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Figure 1: (a, b) Our approach turns any 2D camera into a cheap depth sensor for close-range human capture and 3D interaction scenarios.
(¢, d) Simple hardware modifications allow active illuminated near infrared images to be captured from the camera. (e, f) This is used as input
into our machine learning algorithm for depth estimation. (g, h) Our algorithm outputs dense metric depth maps of hands or faces in real-time.

Abstract

We present a machine learning technique for estimating absolute,
per-pixel depth using any conventional monocular 2D camera, with
minor hardware modifications. Our approach targets close-range
human capture and interaction where dense 3D estimation of hands
and faces is desired. We use hybrid classification-regression forests
to learn how to map from near infrared intensity images to absolute,
metric depth in real-time. We demonstrate a variety of human-
computer interaction and capture scenarios. Experiments show an
accuracy that outperforms a conventional light fall-off baseline, and
is comparable to high-quality consumer depth cameras, but with a
dramatically reduced cost, power consumption, and form-factor.
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1 Introduction

While range sensing technologies have existed for a long time, con-
sumer depth cameras such as the Microsoft Kinect have begun to
make real-time depth acquisition a commodity. This in turn has
opened-up many exciting new applications for gaming, 3D scan-
ning and fabrication, natural user interfaces, augmented reality, and
robotics. One important domain where depth cameras have had
clear impact is in human-computer interaction. In particular, the
ability to reason about the 3D geometry of the scene makes the
sensing of whole bodies, hands, and faces more tractable than with
regular cameras, allowing these modalities to be leveraged for high
degree-of-freedom (DoF) input.

Whilst depth cameras are becoming more of a commodity, they have
yet to (and arguably will never) surpass the ubiquity of regular 2D
cameras, which are now used in the majority of our mobile devices
and desktop computers. More widespread adoption of depth cameras
is limited by considerations including power, cost, and form-factor.
Sensor miniaturization is therefore a key recent focus, as demon-
strated by Intel', Primesense?, PMD? and Pelican Imaging*, and
exemplified by Google’s Project Tango®. However, the need for
custom sensors, high-power illumination, complex electronics, and
other physical constraints (e.g. a baseline between the illumination
and sensor) will often limit scenarios of use, particularly when com-
pared to regular cameras. Even if these issues are to be addressed,
there remains many legacy devices which only contain 2D cameras.

lhttp: //us.creative.com/p/web-cameras/creative-senz3d
thtp: //www.primesense.com/solutions/3d-sensor/
3https ://www.cayim.com/

4http: //www.pelicanimaging.com/

5http: //www.google.com/atap/projecttango/

ACM Transactions on Graphics, Vol. 33, No. 4, Article 86, Publication Date: July 2014


http://doi.acm.org/10.1145/2601097.2601223
http://portal.acm.org/ft_gateway.cfm?id=2601223&type=pdf
http://us.creative.com/p/web-cameras/creative-senz3d
http://www.primesense.com/solutions/3d-sensor/
https://www.cayim.com/
http://www.pelicanimaging.com/
http://www.google.com/atap/projecttango/

86:2 . S. R. Fanello et al.

In this paper, we describe a very cost-effective depth sensing system
which, for specific acquisition and interaction scenarios, can turn
a regular 2D monocular camera into a depth sensor. Specifically,
we devise an algorithm that learns the correlation between pixel
intensities and absolute depth measurements. The algorithm is im-
plemented on conventional color or monochrome cameras. The only
hardware modifications required are: i) the removal of any near
infrared (NIR) cut filter (typically used in regular RGB sensors), and
ii) the addition of an bandpass filter and low-cost/power LEDs (both
operating in a narrow NIR range).

There has been much progress in the fields of lighting-based geom-
etry estimation and shape-from-shading ([Horn 1975; Zhang et al.
1999]). However, the problem is fundamentally ill-posed due to the
unknown varying surface geometry and reflectance, and traditional
approaches often resort to explicit assumptions, such as careful
camera and illuminant calibration, known surface reflectance, or
geometry (e.g., [Vogel et al. 2009]). Even so, achieving precise
dense depth measurements remains challenging.

We instead take a data-driven machine learning approach, for the
specific scenario of capturing the geometry of hands and faces.
We propose to use hybrid classification-regression forests to learn
a direct mapping from NIR intensity images to absolute, metric
depth, for these specific scenarios. The forest automatically learns
to associate a depth value with a pixel, based on its intensity in the
NIR range, and the intensities of its neighboring pixels. The use of a
learned model of spatial context is key to produce naturally smooth
depth images which preserve transitions at occlusion boundaries.

We train our system using either synthetically rendered intensity im-
ages and associated ground truth depth maps; or a calibrated physical
rig, where depth maps (captured using a high quality depth camera)
are registered with intensity images acquired from our modified
camera. The data (and thus the learned model) implicitly encodes
information about the subject’s surface geometry and reflectance,
the camera intrinsics, vignetting effects, and the active and ambient
illuminants. Our forest models are learned using a small set of sub-
jects and camera devices. However, even with limited training data
captured at low-effort, we demonstrate that our models are able to
generalize well, even across subjects and devices.

Our use of decision forests yields an efficient algorithm which runs in
real-time on portable devices. We validate our algorithm for human-
computer interaction applications, and compare quantitatively with
both existing high-quality consumer depth cameras and standard
light fall-off techniques. Our algorithm enables us to turn practically
any camera into a real-time depth camera for close-range human
capture and interaction scenarios, without high power consumption,
bulk, and expense. Whilst not a general purpose depth camera, it
has the potential to enable a wide variety of new applications for
mobile and desktop 3D interaction and acquisition.

In summary, our paper makes the following contributions:

e We demonstrate a new technique for turning a cheap color or
monochrome camera into a depth sensor, for close-range hu-
man capture and interaction. Our hope is to allow practitioners
to more rapidly prototype depth-based applications in a variety
of new contexts.

e We present two practical hardware designs for depth sensing:
(1) a modified web camera for desktop depth sensing, and
(i1) a modified cellphone camera for mobile applications. We
demonstrate efficient and accurate hand and face tracking in
both scenarios.

e We propose specializations of existing multi-layered decision
forests algorithms for the task of depth prediction which can
achieve 100Hz performance on commodity hardware.
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e We present experimental and real-world results that illustrate
depth estimation accuracies for our specific scenarios that are
comparable to state of the art consumer depth cameras.

