . . , N, N ≥ 4, (1)

where xi(t) = [xi(t), yi(t), 1]T are the known positions of the markers on the hockey

board (measured by hand) and ui(t) = [ui(t), vi(t), 1]T are the positions of the

detected markers in the image. Note that we calculate the homography from the

image plane to the hockey board. Let h1(t), h2(t) and h3(t) be the columns of
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H(t). Writing z(t) = [h1(t)
T , h2(t)

T , h3(t)
T ]T , Eq. (1) can be rewritten as

[

ui(t)
T 0 −xi(t)ui(t)

T

0 ui(t)
T −yi(t)ui(t)

T

]

z(t) = 0. (2)

Writing Eq. (2) in a matrix form results in a matrix equation A(t)z(t) = 0, where

A(t) is a 2N ×9 matrix. As H(t) is defined only up to a scaling factor, the solution

is well known to be the eigenvector associated with the smallest eigenvalue of the

9× 9 matrix A
T (t)A(t).18 Alternatively, one could solve Eq. (2) directly by setting

one of the parameters, typically h3,3(t), to 1. See Ref. 14 for details about the color

tracking system used to observe objects.

2.1.2. Strategy for error recovery

Typically, a game of air hockey goes on for several minutes and the vision system

is expected to provide locations of the objects of interest during this period. It is

extremely annoying if the data collection or the actual hockey game must be stopped

due to the failure of the vision system. Since it may not be possible to completely

avoid tracking failures, we designed a specialized error recovery scheme that ensures

the successful operation of the vision system over longer periods of time.

There are a few situations when the robot has difficulty observing the position of

the objects. The most common problem is that the robot arm sometimes completely

occludes the puck and it is therefore not possible to locate it, see Fig. 3. When this

happens, the tracker keeps looking for the puck for half a second at the latest

detected location. After half a second it is considered unlikely that the puck would

still be near this position and the tracker starts two new search processes: one in

front of the opponent’s paddle where we can assume that there will be contact with

the puck in the future and the other one in the region near the robot where the puck

might still be situated in the case of an occlusion. The second process randomly

generates initial puck positions within the search region and thus ensuring that the

Fig. 3. The view from the robot’s eyes with the tracked objects marked. The puck is totally
occluded in the right image. The right image is also blurred due to the movement of the robot
head.
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puck will eventually be found regardless of its current position within this region.

It is important to note that we do not embark on an exhaustive search covering the

whole board as that could not be carried out at 60Hz. The success of one of the

search processes terminates them both.

Occasionally one of the side blobs that is used for recalibration is lost by the

tracker. This is most often caused by very fast motion of the robot’s head when

the robot performs a shot, which results in low-quality images and huge image

motions. If the robot cannot see at least four side blobs, the recalibration cannot be

carried out and the robot cannot play the game. Fortunately, this problem is not too

serious because the robot calculates the motion trajectory before it starts executing

the shot. After executing the shot, the robot returns to a preferred configuration and

since the position of the board remains nearly constant, we can store the positions

of all of the side blobs at the preferred configuration and restart the tracking using

the stored positions as initial values. The side blobs are detected again when the

robot returns to its preferred configuration after the shot execution.

Although problems with the paddle tracking are rare, we have nevertheless

implemented an error recovery scheme. It is based on the fact that the motion

of both paddles is confined to a region along the opposite ends of the hockey board.

Thus if one of the paddles is lost, we can start a search process in a region along

the appropriate end of the board.

Figure 4 shows the results of the visual tracking system using four fixed mark-

ers during approximately 4.2 seconds of game play. During this interval the fixed

markers are always being tracked, but on several occasions the puck was lost and
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Fig. 4. The left graph shows the raw vision cordinates (pixels) of four objects placed at known
locations and the moving puck. On the right is the computed position (meters) of the puck based
on the information shown on the left. The circled segments are where the vision system lost track
of the puck for several samples.
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then reacquired. The puck was lost just after the robot hit it. This is not a critical

time since the robot’s hit motions are fully planned and begin more than 100msec

before the puck is hit.

