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Abstract

We present a method for learning appearance models that can be used to
recognise and track both 3D head pose and identities of novel subjects with
continuous head movement across the view-sphere. We describe an auto-
matic face data acquisition system based on a magnetic sensor and a cali-
brated camera. The system enabled us to obtain systematically a database
of face images with labelled 3D poses across a view-sphere of�90Æ yaw
and�30Æ tilt at intervals of10Æ. The database was used to learn appearance
models of unseen faces based on similarity measures to prototype faces. The
method is computationally efficient and enables real-time performance.

1 Introduction

To be able to recognise faces of moving people not only requires the ability to label novel
face images with known identities, but also needs detecting and tracking of faces over
time [1]. We refer to this as the task ofassociating faces. We adopt the view such a task
can be better achieved using view-based appearance models rather than explicit 3D mod-
els [2]. One of the difficulties in associating faces using view-based representations is that
face images of the same person from different viewpoints are significantly more dissimi-
lar than images of different people appearing in the same view. However, the task can be
significantly simplified if poses are known [3]. The ability to estimate and predict the 3D
orientation of faces and the ways in which they change over time also imposes temporal
continuity in recognition. Consequently, the ability to locate, track and predict head pose
of a moving person is an integral part of recognition. Here we present a method for learn-
ing to associate faces across the view-sphere based on similarity measures to prototypes
in multiple views. Although similar work was proposed for recognition using similarity
measures [4], and for novel view generalisation and synthesis using linear combination of
prototypes [5], this work extends the idea to a unified method that addresses the problems
of both pose and identity recognition and tracking over time. The method uses training
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data from a database of 3D pose labelled face images across the view-sphere captured by
an automated data acquisition system.

The problems addressed here are (1) automatic acquisition of labelled face data across
the view-sphere for learning, (2) real-time recognition and tracking of face image location,
scale, and pose relative to the image-plane and (3) identities over time. For simplicity,
rotation in the image-plane is ignored, i.e. the subject is assumed to be upright. The pose
refers to the rotation in depth relative to the image axes. A “nodding” head undergoes
x-axis rotation whilst a “shaking” head undergoes y-axis rotation. The former is also
referred to as “tilt” and the latter as “yaw”.

The proposed method takes a view-based approach in which face appearance models
are learned from example views without recourse to any explicit 3D model. Furthermore,
the views are aligned using only simple image-plane transformations such as translation
and scaling, or at most affine transformation. In particular, no dense correspondences be-
tween feature points on different faces are required and as a result, real-time performance
is obtained. The models are constructed from aligned image data labelled with pose an-
gles. Efficient focus of attention based on colour and motion cues is used to bootstrap
face image search in the image plane [6, 7].

2 Acquisition of Labelled Views across the View-sphere

In order to build appearance models, example views labelled with 3D pose angles (both
tilt and yaw) are required. A system was designed that utilises both a magnetic sensor
attached to the subject’s head and a camera calibrated relative to the sensor’s transmitter.
The sensor was then used to provide pose labels for the face images of the subject captured
by the camera. Figure 1 shows the acquisition system.

Figure 1: The system for acquiring labelled views across the view-sphere.

More precisely, an electromagnetic 6 DOF Polhemous tracker with a sensor and a
transmitter was used to provide 3D coordinates (incm) and orientation of the sensor rel-
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Figure 2: An example labelled head image set. The images of labelled views are from
+90Æ to -90Æ in yaw and from +30Æ to -30Æ in tilt at 10Æ intervals.

ative to the transmitter. The tilt, yaw and roll correspond to rotations about the x, y and
z axes respectively and are Euler angles (in degrees). The sensor is rigidly attached to a
head-band worn by the user so that it follows the head’s movements and changes in orien-
tation. The image acquisition system used has a single camera which has been calibrated
to the sensor’s coordinate system. The location and size of the head in the image are de-
termined by back-projection onto the image-plane and an appropriately cropped image is
thus acquired. The sensor orientation is used to label the image with head pose. In order
to locate and align the 2D head images, camera calibration with respect to the sensor is
needed. This involves determining camera parameters using the 3D positions provided by
the sensor and their corresponding 2D projections on the camera’s image-plane. Both in-
trinsic and extrinsic parameters were estimated. The intrinsic parameters are focal length
and radial distortion. The extrinsic parameters are the position and orientation of the
camera relative to the sensor’s coordinates. We adopted the camera model used by [8].