2 Related Work

Many different depth sensing approaches have been proposed over
the last few decades. Here we briefly cover relevant techniques; see
[Besl 1988; Batlle et al. 1998; Zhang et al. 1999; Scharstein and
Szeliski 2002; Blais 2004; Lanman and Taubin 2009] for detailed
reviews.

Depth from Passive Stereo: Given images captured from two or
more displaced RGB cameras, stereo methods identify points that
are projections of the same 3D scene point. The point depth is re-
lated to the displacements of its image projections. Many algorithms
have been proposed, including real-time methods [Scharstein and
Szeliski 2002; Brown et al. 2003]. The biggest limitation of such ap-
proaches is that textureless regions yield inherent depth ambiguities.
This results in incorrect depth estimates, or the need for expensive
regularization or post-processing.

Structured Light and Active Stereo: The problem of textureless
regions can be mitigated with the use of structured illumination (see
e.g. [Besl 1988; Batlle et al. 1998; Blais 2004; Zhang 2010]). Many
example of coded patterns exists, ranging from dynamic temporal
sequences to single fixed patterns. Systems either employ two cam-
eras plus illumination source, or use a single camera and calibrated
projector to perform 3D triangulation. Even in these systems prob-
lems remain when estimating depths at object boundaries, where
large depth discontinuities lead to outliers, holes, and edge fattening
[Scharstein and Szeliski 2002; Brown et al. 2003]. Additionally all
setups require a distance between projector and camera, and require
a high-quality and costly/complex illumination source.

The Primesense (Kinect) camera projects a pseudo-random dot pat-
tern and uses a displaced custom NIR sensor to triangulate depth. It
demonstrates reasonably small form-factor and reduced cost. How-
ever, a high quality single-mode laser, diffractive optical element
(DOE), high-resolution (1280x960) NIR camera, thermoelectrical
cooling, and baseline between emitter and sensor are required. Our
method uses any cheap modified 2D camera and simple LED-based
illumination, without the need for a baseline. This allows legacy
devices to be turned into depth cameras, but only for specific human-
interaction scenarios.

Time of Flight: Many other depth sensing techniques exist beyond
triangulation-based methods. Time-of-flight (ToF) cameras either
modulate NIR lasers/LEDs and look at the shift in phase of the
return signal (often referred to as continuous-mode devices), or use
high frequency (physical or electronic) shutters in front of the image
sensor to gate the returning pulses of light according to its time of
arrival (often referred to as shuttered or gated devices). Almost
all devices, including the recent Xbox One sensor® work on the
continuous-mode principle. Shuttered devices are rarer, but include
the legacy ZCam from 3DV’. Whilst the principle of ToF is used
in precise measurement for expensive laser range finders (which
give a single range measurement at a time), full frame ToF cameras
typically suffer from high noise, including depth jitter and mixed
pixels [Remondino and Stoppa 2013], and require costly custom
sensors and electronics.

Geometry Estimation from Intensity Images: In terms of hard-
ware, a cheaper method to acquire the 3D shape of an object is to use
shape-from-shading (SFS) where the naturally occurring intensity

6http: / /www.xbox.com/en-GB/xbox-one/innovation
7http: //en.wikipedia.org/wiki/zCam
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patterns across an image are used to extract the 3D geometry from
a single image [Horn 1975; Zhang et al. 1999]. The mathematics
of SFS is well-understood particularly when surface reflectance and
light source position is known. [Prados and Faugeras 2005] recon-
struct various objects including faces, using a light source at the
center of the camera. [Ahmed and Farag 2007] demonstrate geome-
try estimation for non-Lambertian surfaces and varying illumination
conditions. [Visentini-Scarzanella et al. 2012] exploit an off-axis
light source, specularities and SFS for metric reconstruction.

Whilst the physics of SES is well known, the problem is inherently
ill-posed, and achieving compelling results requires strong scene and
lighting assumptions and computationally complex algorithms. As
such, real-time performance has rarely been demonstrated. This has
led to work on photometric stereo where multiple images of a scene
are captured under different controlled illumination to compute ge-
ometry. Photometric stereo has demonstrated extremely compelling
results including reconstruction of surfaces with complex reflectance
properties [Mulligan and Brolly 2004; Hernandez et al. 2008; Ghosh
et al. 2011; Tunwattanapong et al. 2013], as well as mobile uses®.
However, these approaches can require complex lighting setups, a
large baseline between light sources and camera, and/or sequential
capture with changing illumination direction (although colored lights
can allow for single frame multi-channel capture [Herndndez et al.
2008]). These constraints make real-time dynamic scene capture on
self-contained mobile devices challenging.

Related systems exploit the inverse square law to estimate depth
from light fall-off. [Liao et al. 2007; Gurbuz 2009; Liu et al. 2011]
capture images of the scene, with a fixed camera and light sources
at varying distances, and measure depth from intensity differences.
The Cyclops camera from Dinast’ and the Digits system [Kim et al.
2012] uses a simpler light fall-off approximation for estimating
coarse, relative depth per frame. Light fall-off measurements are
influenced by surface albedo and geometry, ambient light and object
inter-reflections, all of which lead to low-quality depth estimation.
Often careful calibration of light source and camera is required,
and/or multiple captures of the scene are needed under varying
illumination; again making interactive mobile scenarios challenging.

Learning-based and Statistical Methods: Given these challenges,
more data-driven approaches to solving the SFS problem have been
proposed. [Barron and Malik 2013] jointly solve for reflectance,
shape and illumination, based on priors derived statistically from
images. Our approach does not impose strong priors on shape re-
covery. [Khan et al. 2009] learn weighting parameters for complex
SFS models to aid facial reconstruction. [Wei and Hirzinger 1996;
Ben-Arie and Nandy 1998; Jiang et al. 2003] use deep neural net-
works to learn aspects of the physical model for SFS, demonstrating
moderate results for very constrained scenes.