2.2. Robot positioning

An interpolation scheme is used to solve the redundant inverse kinematics problem

to position the paddle on the playing surface. Figure 5 shows six manually generated

body configurations that place the paddle in different locations. To position the

paddle at any location within these configurations, the closest four configurations

are combined using a bilinear interpolation method. While this approach is simple

and allows us to solve the redundant inverse kinematics problem, we have found that

the accuracy of positioning the paddle is affected by many things such as the initial

position of the board, the paddle’s movement speed, and the friction between the

paddle and the board. More information on the vision system and paddle positioning

method can be found in Bentivegna et al.5

3. Retrieving Information from Observed Data

To learn from observation, the robot must first have the ability to retrieve appro-

priate information from the observed data. This section describes what, and how,

information is obtained from the observed data. As the robot observes a task it

looks for critical events. Critical events are large changes or discontinuities in what

Fig. 5. Six manually defined configurations are used to compute all enclosed configurations.
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Fig. 6. Raw data collected while observing a human making shots in air hockey. The left figure
shows the data plotted in two dimensions (meters). The right figure shows the object positions
plotted against time and collisions with the puck can be easily seen in this figure.

is happening that can easily be seen. A puck hitting a wall or a paddle is an exam-

ple of a critical event. Figure 6 shows data collected from observing hardware air

hockey. From this figure it can be seen that collisions cause an obvious change in

the puck’s movement trajectory.

To learn a shot behavior from observing the task the robot follows these steps:

(i) Look for when the puck is close enough to a paddle that it could be in contact

with it. If the puck undergoes a discontinuous change in velocity, a hit is

assumed at this location. If the puck has a large velocity toward the opponent’s

side, the position and velocity of the puck and paddle are recorded as the hit

state.

(ii) Observe the puck’s movements until it gets near the opponent’s goal area while

looking for collisions with the side walls. If a collision with a wall is observed,

which side, left or right, is recorded. We are currently only considering shots

with a single wall bounce.

(iii) Look for a collision of the puck with the opponent’s wall or goal. If the puck

reaches the opponent’s wall, the location is recorded as the target position.
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(iv) Look for a collision with the opponent’s paddle. If the puck is hit by the

opponent before it reaches the opponent’s wall, the location that the puck

would go to if it was not blocked is predicted using a simple learned model and

recorded as the target position.

From these observations the following information can be collected each time a shot

is observed:

• the position and velocity of the puck shortly before it crosses the center-line

heading toward the player;

• the position and velocity of the puck when it is hit;

• the relative location of the paddle when the puck is hit;

• the velocity of the paddle when it hits the puck;

• the puck’s velocity just after it is hit;

• the position on the back wall that the puck will go to if it is not blocked by the

opponent.

Databases are created from the observed data that are used by the primitive

selection, subgoal generation, and action generation modules. This section describes

how the observed information is formatted to be used to select a shot type and

subgoals when the puck is traveling toward the player. Section 5 describes how the

observed information is formatted and used by the action generation module.

A database is created to encode the actions taken by an observed player when the

puck crosses a pre-specified line heading towards the player. The actions contained

in the database are the Straight Shot, Bank Shot, and Defend Goal primitives.

The pre-specified line, called the decision line, is on the opponent’s side and is just

out of reach of the opponent, Fig. 7. This means that the puck can no longer be

influenced by the opponent’s actions and future puck positions can be predicted.

If, after the puck crosses the decision line, a collision with the player’s paddle is

observed and the puck goes toward the opposite side, it is classified as a shot

primitive. In all other situations where the puck does not enter the player’s goal, it

is classified as a Defend Goal primitive.

If the Defend Goal primitive is observed, the position and velocity of the puck

when it crosses the decision line and the location the paddle is moved to defend the

goal are recorded. If one of the shot primitives is observed, the following information

is recorded (Fig. 7):

• (xdl, ydl, ẋdl, ẏdl) — the position and velocity of the puck when it crosses the

decision line;

• yhit — the line where the puck was hit;

• PrimType — the type of shot that was taken;

• PuckSpeed — the speed of the puck after it is hit;

• xtarget — the target location on the back wall that the puck moved to after

being hit.
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Fig. 7. Information recorded in the database when a shot is observed.

4. Choosing a Primitive to Use and Generating Subgoals

When the robot is playing air hockey and observes the puck travel toward it from

the opposite side it will use the database to first select a primitive type to use.