The position of the sensor with respect to the head is somewhat arbitrary. However,
the position and scale of the heads in the images acquired need to be consistent across
different people. Therefore, a few facial features were manually located for each subject
in order to bootstrap the acquisition process by determining a scaling factor and a 3D
point inside the head. This point was rigidly “attached” to the facial features (eyes and
upper lip) and was used to project onto the centre of the acquired head images. In other
words, the facial features’ 3D coordinates were used to determine the coordinates of a 3D
point inside the head relative to the sensor’s 3D coordinates. The image was then cropped
as determined by the scale factor and re-sampled to a fixed number of pixels. Labelled
images were captured withy-axis rotation in the range�90Æ andx-axis rotation in the
range�30Æ at intervals of10Æ. Examples for one subject can be seen in Figure 2.

3 View-based Face Appearance Models using Prototypes

Face appearance models are essentially view-based holistic templates. A simple way
to obtain a generic appearance model is to estimate an average face template at each
pose. These mean templates could conceivably be used to associate face images in or-
der to recognise and track poses of faces across viewpoints. Figure 3 shows some of



British Machine Vision Conference 57

the mean templates computed by averaging filtered views of 11 different subjects. How-
ever, although these view-based mean templates can be used to perform reasonably well
in recognising and tracking poses, they are sensitive to illumination changes and image
noise. Furthermore, they do not capture identity information. More elaborated appear-
ance models use linear combinations of training samples. Given sufficient data, such
linear combinations can also be statistical. This includes the use of PCA [9], LDA [10]
and Gaussian mixtures [11].

Figure 3: Average templates for views from profile to profile.

In order to generalise between views, rather than assuming that face appearances are
linear combination of prototypes at given views [5], an image can be represented as a
vector of similarities to prototype views [12]. Here we exploit this approach to both
face pose tracking and view-based recognition. Let a face imagex at a given pose be
represented as a vector� of similarities toq prototype facesyi at the same pose as
follows:

� = [�1; �2; : : : ; �q ]; �i = h(x;yi) (1)

wherei = 1; : : : ; q andh() is a similarity function that defines a similarity measure-
ment. A straightforwardh() can be the inverse Euclidean distance between a face image
x = [x1; : : : ; xN ] and a prototypey = [y1; : : : ; yN ] at a given view, whereN is the
dimensionality of the images. To take normalisation for overall intensity and contrast
into consideration, a better measurement should be the inverse of the Pearson’s linear
correlation coefficient:

h(x;y) =

qPN

i=1(xi � �x)2
qPN

i=1(yi � �y)2PN

i=1(xi � �x)(yi � �y)
(2)

where�x and�y are the mean of the elements ofx andy respectively. Furthermore, a
deviation weighted distance measure can also be adopted using Gaussian:

h(x;y) = exp

�
�jjx� yjj2

2�2

�
(3)

By measuring similarity vectors of images of novel faces to prototypes across changes in
yaw (y-axis rotation), it can be observed that they form separable but also approximately
linear manifolds (see Figure 4). The model is therefore useful for recognition. Let us first
consider its use in pose recognition and tracking across views.

4 Person-Independent Pose Recognition and Tracking

McKenna and Gong [3] described a real-time system for tracking and estimating head
pose based on person-specific templates. A user-specific head model consisting of mul-
tiple view templates was used. These templates were filtered with Gabor wavelets or
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Figure 4: Left: Prototypes at profile view. Centre: Pose manifolds of novel faces in the
vector space of similarity to prototypes. Right: Images of novel faces at profile view.

simpler oriented filters in order to obtain a degree of invariance to illumination and to aid
the pose estimation (see Figure 5). Each template was labelled with pose angles and in
each frame, the best matching template was used to give the pose estimate. Exploitation
of temporal constraints allowed a level of performance suitable for driving an avatar in a
manner perceptually acceptable to the user. This was achieved in real-time using modest
hardware (133MHz P5 with Matrox Meteor board). The performance of such person-
specific models was evaluated against the ground-truth measured by the magnetic sensor
and it shows acceptable performance, as shown in Table 1. However, it is obviously un-
desirable to require models for every individual. Here we describe a person-independent
pose tracking and prediction system based on similarity to prototypes.