Other learning-based approaches operate on single color images of
outdoor environments; for example, [Hoiem et al. 2005] extracts
regions based on identity (‘sky’, ‘ground’, ‘vertical’), and estimates
depth coarsely. The technique of [Saxena et al. 2009; Karsch et al.
2012] relies on training depth cues and spatial relationships based
on ground-truth image-depth pairs, but again only derives coarse
depth. Whilst these approaches are closest to our work, none of this
past work has demonstrated real-time performance, or the ability
to smoothly infer absolute pixel-wise depth for video sequences.
Real-time 2D-to-3D conversion techniques do exist, but they tend to
rely on fragile video cues [Ideses et al. 2007]. Other approaches use
learning for material and BRDF estimation [Hertzmann and Seitz
2005; Rother et al. 2011; Vineet et al. 2013], but do not directly
address real-time depth prediction given intensity images.

8http: //www.trimensional.com
9http: //www.dinast.com

Other related approaches fit face and human body models to single
images using statistical shape models e.g., [Guan et al. 2009; Blanz
and Vetter 1999; Wang and Yang 2010]. [Smith and Hancock 2008]
use a statistically derived SFS model specifically for facial recon-
struction. In our work, we do not rely on specific global geometric
models or shape priors for depth recovery.

Near-Infrared Imaging: Our approach can be thought of as an
extension to SFS, where the problem is made tractable by focusing
on dense and accurate depth prediction of human hands and faces
(which is particularly important for interactive scenarios) and us-
ing controlled near-infared (NIR) based illumination with a simple
camera modification.

Prior work and amateur photographers have exploited the fact that
digital camera sensors are inherently sensitive to the NIR part of the
electromagnetic spectrum (typically up to 1100nm) [Fredembach
and Susstrunk 2008; Krishnan and Fergus 2009]. To prevent the NIR
contamination of images, an IR cut filter (hot mirror) is often placed
in front of the sensor, typically blocking wavelengths above 700nm.
Prior work has explored ways in which this NIR signal can be used
for photo enhancement and video denoising by removing this filter
[Fredembach and Susstrunk 2008; Krishnan and Fergus 2009] and
even using active illumination [Krishnan and Fergus 2009].

In our work we explore how this NIR signal and controlled illumi-
nation can be used for depth sensing. The use of controlled NIR
lighting is critical for three main reasons. First, for our scenarios
of sensing hands and faces, it allows us to approximate human skin
as Lambertian. This is both due to the light scattering properties of
skin under NIR [Simpson et al. 1998], and the smaller angles of inci-
dence between the surface and light source [Marschner et al. 1999].
Second, different human skin tones have been shown to have similar
reflectance properties under NIR [Simpson et al. 1998], making our
approach more robust than visible light. Finally, NIR provides less
intrusive sensing than using the visible spectrum.

Our system leads to a compact form-factor, low power and cost
compared to existing active ToF or triangulation-based sensors. Our
approach to the SFS problem is also fully data-driven, requiring no
explicit calibration of camera or illumination, and predicating abso-
lute depth in real-time without the need of multiple scene captures
or complex lighting.

3 Hardware Setup

As illustrated in Figures 1, 2 and 3, our hardware setup consists of
a regular commodity camera with minor modifications. First, we
remove the IR cut filter typically present, permitting sensitivity to
the spectrum range of ~400-1100nm. Next, an IR bandpass filter
operating at 850nm (£10nm) is used to limit all other wavelengths.
This makes the camera sensitive only to this specific NIR range.
Finally, we add diffuse LED illumination emitting at this spectral
range. To ensure uniform lighting and limit shadowing, we build a
ring of six NIR LEDs around the camera, with a minimal baseline.
This setup is extremely cheap compared with stereo, structured light,
or ToF. It also enables a very small form-factor that could easily be
embedded into a modern smartphone.

We experiment with two instantiations of the above. The first adapts
a Microsoft LifeCam (see Figure 2), and the second adapts a Smart-
phone Galaxy Nexus (see Figure 3 and related article'®). Our diffuse
IR LEDs operate at 850nm. The LEDs only consume a small amount
of power (average power is 35mW) and can of course be switched
off when not in use. A typical LED has a certain beam spread with
luminous intensity attenuating away from the main axis. The LEDs

1Ohttp ://www.eigenimaging.com/DIY/NexusDYI
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Figure 2: A standard Microsoft LifeCam web camera (top left) is
modified to support depth sensing (bottom row). A bandpass filter
operating at 850nm (+/-10nm) is added (a), once the front casing is
opened and the IR cut filter is removed (b). A new 3D printed case
(c) and ring of NIR LED:s (d) are additionally added.
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Figure 3: A modified smartphone with additional NIR LED ring,
bandpass filter, and custom 3D printed casing.

we use in our system have a beam angle of +75 degree with 80%
percent attenuation at the periphery. We reduce the unevenness of
illumination by using a ring of LEDs.

The camera images are downsampled by a factor of three to 640x480
for our implementation (both devices support full HD capture).
Downsampling can aid performance, and mitigate issues of defo-
cus blur. In both our hardware implementations we measured the
defocus blur extent to be ~2 pixels. In addition we prefilter with a
Gaussian filter, prior to subsampling, which substantially removes
the effect of the different gains of the Bayer pattern of RGB filters in
the IR spectrum (the signals in the visible range are blocked by the
band-pass filter). Note also that chromatic aberrations are removed,
because the color wavelengths are cut off by the IR bandpass filter.

4 Depth Prediction

This section details our depth prediction algorithm that learns to map
a given a pixel x in the NIR image [ to an absolute depth value. We
model this continuous mapping y(x|I) with a multi-layered decision
forest, following the formulation described in [Keskin et al. 2012].
This method attempts to simplify the problem by dividing it into
sub-problems in the first layer, and then applies models trained for
these sub-problems in the second layer to solve the main problem
efficiently. For the first layer we employ a classification forest, and
for the second layer we use regression forests (see [Amit and Geman
1997; Breiman 2001; Criminisi and Shotton 2013]).