The primitive selection module accomplishes this by finding the data points in the

primitive database that are closest to the observed state. This is done by comparing

the distance of each data point from the observed state, or query point. The distance

is given by d(x,q) =
√

∑

j wj · (xj − qj)2, where x and q are the locations of

the data point and the query point, and w allows each dimension to be weighted

differently. For air hockey the query is the state of the puck when it crosses the

decision line (xdl, ydl, ẋdl, ẏdl).

The primitive type (a discrete choice) can be chosen by selecting the primi-

tive indicated by the closest data point returned from a nearest neighbor lookup.

An alternate approach is to use several nearby points, and implement some sort of

voting scheme such as selecting the primitive type that occurs most often within

the closest data points. We have found that using the single closest point to

determine the primitive type is the easiest and most efficient method, and works

sufficiently well.

Once the primitive type has been chosen the subgoal can be computed. It is

important to first choose the primitive type because the subgoals of different prim-

itive types may not be compatible. For example, it would not make sense to use

the subgoal of the Defend Goal primitive with the Straight Shot primitive. The

Straight Shot primitive will be expecting a target position on the back wall as

a subgoal location and the Defend Goal primitive will be specifying a subgoal

location to which to move the paddle to defend the player’s goal.
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The closest data point’s information can be used as the source of the subgoal

as well. A more robust approach is to use the N closest points with the selected

primitive type to compute the subgoal. The outcomes of the returned points are

used to compute the subgoal using a locally weighted learning (LWL) model2:

ŷ(q) =

∑N
i=1 yi · K(d(xi,q))
∑N

i=1 K(d(xi,q))
,

where K(d) is the kernel function and is typically e−d2/α. The estimate for ŷ depends

on the location of the query point, q. If N is chosen as 1, it will have the effect

of performing the action indicated by the data point closest to the query point.

Atkeson et al.2 discusses the effect of other kernel functions on the weighting of the

data points.

After a shot primitive is chosen by the primitive selection module, the subgoal

generation module, using the previously observed information, will specify a line

at which the hit should take place (yhit), the target location to shoot the puck at

(xtarget), and the desired post-hit puck speed (PuckSpeed) as shown in Fig. 7. The

line at which the hit should take place tells the action generation module where the

action should occur. Because the puck is moving it also provides an indication of

when the action should occur. The target location tells what the desired outcome

of performing this action is. The target location is not fixed at the center of the

opponent’s goal but can vary along a line across the back wall as shown in Fig. 7.

Shooting the puck to a target location can be done at a variety of speeds. How

fast (post-hit puck speed) a player makes shots will have a large effect on their

performance. Therefore, the desired post-hit puck speed is supplied by the subgoal

generation module and gives an indication of how the action should be performed.

5. Shot Action Generation

Once the shot type has been selected and the desired outcome has been specified the

action generation modules must generate appropriate actions. This section and the

next describe the details of these modules and how they learn to control the robot

and learn about interactions from observation and practice. Section 3 showed how

training information for the action generation modules is obtained from observing

the task. The robot first has the opportunity to observe shots taken by the human

player and can then observe its own shots. Successful shots only occur at the rate

of 10 to 15 per minute. Because of this, unless the game is watched or practiced for

a long period of time, there is little information to learn from. Therefore, we have

structured our learning system to take advantage of the observed information as

efficiently as possible.

5.1. Making the most of observed information

To increase the usefulness of the observed information, the hockey shot data used for

the Bank Shot and Straight Shot primitives are represented in a local coordinate
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frame. Using a local representation allows a single Bank Shot model to be created

from observing both left and right bank shots. The local coordinate frame for the

Bank Shot action generation module uses the wall that the puck will hit as the x

reference. The reference point (0, 0), shown in Fig. 8, is where the puck hit location

lines up with the side wall. The x-coordinate is positive in the direction from the wall

toward the puck and the y-coordinate is positive in the direction of the opponent’s

goal. When a left or right bank shot is observed, puck and paddle parameters are

transformed into the local coordinate frame before being provided to the action

generation model.

In the action generation module for the Straight Shot primitive the observed

information is transformed to a local coordinate system that is centered on the

position at which the puck is hit, also shown in Fig. 8. Positive y is toward the

opponent’s goal and positive x is to the right. This will generalize shots that have

approximately the same incoming velocity vector and a similar target displacement

and post-hit puck velocities.