Figure 5: Tracking poses using person-specific templates. The pin diagram indicates
estimated pose. Top: the best matching templates’ bounding boxes are shown overlaid on
a filtered sequence. Bottom: An unfiltered sequence is shown here for visualisation.

Given a database of multiple views of different people, a generic view-based appear-
ance model can conceivably be learned for tracking head pose in a person-independent
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manner given sufficient training data. In practice, the number of examples available at
each view is small. Alternatively, appearance models based on similarity vectors to a
limited number (in tens) of prototype faces at multiple views can be adopted. Given that
face images at the frontal view can be readily detected [6], let a similarity vector� to
prototypes for a detected face image at the frontal view be measured using Equation (1).
Pose recognition and tracking can then be performed by finding the next pose� (both yaw
and tilt) which maximises

L(�) = jj�t
�jj+ �h(�t

�; �
t�1) (4)

wherejj�t
�jj is theL2 norm of the similarity vector at the most likely pose at timet.

Functionh(�t
�; �

t�1) is the similarity measure between the two similarity vectors at
the previously known pose and the currently likely pose. MaximisingL(�) imposes two
constraints. The first term maximises the magnitude of similarity regardless identity in
a neighbourhood centred at the likely pose at timet, therefore performing a generic face
matching at the likely pose at timet. The second term assumes identity constancy in
similarity vector space, provided that all other sources of variation such as lighting and
translational shift in the images have been eliminated (as shown in Figure 4). The constant
� controls a trade-off between the two factors and its value will depend on the expected
smoothness in the pose change and the changes existed in a face’s similarity measures to
prototypes in different views.

It may also seem to be obvious that the tracked poses (tilt and yaw) can be further
Kalman filtered in order to provide a degree of consistency and prediction. However, our
experiments show that such attempts have little effect due to the fact that 3D pose change
in real-time sequences tends to be highly nonlinear and can vary significantly between
frames. Such linear predictive filters are more effective in modelling temporal changes in
the image plane [13].

5 Recognising and Tracking Identities across Views

Face recognition of novel identities across pose using similarity to prototypes was pro-
posed by Duvdevani-Baret. al. [4]. The method was based on the assumptions that view-
invariant prototypes can be learnt using RBF networks and that the recognition of static
faces at novel views can be performed using similarity measures to the view-independent
prototypes. We adopt a different approach based on view-specific prototypes and the as-
sumption that similarity measures to prototypes between views vary smoothly (observed
in Figure 4). The approach provides a model for recognising and tracking both pose and
identity of moving faces.

For a chosen set ofq prototypes at a given view�, let the similarity vectors�t
i of M

different people to the prototypes be their identity measures at view�. Recognition of a
novel face imagex at timet can then be performed by maximising

L(i) = h(�x; �
t
i) + � (t� 1)h(�t

i ; �
t�1
i ) (5)

wherei = 1; : : : ;M , t � 1 andh(�x; �t
i) is the similarity measure between the simi-

larity vectors of imagex and a known facei at view�, given by either Equation (2) or
(3). Functionh(�t

i; �
t�1
i ) is the similarity measures between similarity vectors of the

previously (att� 1) and the currently (at pose�) recognised faces. In other words, whilst
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the first term finds the best match to a known face, the second term imposes an identity
constancy assumption over time. The constant� controls a trade-off between the two fac-
tors and its value will also depend on the degree of change in a face’s similarity measures
across views.