For our task, the problem can be significantly simplified by restrict-
ing the depths of the objects to a certain range (primarily because
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we cannot use depth invariant features [Shotton et al. 2011], since
depth is unknown). For such a constrained set, an expert forest can
be trained to regress continuous and absolute depth values more effi-
ciently. Thus, our first layer learns to infer a coarsely quantized depth
range for each pixel, and optionally pools these predictions across all
pixels to obtain a more reliable distribution over these depth ranges.
The second layer then applies one or more expert regressors trained
specifically on the inferred depth ranges. We aggregate these results
to obtain a final estimation for the absolute depth y of the pixel x.
The resulting multi-layered forest is illustrated in Figure 4.

Multi-layered forests are discriminative models that learn a mapping
conditioned on observations, implicitly capturing variation that exist
in the training set. Therefore, the forests do not need to explicitly
model scene illumination, surface geometry and reflectance, or com-
plex inter-reflections. Later we demonstrate that spatially smooth,
absolute metric depth images can be obtained from these NIR im-
ages for specific interaction scenarios, without the need to explicitly
know these factors that are required by traditional SFS methods.

The next section presents details of our multi-layer decision forest-
based depth estimation method.

4.1 Multi-layered Forest Architecture

Coarse, Discrete Depth Classification: Given an input pixel x and
the infrared image I, the classification forest at the first layer infers
a probability distribution p(c|x, I) over coarsely quantized depth
ranges indicated by ¢, where ¢ € {1,...,C}. The forest learns to
map the pixel and its spatial context into one of the depth bins for
each pixel. The experts at the next layer can be chosen based on
this local estimate of ¢ (denoted ‘local expert network’, or LEN), or
alternatively the individual local posteriors can be aggregated (and
averaged) over all the pixels to form the more robust estimate p(c|I)
(denoted ‘global expert network’, or GEN) [Keskin et al. 2012].
We compare these two techniques in detail later, but we found the
aggregated posterior p(c|I) to be more robust for our scenarios.

Examples of the inferred quantized depth predictions can be seen
in Figure 5 for the specific case of C' = 4. Evidently, the per-pixel
predictions are somewhat noisy. However, using GEN, we aggregate
across the entire image to predict a single quantized depth value, and
this redundancy has proved to improve accuracy.

Fine, Continuous Depth Regression: As described above, each
pixel or image is assigned a set of posterior probabilities over the
depth bins in the first layer. In the second layer, we evaluate all the
expert regression forests to form a set of absolute depth estimates.
The final output depth y is a weighted sum over the estimates y.
of the experts, where the weights w. are the posterior probabilities
estimated by the first layer

C
y(x[T) =Y weye(x|1) . (1)
c=1

Here, w, can either be the local posterior p(c|x, I) in the case of
LEN, or the aggregated posterior p(c|I) in the case of GEN. GEN
is slightly more costly than LEN because of the extra pooling step
after the first layer, but is more robust. Note that it is possible to
threshold the posteriors to select a subset of the experts (or choose k
experts where k < C) instead of triggering all the experts.

Multi-layered forests carry two main benefits over conventional
single-layered forests. First, the multi-layered model can infer po-
tentially useful intermediate variables that simplify the primary task,
which in turn increases the accuracy of the model. Second, multi-
layered forests have a reduced memory footprint than training deeper
single-layered forests (as trees grow exponentially with depth). The
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Figure 4: Multi-layer decision forest for depth prediction. The
first layer coarsely quantizes the output space of depth values into
discrete bins, and uses a classification forest to predict a distribution
over these bins for each pixel in the image. These per-pixel results
form the ‘local’ predictions, and a distribution aggregated over all
image pixels forms a ‘global’ prediction. The second layer then
uses ‘expert’ regression forests, each of which is trained only on
data within a particular bin. The regression forests are applied at
each pixel and output an absolute, continuous depth value.
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Figure 5: Examples of first layer depth classification results with
C = 4 bins. Each pixel predicts a quantized depth value. Almost
all confusion is between neighboring bins, which are harder to
distinguish. Note that errors in this layer can be corrected at the
aggregation step after evaluating the experts (see text).
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multi-layered forest achieves the same task as the single-layered
forest with C' + 1 forests instead of one. However, because the task
is simplified for the experts, they are typically much shallower than
a single-layered forest that has the same accuracy. This reduction in
model complexity usually more than makes up for the linear increase
in the number of trees, provided that the inferred intermediate labels
are useful for the task. For instance, a classification tree of depth 22
and C' = 4 experts of depth 20 have the same size as a single tree of
depth 24, but a single-layered forest may need to reach depth 28 to
have similar accuracy, which is 16 times larger. This gain in memory
is crucial for target mobile hardware with limited resources.

Furthermore, the ability of the global weighting to aggregate depths
across all image pixels has the potential to make the final prediction
more robust than possible with a single layer. This is borne out in
experiments shown later in the paper.

Forest Predictions: The predictions p(c|x, I) from layer one and
ye(x|1) from layer two are made in a similar fashion using a decision
forest. Each forest is an ensemble of multiple trees. At test time, a
pixel x is passed into the root node. At each split (non-leaf) node

J, asplit function f(x;6;) € {L, R} is evaluated. This computes a
binary decision based on some function of the image surrounding
pixel x that depends on learned parameters ;. Depending on this
decision, the pixel passes either to the left or right child, and the next
split function is evaluated. When a leaf is reached in layer one, the
stored distribution over quantized depth is output. The individual
tree distributions are averaged together to form the forest output.

The distribution over depth values y at leaf nodes in layer two
is multi-modal, and simply outputting the mean can lead to poor
performance [Girshick et al. 2011]. We thus instead store a small
set {§2(x), §2(x), . . .} of multi-modal predictions about possible
values of the depth for this pixel. A median filter is then applied
over these predictions within a small patch around pixel x across all
trees in the forest, resulting in the final per-pixel prediction y.(x)
that is then locally or globally weighted as described above.