5.2. Creating models of the task

A robot trajectory leads to the paddle hitting the puck, and subsequent puck

motion. An action generation module must invert this process, and find a robot

trajectory that causes the puck to hit the target location (Fig. 9). In this paper we

present methods to learn the Puck Motion, Impact and Robot models. This section

describes how the Straight Shot and Bank Shot primitive action generation

modules specify the paddle parameters needed to perform the primitive as specified

by the subgoal generation module. Section 6 describes how the robot learns to move

the paddle.
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Fig. 8. Bank shot and straight shot coordinate frames.
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Fig. 9. The models involved in action generation.

We use a locally weighted learning technique, Locally Weighted Projection

Regression (LWPR),16 to represent these learned models. The LWPR approach

was chosen because new data can be added easily and the new information is avail-

able for use immediately without having to go off line to train the model on the new

information. The problem with most locally weighted learning methods is that each

data point added to the model increases the time needed to compute a solution.2

LWPR maintains a reasonably stable lookup time so data may continuously be

added. It is a nonparametric local learning system that uses locally linear models,

using a small number of univariate regressions in selected directions in the input

space. LWPR is proving its usefulness in such tasks as inverse dynamics learning13

and inverse kinematics learning.15 The Puck Motion, Impact and Robot models

are implemented as LWPR models that are trained from the observed information

These models are used during action generation in the Straight Shot and Bank

Shot primitives.

5.3. Learning the puck motion model

The puck motion model predicts the direction to hit the puck, given a target, where

to hit the puck, and the speed of the puck after the hit. To obtain this information

we used the data obtained from observation to train one LWPR model for the

Straight Shot primitive and another for the Bank Shot primitive. The inputs to

these models are as follows:

• Straight Shot Puck Motion model:

— the target position (x, y);

— the desired post hit speed of the puck.

• Bank Shot Puck Motion model:

— the target position (x, y);

— the puck position x at the time it is hit;

— the desired post hit speed of the puck.

The specified locations are in the local coordinate frames of the primitives as

discussed in Sec. 5.1. Therefore, the puck for the straight shot always starts at the
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origin and the target is the desired x and y displacement. For the bank shot the

puck always starts at the line y = 0 and the y value in the target is the desired

y displacement of the puck. The output of both models is the direction in which

the puck should travel to reach the given target point from the location the puck

will be hit. This information, along with the desired post-hit speed provided by the

subgoal generation module, is then used by the impact model to generate the paddle

parameters needed to hit the puck to cause it to have the correct post hit velocity

(magnitude and direction).

5.4. Learning the impact model

The impact model must specify where the paddle should be relative to the puck,

and the paddle’s velocity at the time of the hit. One way to compute the needed

paddle state at hit time is to use a pre-specified model of the interaction such as

the one presented by Partridge and Spong.12 If the model parameters cannot be

precisely defined and determined, the model will not be accurate. Partridge and

Spong assume that the mass of the paddle is much higher than that of the puck

and therefore the paddle’s velocity is unchanged by the collision. This does not

seem to be the case in hardware air hockey where small changes in the paddle’s

trajectory can sometimes be observed at the point where it hits the puck. Therefore,

in our implementation, the effective mass, damping, and stiffness of the robot are

additional items that have an effect on the outgoing puck’s velocity. It would be

difficult to define a parametric model for our humanoid robot that would include

all the items that have an effect on the puck’s outgoing velocity. It is also difficult

to evaluate the significance of each item to determine which items can be ignored.

For these reasons we would like to have the robot learn the impact model in the

same way it learns the puck motion model.

The input and outputs of the impact LWPR model are as follows:

• Input:

— the velocity (ẋ, ẏ) of the puck when it is hit;

— the desired puck speed after it is hit;

— the desired movement direction of the puck.

• Output:

— the angle between the puck and the paddle at the hit time;

— the movement direction of the paddle when it hits the puck;

— the speed of the paddle when it hits the puck.

5.5. Model learning in the simulator

While watching a human play simulated air hockey for approximately ten minutes,

the agent observed 44 straight shots and 108 bank shots. This information was
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used to create impact and puck motion models that are used by the action genera-

tion modules of the Bank Shot and Straight Shot simulated air hockey playing

agent.