Now, if similarity vectors to prototypes are assumed to be invariant across the view-
sphere, the recognition could then be generalised to novel views where similarity vectors
of known faces are not available, provided that the pose of the current imagex(t) is
known. However, our experiments indicate that similarity measures vary across the view-
sphere (see Figure 4), although slowly or even linearly. Let us first consider view changes
in yaw only. If similarity measures of known faces at two views,�1 and�2, are avail-
able, recognition at novel views� between�1 and�2 can then be performed using linear
interpolation as follows:

�(�) = �(�1) +
� �min(�1; �2)

j�1 � �2j
(�(�2)��(�1)) ; �1 � � � �2 (6)

This interpolation can be easily extended to a 2D surface for both yaw and tilt. If similarity
vectors to prototypes at more than two views are known, Equations (5) and (6) can then
be used to recognise and track face identities of moving people across the view-sphere.

6 Results and Discussions

In our experiments, a database were acquired having 4450 face images across a view-
sphere of�90Æ yaw and�30Æ tilt. It was composed of 5 continuous sequences of different
people moving their heads freely through the view-sphere with each sequence lasting 350
frames and 20 sets of different people randomly exposing to all the poses in the pose-
sphere with each having 133 frames. An example of the view-sphere captured by the
database was shown in Figure 2. Among them, a disjoint sub-set of 11 different people
were selected as prototypes, as shown in Figure 3. The images were aligned, intensity and
contrast normalised and expression changes were minimal. The aim of the experiments
was then to recognise and track both the poses and the identities of the other subjects in
the database using similarity measures to the 11 prototypes.

A person-independent model was learned based on the 11 prototypes. This model
was then used to recognise and track head pose of a novel subject who was not one of
the prototypes. Figure 6 shows a few examples in which the tracked pose was compared
with the ground-truth provided by the magnetic sensor. Overall, the average error (in
degrees) over some 1300 frames from different sequences of different people moving in
pose range of�90Æ yaw and�30Æ tilt is shown in Table 1. It is worth pointing out that
pose tracking with Kalman filter-based prediction did not improve the performance over
tracking without prediction.

For recognising and tracking identities across views, we again used 11 prototypes.
Figure 7 shows examples of sequences of moving faces with their identities been recog-
nised and tracked across views (1) using interpolation of similarity measures between
known views at -40Æ and +40Æ yaw for all the tilt angles (top plot), and (2) between
known views at 20Æ yaw intervals for all tilt (bottom plot). The average error rates with
different known views over 400 different images from different sequences is shown in
Table 2. Simultaneous pose and identity recognition and tracking can be achieved over
20 Hz on a 200MHz P5 with Matrox Meteor board.



British Machine Vision Conference 61

Figure 6: Head pose tracked by a person-independent model shown with the ground-truth
measured by the magnetic sensor, yaw on the left and tilt on the right. All the faces been
tracked were unknown to the prototypes used for building the model.

Appearance Error with prediction Error without prediction
models yaw tilt yaw tilt

Person-specific 9.03Æ 4.50Æ 10.03Æ 5.00Æ

Mean templates 5.50Æ 8.02Æ 6.00Æ 8.02Æ

Similarity measures 3.50Æ 3.50Æ 3.53Æ 3.50Æ

Table 1: Average error in pose recognition and tracking of both known and unknown
subjects using the person-independent model.

Known Views (yaw) Error from Generalisation to Novel Views

-90Æ, 0Æ, +90Æ 30.1%
50Æ, 130Æ 22.55%
Every 20Æ 3%

Table 2: Average error in identity recognition and tracking.
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Figure 7: Example results for 1-in-6 identity recognition and tracking of novel faces
across the view-sphere using view-based similarity measures to 11 prototypes. Top:
recognition by interpolation based on two known views at -40Æ and +40Æ yaw. Bot-
tom: interpolation between every 20Æ yaw intervals. The trajectories were normalised
similarity measures of face images from a test sequence to 6 known faces. Person 3 was
recognised and tracked across views over time.

To conclude, the method described in this work can be extended in a number of useful
ways. Firstly, in all of the above experiments we have established only simple coarse
alignment. In theory, more correspondence (affine, dense) could be established since im-
ages are only ever compared with similar poses. Secondly, a global principal components
analysis could be used to reduce dimensionality prior to applying the above methods.
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This makes computation more efficient and will be especially useful as the number of
prototypes becomes large. It might however preclude the use of dense correspondence.
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