Visual Features: Each split node contains a set of learned pa-
rameters § = (u, v, 7), where (u,v) are 2D pixel offsets and 7
represents a threshold value. The split function f is evaluated at
pixel x as

) B L ifo¢(xsu,v)<T
F0i6) = { R otherwise @
o(x;u,v) = I(x+u)—I(x+vVv) 3)

where [ is the input NIR image. This kind of pixel difference
test is commonly used with decision forest classifiers due to its
efficiency and discriminative power. The features also give additive
illumination invariance which can help provide generalization across
ambient illumination or penumbra. The relative offsets u and v can
be quite large (up to £128 pixels in a 640x480 image) and allow
the forests to learn about the spatial context in the image [Shotton
et al. 2006]. We also investigated using only a ‘unary’ feature (with
¢(x;u,v) = I(x + u)) but this did not appear to improve results.

Note the forest predictions are extremely efficient as only a small set
of these simple feature tests are performed for each pixel. Further-
more, the pixels and trees can be processed in parallel. As shown
later, this results in an efficient depth estimation algorithm, allowing
real-time performance even on mobile hardware.

4.2 Training

Each tree in the forest is trained independently on a random subset
S of the training data. For our application, set S contains training
examples (x,y,c) where x identifies a pixel within a particular
training image, y is the pixel’s ground truth depth label, and c
is the pixel’s quantized depth label. Starting at the root, a set of
candidate split function parameters 6 are proposed at random. For
each candidate, .S is partitioned into left Sy, () and right Sg () child
sets, according to (2). The objective function below is evaluated
given each of these partitions, and the candidate 6 that maximizes
the objective is chosen. Training then continues greedily down the
tree, recursively partitioning the original set of training pixels into
successively smaller subsets. Training stops when a node reaches
a maximum depth, contains too few examples, or has too low an
entropy or differential entropy (as defined below).

Each internal node is trained by selecting the parameters § which
maximize the information gain objective

15a(6)]
5]

Q) =EWS)— > E(Sa(0)) . “

de{L,R}
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Figure 6: Left: Real data is captured using a calibrated depth

camera (b) registered to the NIR camera (a). Right: Synthetically
generated infrared-depth image pairs of hands and faces.

For the first layer (classification), F(.S) is the Shannon entropy of
the (discrete) empirical distribution p(c|S) of the quantized depth
labels cin S:

c

E(S) = —Zp(c|5)logp(c|5),with (5)
c=1
1 /

Pes) = g > le=¢l. ©)
(-,,c)eS

For the second layer (regression), E(.S) is instead the differential
entropy of the empirical continuous density p(y|.S), where we model
p(y|S) as a one-dimensional Gaussian. Computing the mean pg
and variance o2 in the standard way from the samples (-, y,-) € S,
the continuous entropy reduces to

E(S) = log(os) - @)

As mentioned above, at each leaf of the second layer regression for-
est, we store a small set of modes of the training density over depths
y. This is obtained using mean shift mode detection [Comaniciu and
Meer 2002]. For training data we investigate the use of both real and
synthetic data.

Real Data: To acquire data from a real physical setup, we calibrate
a depth sensor and register this to our NIR camera as depicted in
Figure 6 (left). We first calibrate the intrinsic parameters of both
cameras, and then the extrinsics using the method of [Zhang 2000].
We sequentially capture NIR-depth image pairs, by first capturing
a single NIR image from our camera (with LEDs turned on); and
then capturing a ‘ground truth’ depth map using the calibrated depth
sensor. Using a signal generator, the illumination of each device
is turned on sequentially to avoid cross-talk, and the user moves
slowly to avoid motion artifacts. We pre-process the NIR images
by applying a fixed intensity threshold to segment the hand or face
from the background. This removes the need to train with varied
backgrounds, reduces the compute load at test time, and works well
in practice modulo extreme ambient illumination.

The validity of our approach depends critically on its ability to
generalize from training data to previously unseen test data. We
are thus particularly careful to ensure that training sequences are
not used as test data. Cross-subject experiments later illustrate the
generalization we achieve. In our current implementation, a total of
~100K images are captured across a variety of different genders,
age groups and skin tones.

Synthetic Data: The use of real ground-truth depth data can be
further extended with the use of synthetic training data. Given the
camera intrinsic parameters and the known intensity and angular
range of the LEDs, it is possible to render realistic-looking infrared
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images with corresponding ground-truth depth. This can be done
using a variety of 3D rendering software. In this work work we
use Poser to generate around 100K hand and face (infrared, depth)
image pairs (see Figure 6 right) that are uniformly distributed over
a depth range of 20cm to Im. To generate hand images, we use
a 26-DoF articulated hand model attached to a forearm. Highly
realistic renders can be obtained by posing this hand model with a
series of angles applied to each joint, provided that the angles are
randomly sampled with feasible kinematic constraints. Additionally,
the hand and the fingers can be scaled to add shape variation to the
data which helps with generalization to new subjects. We generate
many variations of common hand poses such as pinching, pointing
and grasping (and many more), performed at different ranges and
X-Y positions. Likewise for faces we employ a realistic model
with 100+ blendshapes that model face geometry and expressions.
We randomize the weights of these blendshapes and apply a global
transformation to the face to produce realistic renders.

In our renderer we model effects such as the illumination fall off
from the LEDs, shot noise (added as Poisson noise), vignetting
effects, as well as subsurface scattering for skin. Of the renders, we
generate a hold-out set of 15K images for testing, and the remaining
100K images are used for training. Using synthetic images also lets
us generate other labels (such as part colors) associated with depth
pixels and images, which in turn provides training data for advanced
applications such as hand or face pose tracking (as shown later).

5 Experiments

This section validates our approach experimentally. We present
detailed qualitative and quantitative results for our method.