The solid line in Fig. 10 shows the result of the agent making 500 straight shots

in the simulator. For the first 200 shots the agent is using models created from

observing the human’s shots. Figure 10 plots the average absolute error in hitting

the target location, the distance between the target location and the location where

the puck actually hit the back wall. The values plotted are the running average of

five shots. The dotted line at the bottom of the graph shows the results of the agent

performing the action using an exact model of the simulator. The error in the exact

model is due to the noise introduced into the simulator and this is effectively the

best the agent can perform.

The width of the goal is 20 cm and from Fig. 10, it can be seen that if the agent

was targeting the center of the goal it would be in range to enter the goal most

of the time. But by comparing this agent to the perfect agent, it appears it can

perform better than this. One way to increase its performance is to have it observe

the human making more shots. But this can be time consuming as it took over ten

minutes to see only 152 shots. A better way is to have the agent observe its own

behavior and add that information to the models.

After making 200 straight shots using the models learned from observing the

human, the agent then observed 100 of its own shots while practicing (shots 201

to 300 in Fig. 10). Whenever the agent observes its own shot it calculates the

parameters in the same way as if it were observing a human. This information is

then immediately given to the models. Figure 10 shows the result of using these

newly trained models for the shots from 301 to 500.
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Fig. 10. This graph shows the magnitude of the error in reaching the target location during 500
straight shots made by the agent in simulated air hockey. The solid line shows the result of the
agent making 200 shots using the LWPR model trained from observing 44 straight shots performed
by the human. It then observes 100 of its own shots while practicing and adds that information to
the LWPR model. The dashed line is the result of an agent making straight shots using an exact
model of the task. The graph shows the running average of five shots.
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6. Action Learning in Physical Air Hockey

Learning on hardware provides a set of challenges that are not present in the simula-

tor. The simulator can start in, or be set to, any given configuration. The movement

of the items in the simulator can be accurately controlled and sensed. This section

presents a method that is being used by the robot in the hardware setup to adapt

to paddle movement and table placement errors. This method also allows the robot

to learn the timing of the paddle movements.

The humanoid robot positions the paddle on the table using the interpolation

method described in Sec. 2. This is a simple and useful method for positioning the

paddle, but if the table is not accurately placed, or moved during the task, there

will be an error in positioning the paddle on the table. We have found that paddle

placement accuracy is also affected by the desired movement velocity. The accu-

racy is much higher during slow shot maneuvers than during fast shot maneuvers.

A reason for this is due to the design of the robot and the fact that some of the

degrees of freedom (DOFs) are reaching their maximum velocity or torque limits.

One way to reduce the effect of this problem is to ensure that we keep the desired

movement velocity lower than the slowest DOF. But this would severely limit the

robot’s ability to perform this task. The robot has shown that it is capable of mov-

ing the paddle at velocities close to those of a human player. The problem is that

the paddle does not always correctly follow the specified trajectory at these high

velocities.

For the task of making shots in air hockey, there is only one important instant,

and that is when the puck and paddle collide. It is at this instant that the paddle

affects the movement of the puck. Therefore, it is not the entire trajectory that is

important, but the state of the paddle at the instant it hits the puck. If the robot

can repeatedly control the paddle to be in the correct state at the correct time, it

can make accurate shots in air hockey irrespective of the path the paddle takes to

arrive at that hit point.

6.1. Learning the robot model

The robot model must generate a trajectory which has the paddle arrive at the hit

location at the correct time with the correct velocity. The robot command consists

of a desired location and a time in which to reach that location. The movement

follows a fifth order polynomial with zero start and end velocities and accelerations.

It therefore should have its highest velocity in the middle of the movement and

this is where the puck-paddle collision should occur. But if the board is not in the

correct position, or the robot is trying to move with too high a velocity, the paddle

will not be at the correct hit point, with the correct velocity, at the correct time.

The left graph in Fig. 11 shows the path, the lines with the boxes on them, of three

hit maneuvers. The lines with the circles on them are the desired trajectories. The

robot’s initial position for the three maneuvers is approximately (0.235, 0.05). The

robot is commanded to move to the position (0.31, 0.16) in 14.3ms. The graph
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Fig. 11. The lines with the boxes on them in these graphs show the path of the paddle during
shot maneuvers. The lines with the circles on them are the desired trajectories. The graph on the
left shows three similar shot attempts overlaid. The errors are due to board placement errors and
the robot’s variance in making shots at different velocities. The three right graphs show the same
shot maneuver being made using a trained robot model.

shows where the paddle-puck collision is expected to occur and where in the actual

trajectory of the paddle the highest velocity is observed. From this graph it can be

seen that there is a repeatable error for this given command and there should exist

some set of commands that would place the puck at the desired hit location with

the desired velocity vector. It is the function of the robot model to learn the robot

commands that will correctly place the paddle at the time of the hit.

The robot learns this model when the board is placed and play is about to begin.

At this time the robot makes a set sequence of 30 paddle movements that would

be typical for making hockey shots. When a movement is commanded, the starting

location of the paddle as seen by the robot, the desired movement command, and the

time the command is sent to the robot are recorded. The movement of the paddle is

then observed and the paddle velocity is computed whenever new vision data arrives

(60Hz). The paddle’s position and velocities, and the time of the observation, are

recorded. When the paddle velocity returns to zero, a data point is created with

the following information:

• Input:

— starting position of the paddle;

— the state of the paddle, position and velocity, at the highest velocity location.

• Output:

— the position and time command given to the robot;

— the time from when the command is given to the time the paddle is observed

at the highest velocity location.

These data points are used to train an LWPR model that is used as the robot model.
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6.2. Using the robot model

The paddle’s position and velocity needed at the time it hits the puck are computed

using the puck’s hit position and the information returned by the impact model.

This information, along with the paddle’s current location are used as inputs to the

robot model. The model then provides the command that will place the paddle as

desired.

The three graphs on the right in Fig. 11 show the results of using this trained

robot model to make the same maneuver as the one shown in the graph on the left.

Each graph shows one hit maneuver and the robot starts in approximately the same

initial state. The initial paddle position and desired paddle hit state are input to

the robot model and the values returned from the model are used as the movement

command. The graphs show that the model has learned to more accurately place

the paddle at the desired hit location with the velocity vector pointing in the correct

direction and the location at which the highest paddle velocity is seen is now much

closer to the desired hit position.

6.3. Using the timing information

The robot model also learns the time that it will take for the vision system to observe

the paddle at the desired hit location. In the hardware setup there are delays in

observing events and in commanding the robot. Because of the high velocities of

the puck, a delay in sensing and computing the puck position means that the puck’s

position as reported by the vision system is not the real-time position of the puck.

If the real-time position is required, a model of the task must be used to predict

the position of the puck into the future a time equal to the sensing delay.

The timing information provided by the robot model removes the need to

know the vision and command delays. This timing information tells the time, from

when the command is given, that the paddle will be observed at the desired hit loca-

tion. This means that the robot can now work entirely in the vision system’s frame

of reference when computing the time that the movement command should be given.

When the puck’s position and velocity are observed shortly after being hit by the

opponent, the action generation module, using the hit line supplied by the subgoal

generation module, predicts the time it will take, in the time frame of the vision

system, for the puck to reach the hit line. In other words, this is the time the puck

should be observed crossing the hit line. This predicted time, along with the timing

information returned from the robot model, can now be used for determining the

time the hit should be commanded. If the predicted time for the puck to cross the

hit line is computed as 300 ms and the time for the paddle to be observed at the hit

position, returned from the robot model, is 250ms, the robot’s movement should be

initiated in 50ms. 250ms after the movement command is given, the vision system

should observe the puck and paddle in the proper hit positions.

Figure 12 shows the path of the puck and the paddles during three 2-second

intervals of game play. The humanoid robot is on the left and the human player is on
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Fig. 12. The paths of the puck and paddles during three 2-second intervals of game play with a
humanoid robot (left) and a human (right). The “©” symbol denotes the start of the path and
the “�” denotes the end of the path.

the right. Figure 13 shows the position of the puck and paddles plotted against time

for 10 seconds of game play. The top graph plots the objects y positions on the same

graph and most puck-paddle collisions can easily be seen on this graph. The bottom

three graphs in Fig. 13 show the x position of the paddles and puck during the same
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Fig. 13. The position of objects in air hockey plotted against time. The top graph shows the y

position of all objects on the same graph. The bottom three graphs show the x position of the
objects during the same time.

time period. The level of performance in Figs. 12 and 13 is based on 20 minutes

of observed human play and 10 minutes of practice. The regression parameters

for selecting primitives and computing subgoals are as follows: the number of data

points used in the regression (N) = 5, each of the dimensions are scaled to ±1.0 and

the weight of each dimension is 1.0, and the kernel function is e−d2/α, where α = 1.0.
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7. Discussion and Future Research

7.1. How to structure learning

One purpose of this paper is to explore the utility of having a lot of structure in

learning. Section 1 explains our motivation in using primitives in robot learning.