For our initial experiments, our model is trained using real data.
Specifically, we use the calibrated setup in Figure 6 (left). The mod-
ified Microsoft LifeCam device is used for training unless otherwise
stated. We use 20K training examples per subject (10K for hands
and 10K for faces). A total of 5 subjects are captured, producing
a dataset of 100K NIR/depth map pairs. For testing, we capture
an additional 10K NIR/depth map pairs across the 5 subjects (1K
images of hands and 1K of faces per subject).

Two main baselines are used for comparisons. The first uses depth
maps captured from the commercially-available Xbox One ToF cam-
era (denoted XBOXONE). The second (denoted INVERSESQUARE)
computes depth maps using a SFS approach. A standard Lambertian
reflectance model [Zhang et al. 1999] is combined with the inverse
square law, and the intensity of each pixel x is modeled as

_ Ap()n(x) s

169 =" D2

®)

where A is the intensity of the light source, p is the spatially-varying
reflection coefficient that depends on the surface material, n the
spatially-varying surface normal vector, s is the light source direction
(assumed to be at infinity), and D(x) is the depth of each pixel. The
reflectances p, surface normals n, and depths D are unknown.

By making some simplifying assumptions, we obtain an approximate
depth estimate as a baseline. Assuming NIR illumination with
known strength A that dominates ambient lighting, and a known,
roughly constant reflectance p (reasonable for skin under NIR), we
can obtain depth from intensity as:

Ap n(x) . ©)

D)=\t

Note that to make this baseline more precise we compute surface
normals using the real depth map obtained from the Xbox One.
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Figure 7: Qualitative real data results for a trained face (top row),
untrained face (middle row) and untrained hand (bottom row). Input
NIR images (first column), INVERSESQUARE prediction (second
column), our method (third column) and XBOXONE (fourth column).
Distance error between XBOXONE and our method (fifth column).
Hand part classification on our depth prediction (bottom right).

-
T

Figure 8: Error (middle) from a 3D fused model created using our
depth estimation method (left) and XBOXONE baseline (right).

5.1 Qualitative Results

Qualitative comparisons are shown in Figure 7. The first column
shows the input NIR images captured with our modified hardware.
The second column shows the INVERSESQUARE prediction. Notice
how with this SFS approximation there are major distortions in the
resulting depth. Our depth prediction is shown in the third column,
and XBOXONE depth maps in the fourth. The fifth column gives the
distance error between the depth maps of our method and XBOXONE.
The average error across all test images is ~0.01m.

Note the first row shows results for an explicitly trained face i.e. we
include data from this subject in the training set. The middle row
shows the results for an untrained face i.e. we train on the four other
subjects only, excluding the test subject. The final row shows results
for an untrained hand, with part classification results using our depth
prediction shown far right.

In Figure 8 (left) we show results after fusing multiple depth maps
(in this case 1000 frames) to generate a 3D model of a user’s face,
using the KinectFusion system [Newcombe et al. 2011]. This shows
errors less than 0.5cm (Figure 8 (middle)) when compared to a scan
using the XBOXONE baseline (Figure 8 (right)). Note that this is
based on an untrained subject.

5.2 Generalization Across Different Subjects

We next evaluate generalization across different subjects, for our
multi-layered forest, with the leave-one-subject-out technique, i.e.
training on 4 subjects, testing on a new one. Here both training and
test are based on the previous real dataset. Therefore for a single
subject, 80K training examples are used from all other subjects, and
testing is then performed on the subject’s 2K test examples.

Each column in Table 1 lists the results on a specific subject’s dataset
using leave-one-subject-out. The first row lists the accuracy we
get from storing the average depth values at the leaves instead of
the cluster modes, and the second row shows the error rates after
storing two cluster modes in the leaves (see ‘Forest Predictions’ in
Section 4.1).

| Subj. A Subj.B  Subj.C Subj.D Subj.E
Mean 2475 2675  25.12  31.86 258
Mean shift | 18.3 225 20.1 242 2075

Table 1: Leave-one-subject-out test results on each subject, in mil-
limeters. The two rows correspond to storing the average value vs.
the two primary cluster modes at the leaves in the forest.

Note that the generalization to Subject D is slightly less accurate
than the other subjects. This is attributed to much darker skin color
Subject D had compared to the others. However, the net effect is
only a small increase in error, and of course, for best accuracy one
could train specifically for this skin color. In practice, given the
use of NIR light, which has a similar response to skin irrespective
of tone [Simpson et al. 1998], we found that skin color does not
significantly impact the performance of the system.

5.3 Generalization Across Different Cameras

We also investigate cross-device generalization by training on a
certain NIR camera and testing on a different one. Specifically,
we test the modified Microsoft LifeCam (denoted WEBCAMERA)
and Galaxy Nexus (denoted SMARTPHONE) described previously.
For each device, we again capture real data with our Xbox One
calibration rig (100K training examples, plus a different 15k for test,
across 5 subjects, for each device). We adapt the learned model from
one camera to another by simply re-scaling the feature offsets u and
v by the relative change in focal lengths, and empirically derive a
global intensity scaling and shift.

Results of the experiment are reported in Table 2. Unsurprisingly, the
lowest error is obtained when trained and tested on the same sensor
(just over 10mm), however the system exhibits good generalization
capabilities across multiple devices. With the maximum error being
below 25mm. Additionally we train on 100K synthetic images
(50K hands and 50K faces) and test on both these devices (denoted
SYNTHETIC). As shown, our error is below 23mm.

Tested on
WEBCAMERA  SMARTPHONE
g WEBCAMERA 10.2 21.3
E SMARTPHONE 24.6 134
'é‘ SYNTHETIC 23.0 222

Table 2: Depth prediction error obtained in the cross-device experi-
ments. Models are trained on one device and tested on another. We
report the mean errors in millimeters.

5.4 Testing Vignetting and lllumination Effects

A major issue of SFS techniques is vignetting, where there is an
undesired reduction of intensity at the image periphery. This can be
caused by a combination of camera lens limitations, non-uniform
LED illumination and the effects of a bandpass filter. Because
our model is trained with real-world examples, these vignetting
issues are represented in the training data. To measure how well
our model copes with these lens, filter and illumination issues, we
carry out a further experiment. Again the same real dataset is used
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Figure 9: Error across nine uniformly spaced regions in the camera
image, as a function of depth.

for training (based on the LifeCam), but for test a subject’s hand
is moved uniformly through the camera’s view frustum at varying
depths (100k test samples are collected).