This motivation leads us to seek out a structure for robot learning that supports fast

learning from observing and practice and has the ability to quickly adapt to changes.

This paper uses the air hockey task as a case study in which we show how action

generation has been structured to make efficient use of the observed information.

The action generation module contains models that allow the robot to learn specific

skills that may generalize to other tasks. This paper presents the results of training

these models from information obtained whenever a shot is observed. By structuring

the problem in the manner that we have, the robot has the opportunity to learn

and improve the performance of the models within the action generation module

at times other than only observing a full shot sequence. The impact model, for

example, can learn about the impact interaction whenever a paddle-puck collision

is observed. The ultimate outcome of the shot is irrelevant to this model. The same

is true for the puck motion and robot models. These models can be trained whenever

the puck is seen moving from the hit area to the goal area or the robot attempts to

make a shot. We are currently adding this ability, learning from smaller temporal

interactions, to our humanoid robot.

We are also exploring ways in which we can further break large models into

combinations of smaller ones. There are two puck motion models that provide the

desired velocity vector; one for straight shots and one bank shots. The bank shot

has at least three clear segments: (i) the puck moves from the hit point to the wall,

(ii) undergoes a change in velocity during the wall-puck collision, and (iii) travels

to the target position. Segments 1 and 3 are the same as the straight shot model.

Therefore, it may be possible to have the system learn faster and be more accurate

by structuring the problem to have a no-collision puck motion model and a wall-puck

collision model that coordinate to provide the needed information for a bank shot.

Our structure is also organized so that the models are not specifically tied to

a single task. It is useful for humanoid robots to have the ability to collect and

organize learned information in a way in which it can be reused. The impact model,

for example, provides the robot with a lot of basic information on the effect a large

moving object has on a smaller one. This model can be used as a starting point in

which to learn similar interactions such as learning the effect that a swinging bat

has on a ball that is being hit.

7.2. When and what to generalize?

As discussed in the previous section, combining the left and right bank shots into

one learning module provides the robot with more training data to improve the

performance of this module. But should this be done? Can a left bank shot and a
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right bank shot be transformed to a standard shot? If the board is symmetric, it

appears that this can be done as shown by the results presented in Sec. 5.5. But

what if the board is not symmetric or is tilted to the side? It would be helpful if

the agent had methods to detect when information can be combined and when it

cannot.

One method would be for it to observe its performance and evaluate the effec-

tiveness of using the information in all situations. In air hockey, for example, it can

compare the results of using the combined information while making left and right

bank shots.

7.3. When to forget

In our work so far, humans decide when information is added to models and when

data is forgotten and replaced with new data. A future step would be for the robot

to have control over its own learning and decide for itself when models need fur-

ther training or replacing. If the robot has the ability to continually evaluate its

movements and the outcome of its actions, it can use this information to decide if

previously learned models are no longer accurate and should be updated or replaced.

In air hockey, for example, if the board is suddenly moved during the game, the

robot should immediately notice an error in its paddle movements. It can then

attempt to add new data to the robot model in an effort to have the model adapt to

the new board position. When data is added to the current robot model, the data

can also be use to train an entirely new, off-line, robot model. If the current model

is not adapting to the changed situation, it can be replaced by the new model.

7.4. Perceptual learning

With dynamic tasks, such as air hockey, the robot must initiate movements before

the objects are at the intended interaction location. This is due to the fact that

movements cannot be made at arbitrarily fast speeds and there are delays in sensing.

It is also important to note that the object will only be within a range of interaction

for a brief period of time. If the robot’s movements are not initiated quickly enough,

the chance to interact will be lost. Therefore, it is important for the robot to have

the ability to predict the interaction location as soon and as accurately as possible,

based on its perception of the object’s current motion.