The image plane is subdivided into nine uniformly spaced rectangu-
lar regions (numbered in scanline order, from 1 to 9 with 5 being the
central region). Each predicted depth map is binned into one of these
regions (based on the highest number of overlapping pixels), and
averaged according to quantized depth. We then measure the error in
each bin across varying depths (from 20-90cm at 10cm increments).
Figure 9 shows that there is no substantial difference between errors
reported in each bin (e.g. at 20cm error ranges from 5-7mm, and at
90cm this is 23-27mm). As expected, error increases (quadratically)
with depth. However, no significant differences in error is found
between bins as depth increases. This shows our model is able to im-
plicitly learn to cope with vignetting and non-uniform illumination,
which often need explicit calibration in SFS systems.

5.5 Model Comparisons and Parameter Selection

In this section, we evaluate the benefits of our multi-layered model,
compared to a single layered baseline. We then empirically select
optimal parameters for our model. In this section, all training and
test is conducted using synthetic data (100K for training and 15K
test, each split evenly across hands and faces).

First we compare a single forest trained to directly regress the depth
from NIR images, with the proposed two-layered, classification-
regression approach. Figure 10 shows the depth prediction error
as a function of tree depth. A forest containing a single tree is
used for both direct regression and the multi-layered method. The
two-layered approach achieves an average test error of 35mm, and
the curve levels off around about depth 25. The direct regression
method instead reaches a minimum error of ~50mm, and requires a
considerably deeper (and thus less efficient) tree.

The classification layer aims to assign the correct quantized depth
label to each pixel in the input image. The parameters that affect this
accuracy are the number of quantized bins C, the number of trees
T and the tree depth d. Via cross-validation, the optimal values are
estimated as 7' = 3 and d = 25. As the value of C has a large effect
on the accuracy of the multi-layered pipeline, its value is estimated
by considering the final accuracy instead. The optimal C' is found to
be 4 for our experiments as shown in Figure 11(b).

We also quantify the effect of using GEN vs. LEN (as discussed in
Section 4.1). Figure 11(a) compares these two weighting schemes.
In our experiments LEN achieved an overall average error of 27mm,
whereas the pooling step in GEN proved to be more robust and
achieved an average error of 22mm. In these experiments, we limited
the number of experts k to two. Given the improved accuracy, GEN
was used for all other experiments in this paper.
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Figure 10: Depth prediction error (in mm) as a function of tree

depth for a single-layer direct regression baseline, and our proposed
multi-layered classification-regression forest.
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Figure 11: (a) Comparison of GEN vs. LEN. (b) Error in second-
layer depth prediction with respect to the number of depth bins
(denoted C) in the first layer.

5.6 Computational Analysis

The run-time complexity of the algorithm depends linearly on the
size of the image /, as each foreground pixel is evaluated indepen-
dently. For each pixel, the cost of evaluating the classification forest
is O(T.D.), where T is the classification forest size and D, is the
depth of the trees in the forest. Likewise, the time complexity of
the second layer is O(kT, D, ), where k is the number of experts
triggered. The method can easily be parallelized over all foreground
pixels. The average runtime per forest is around 2-4 ms on high end
PCs. In practice, we can obtain an average frame rate of 100 fps
for the multi-layered architecture and around 250 fps for a single
forest of depth 28. Further speed improvements are possible with
GPU implementations. Given the availability of faster frame rate 2D
cameras, it would therefore be possible to build a depth sensor with
a much higher frame rate than is possible in the current generation
of depth cameras.

6 Interacting with our Predicted Depth

So far we have shown how accurate depth maps can be predicted
from NIR images using our method. In this section, we further
analyze the quality of our depth estimation, specifically in the context
of hand pose estimation. This is an important area of research with
applications ranging from gaming to touch-less user interfaces. Here
we focus on hand part labeling ([Shotton et al. 2011; Keskin et al.
2012]), and assess the need for depth prediction in this context.
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Hand Part Classification

Depth Infrared

Figure 12: Hand part classification training data. From left to right:
Ground truth depth, associated IR image, and hand parts.

To limit biases introduced from real data, in this section we again
use synthetic data for training and test. An example of the dataset
used is shown in Figure 12. We compare the accuracy of part clas-
sification using our depth predication (denoted MULTILAYERED)
to four other modalities. The first uses ground truth depth maps
for hand part classification (denoted DEPTH). The second (denoted
INFRARED) uses the synthetic intensity image to perform hand
part classification, i.e. without any depth prediction. The third (de-
noted INVERSEDEPTH) again uses the SFS depth approximation
introduced previously. We also evaluate against a single-layered
regression forest (denoted DIRECTREGRESSION).

Hand part classification results: We divide the arm-hand into
17 classes, according to the hand anatomy (see Figure 12 right).
The training data is composed of pairs (z,y), where z is one of
the modalities and y is the output space of the class labels. We
train a multi-class classifier for each of the considered modalities
as described in Section 4.1. Here the synthetic intensity images
are used to train the MULTILAYERED, DIRECTREGRESSION and
INVERSESQUARE modalities.

We use 6000 images for the training set and test on a different 2500
set. Parameters are selected via cross-validation. We use depth
probes as features for computing the split function in the depth-
based conditions [Shotton et al. 2011], and intensity-based features
in the INFRARED case. We compute the average pixel accuracy for
each class, showing the mean accuracy across the 17 classes.

In Figure 13, we show quantitative results. On the training data,
the mean accuracy of INFRARED and INVERSESQUARE conditions
is 10-15% below the DEPTH and MULTILAYERED conditions. On
test data, DEPTH obtains the highest accuracy (87.3%), while MUL-
TILAYERED follows closely with 81.0%. DIRECTREGRESSION
achieves a lower 78.7%, but is still about 10% higher than IN-
FRARED and INVERSESQUARE baselines (68.4% and 69.5% respec-
tively). Perhaps the most interesting finding is that the two stage
approach of first predicting depth and then classifying hand parts is
more precise that directly classifying the intensity image. The pri-
mary reason is that by first predicting depth we are able to use depth
invariant features to improve the hand part classification accuracy.