In our relatively small version of air hockey, the robot observes the puck when

it crosses a line that is just beyond the center-line from the robot and about 0.35m

from where the puck will be hit. At this point the puck should be out of reach of the

opponent and can no longer be influenced by the opponent’s movements. The delay

in the vision system can be up to approximately 35ms and a puck traveling toward

the robot at 2.5m/s can be up to 0.0875m closer to the robot than where it is last

seen. Since the robot needs to accurately predict the future location of the puck, it

also filters the puck locations to more accurately compute the puck’s velocity. This

filtering process adds more delay to the puck’s estimated state.
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We currently use a parametric model with learned parameters to predict the

future state of the puck. The accuracy of the future predicted puck state is deter-

mined by the accuracy at which the vision delays and task parameters are known.

Section 6 shows how we are taking into account the vision delays when initiating

movements in air hockey. But if our model parameters are not correct, the puck

will not be at the predicted hit position when the paddle arrives there. The model

parameters that are currently being used are global and remain constant. It is likely

that the friction is not constant across the playing surface and changes over time

due to factors such as the fan motor wearing out. For these reasons the robot should

have the ability to learn and update a model of the puck’s movements from observ-

ing the task. The next paragraph describes an implementation that we are currently

exploring.

As mentioned in Sec. 6, the most important instant is when the paddle and

puck collide. This collision occurs within a small range near the robot. Our con-

tinuing research is exploring a method in which the robot observes the position of

the puck just beyond the center line for two or three vision cycles. The state of the

puck when it crosses the desired hit line is then observed. It is our hope that this

information can be used to train an LWPR model that will provide the robot with

the ability to accurately predict the puck’s state at the hit time. The research of

Park et al.11 shows that a neural net can be trained to provide this prediction on

a larger air hockey table given the puck’s position and velocity as input. But to

accurately compute the puck’s velocity, more than two observations will be needed.

The increased size of the table used by Park et al. provides them with more oppor-

tunities to observe the puck in locations that are out of reach of the players. Their

model is also trained with 3,000 observations. We would like the humanoid robot

player to learn from much less data and have the ability to update the model while

it is operating.

7.5. Automatically discovering primitives and structure

In many research fields there is a large interest in methods agents can use to auto-

matically define a library of primitives or actions from observing the performance

of a task.7,8,10 Even though in our research we have manually defined the library of

primitives, we also have a strong interest in automating this process. Our research

in creating a method in which robots learn to operate in dynamic tasks using

a library of primitives and observing others gives insight into the type of infor-

mation that an automated agent would need to know about and search for. Our

method of breaking the learning problem into small independent models can assist

in automatically discovering primitives in many ways. Wolpert and Kawato’s17

research on approaches that have the ability to learn forward and inverse mod-

els of task components provides insight into how the models can be configured to

predict events. Figure 9 shows how a primitive can be composed of a sequence of

model activations. The state can be observed and recorded at the beginning and
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end of this sequence to provide all the information needed for an agent using our

framework.

One way the models can be used is to describe which events are occurring as

they are fed the observed data. The sequence of model activations can be recorded

as the task is observed. The research of Kaminka et al.9 on learning the sequential

behavior of teams from observation gives some ideas into how the sequential list

can be represented and used to discover primitives. For example, a sequence of

model activations that are seen reoccurring many times is a good indication of a

primitive. By structuring our models to be general they can also become activated

while observing similar events in other tasks. This has the effect that as the agent

learns more models, it has an increased ability to discover primitives.

8. Conclusions

This paper described research that allows humanoid robots to quickly learn new

tasks from observing others. We have structured the problem to support fast learn-

ing from observation and practice and to quickly adapt to changes. The humanoid

has compensated for movements of the playing area, errors in timing, and errors in

controlling the paddle to be in the proper state at the time of the hit. This capa-

bility has increased the ability of the robot to play a challenging dynamic game.

Learning from practice gives the robot an opportunity to discover details that may

have been missed during the observation. This research gives us insight into how

we can also make other robots more closely approximate human adaptability. One

design principle is to break learning problems into as ‘simple’ parts as possible. This

subdivision of the control or learning task is limited by the measurements available

to the robot, in that the robot needs to perceive the input and output of any learned

relationship.
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