Generalization of our technique: To qualify the generalization
capabilities that our technique is able to achieve, we conducted a
further transfer learning experiment. In transfer learning, the goal
is to acquire knowledge from one problem and try to apply it to a
different but related task. In our setting, we train the hand part clas-
sifiers using synthetic depth maps, and then use the depth predicted
by MULTILAYERED, DIRECTREGRESSION and INVERSESQUARE
as a comparison. Results are shown in Figure 14. Our approach
achieves the remarkable accuracy of 76.7%, whereas the INVERS-
ESQUARE condition reaches just 10.4%. Furthermore we highlight
the improvements obtained by the multi-layered system: the Di-
RECT REGRESSION approach obtains a lower average accuracy of
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Figure 13: Quantitative results for hand part classification where
each condition is trained and tested on its own modality, i.e. trained
on depth and tested on depth. See text for details.
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Figure 14: Transfer learning hand part classification results. Here
models trained on ground truth depth are tested on the other modali-
ties. Bottom row: qualitative examples of transfer learning. Here
INVERSESQUARE produces very poor results, our predicted depth
produces results close to the real depth. This proves the generaliza-
tion capabilities of our method. See text for details.

65.9%. These results also suggest that our technique can be used
in pre-existing applications that use depth maps, avoiding costly
re-training phases.

6.1 Example applications

Some example applications are shown in Figure 15, as well as the
supplementary video. These prove the effectiveness of the proposed
method for gesture recognition, real-time face part recognition and
finally hand tracking on mobile phones.

We designed an interface that allows a user to drive Windows 8
applications with hand gestures in real-time. The module recognizes
when the hand is open, closed and pointing with a (depth-based)
forest classifier. Then, the hand part classification pipeline is used
to infer skeleton joint locations, which are used used to track finger
trajectories, enabling capabilities such as drawing. Notably, this
application, and associated model were trained from Kinect (ver-
sion 1) depth images. However, as shown previously, these learned
models can be transferred to our depth prediction system, producing
compelling results.

The hand tracking pipeline extracts useful information from part
labels. Inspired from this, we implemented an analogous system that
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Figure 15: Some example applications created using our method.

estimates part labels for the face, which are then used to track certain
landmarks and expressions. Here, we train a facial part classifier and
an expression regressor on synthetic face images, and then replace
the depth data with our method at test-time. See Figures 1 and 15
and the supplementary video for examples.

Finally, to demonstrate the capabilities of our method, as well as
the simplicity and applicability of the hardware customization step,
we designed a mobile phone application that first predicts depth,
then performs hand part classification, followed by simple model
fitting. This allows fully articulated hand tracking on the mobile
phone, in a form-factor that is prohibitive for current generations
of depth cameras. Examples are given in Figures 1 and 15 and the
supplementary video.

6.2 Limitations

Whilst we have demonstrated the utility of our approach, there are
clearly limitations. Firstly we train for uniform surface albedo (in
this case skin) which limits our depth estimation to human faces
or hands, or any other specific object. Our system fails to predict
depth for surfaces with varying reflectance properties. Another issue
of our approach is the sensitivity to ambient IR (a problem with
other depth camera techniques as well). The narrow bandpass filter
helps alleviates some of these issues. A further possibility here is to
subtract ambient illumination, by turning the illuminant on and off
at alternate frames, and subtracting background ambient IR. This ex-
tension would require lower-level access to the sync signal from the
camera, and can suffer from motion artifacts, although with a high-
enough frame rate this can be alleviated. Alternatively, it may be
possible to include sufficiently large ambient illumination variations
in the training data (especially when using synthetic data) that the
system learns some level of invariance to ambient IR illumination.

Other camera specific effects such as vignetting can also be an issue,
particularly when training our system for general cross device usage.
Note however when training on real data on a single device, our
proposed model implicitly learns to account for vignetting effects
without the need to explicitly formulate them. The forest learns a
mapping conditioned on these vignetting effects. Given sufficient
training data, we found the system to be remarkably insensitive to
absolute spatial location in the view frustum. However, this type of
per-device training can be costly or impractical in certain scenarios.

Another limitation is that the camera modification limits the ability
to capture visible light images. One approach to enable both visible
and IR imaging is to replace the standard RGB Bayer pattern with
an RGBI pattern. Camera manufacturers such as OmniVision and
Aptina now produce such cameras. This would still be significantly
lower cost and power than a full depth camera, though would require
the use of a custom sensor.

7 Conclusion

In this paper, we proposed and demonstrated a low-cost technique to
turn any 2D camera into a real-time depth sensor with only simple
and cheap modifications. Diffuse NIR LEDs illuminate objects
near the camera, and capture the reflected light with the help of
an added band pass filter. The actual depth calculation is done by
a machine learning algorithm, and can learn to map a pixel and

ACM Transactions on Graphics, Vol. 33, No. 4, Article 86, Publication Date: July 2014

its context to an absolute, metric depth value. As this is a data
driven, discriminative machine learning method, it learns to capture
any variation that exists in the dataset, such as changes in shape,
geometry, skin color, ambient illumination, complex inter-object
reflections and even vignetting effects, without the need to explicitly
formulate them. To capture this much information via simple rules
encoded in the decision forests, we employed a multi-layered forest
that simplifies this problem in the first layer by predicting coarse
quantized depth ranges for the object.

‘We demonstrated the efficiency of this method through qualitative
and quantitative experiments. In particular we showed comparisons
with other modalities for a range of applications, cross-subject and
cross-device generalization capabilities, as well as the high quality
inferred depth for hand and face tracking, and 3D reconstruction. It
should be noted that the method described is not for a general pur-
pose depth camera. Whilst this method cannot replace commodity
depth sensors for general use, our hope is that it will enable 3D face
and hand sensing and interactive systems in novel contexts.
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