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Econometrica, Vol. 58, No. 2 (March, 1990), 277-307 

LEARNING TO BELIEVE IN SUNSPOTS 

BY MICHAEL WOODFORD1 

An adaptive learning rule is exhibited for the Azariadis (1981) overlapping generations 
model of a monetary economy with multiple equilibria, under which the economy may 
converge to a stationary sunspot equilibrium, even if agents do not initially believe that 
outcomes are significantly different in different "sunspot" states. The type of learning rule 
studied is of the "stochastic approximation" form studied by Robbins and Monro (1951); 
methods for analyzing the convergence of this form of algorithm are presented that may be 
of use in many other contexts as well. Conditions are given under which convergence to a 
sunspot equilibrium occurs with probability one. 

KExwoRDs: Sunspots, learning, stochastic approximation, overlapping generations. 

A NUMBER OF AUTHORS have shown that competitive economies may possess 
"sunspot equilibria", that is, rational expectations equilibria in which purely 
extrinsic uncertainty affects equilibrium prices and allocations.2 Such results 
demonstrate that it does not require a lack of faith in the rationality of market 
participants to believe that competitive markets may be subject to purely specula- 
tive fluctuations, driven solely by expectations.3 

The mere existence of sunspot equilibria as solutions to a system of market- 
clearing conditions, however, might not be judged sufficient to indicate that 
competitive markets with rational participants could ever be subject to specula- 
tive instability. The sunspot equilibria represent states of affairs in which agents 
act differently in the case of different realizations of the "sunspot" variable, and 
it is rational for each agent to do so. But it might be thought unlikely that the 
beliefs of all the participants in the market could ever come to be coordinated so 
as to bring about an equilibrium of that kind. It is rational to believe that 
sunspots convey information about future states of affairs once the economy is in 
a sunspot equilibrium, but why would rational agents ever begin to believe in 
such a thing, so as to create the conditions under which the belief is rational? 

In order to address such a question, one must go beyond the mere statement of 
the conditions for equilibrium and discussion of what states of affairs satisfy 
them; one must specify an explicit dynamic process according to which the 
beliefs of agents adjust when out of equilibrium. Any exercise of this kind is 
necessarily unsatisfactory, as there is no univocal meaning for the postulate of 
"rational" behavior outside of an equilibrium. It may well be the case that 

1 I would like to thank Michele Boldrin, Jean-Michel Grandmont, Roger Guesnerie, and Jose 
Scheinkman for helpful discussions, and several referees for useful comments on earlier drafts. I 
would also like to thank the National Science Foundation for research support, and the Institute of 
Economic Analysis, Universitat Autonoma de Barcelona, for its hospitality during the preparation of 
this draft. 

2 The earliest examples of sunspot equilibria in general equilibrium models were given by Shell 
(1977) and Cass and Shell (1983). Equilibria of this kind in ad hoc macroeconomic models were 
previously exhibited by Black (1974), Taylor (1977), and Shiller (1978), among others. Other general 
equilibrium examples are cited in Section 1. 

3 For discussion of the potential relevance of such models for equilibrium business cycle theory, see 
Woodford (1987a, 1988). 
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278 MICHAEL WOODFORD 

different "learning" processes-all equally plausible or implausible, in that all 
satisfy some weak criteria for rational decision-making and all involve quite 
arbitrary choices-yield different conclusions as to the stability of a given 
equilibrium. Yet there seems no other way to address doubts about the economic 
significance of sunspot equilibria. And the exercise is not without value, even 
when it must be inconclusive. An example of instability of the nonsunspot 
rational expectations equilibrium, even for a particular learning rule, indicates 
that a coherent story can be told in which speculative instability arises in a 
competitive economy. And contrariwise, an example of stability of the non- 
sunspot equilibrium even when sunspot equilibria exist would indicate that 
competitive economies may be less subject to speculative fluctuations than a mere 
consideration of the set of equilibria would suggest. 

Lucas (1986) has proposed that stability under disequilibrium learning dynam- 
ics of the kind modeled here be used as a criterion to decide which of the many 
rational expectations equilibria in an overlapping generations model of fiat 
money should be considered more likely to actually occur. He conjectures that 
the unique equilibrium in which the quantity theory of money is valid (i.e., in 
which the price level is constant, given a constant money supply) is the one to 
which agents should converge, and gives an example of a simple learning process 
with this property. Here we consider this problem again, in the case of a more 
complicated learning process, in which agents are willing ex ante to consider the 
possibility that a "sunspot" variable might be useful in forecasting the rate of 
return upon holding money. We find conditions under which the Lucas conjec- 
ture continues to be upheld, but also others under which the quantity-theoretic 
equilibrium (what we call the "monetary steady state") is unstable and the 
economy converges to a sunspot equilibrium instead. 

In Section I, we review the Azariadis (1981) example of a simple infinite 
horizon general equilibrium model for which stationary sunspot equilibria may 
exist. In Section II, we introduce a plausible rule by which agents in this economy 
might seek to learn whether the sunspot variable is of any use in forecasting 
future variables of interest to them, and in Section III we present our results on 
the convergence of the dynamics generated by this learning process to rational 
expectations equilibrium. We exhibit conditions under which the nonsunspot 
stationary equilibrium is unstable under the learning process, and under which 
the process must converge to one of a certain set of sunspot equilibria. Section IV 
offers concluding remarks. 

1. STATIONARY SUNSPOT EQUILIBRIA IN THE AZARIADIS MODEL 

The example of an infinite horizon economy with stationary sunspot equilibria 
considered here was first presented by Azariadis (1981). The analysis of this 
example has subsequently been extended by Azariadis and Guesnerie (1982, 
1986), Spear (1983), Chiappori and Guesnerie (1989), and Grandmont (1986, 
1989). We choose to consider this example not only because it is so well known, 
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SUNSPOTS 279 

but because models with stationary sunspot equilibria of this kind are of interest 
for modeling repetitive "business cycle" fluctuations.4 

Consider a stationary overlapping generations exchange economy in which all 
agents live for two consecutive periods, there is a single perishable consumption 
good for each period, and fiat money is the only asset. Let us suppose further that 
all agents have identical preferences, represented by a utility function u(c) -v(n), 
where n is the amount of labor supplied during the first period of life, and c is 
the amount of the single good consumed during the second period of life.5 The 
good is produced at constant returns to scale using the labor of the young, and 
units are chosen so that one unit of labor produces one unit of the good. 

The utility function is assumed to satisfy the following assumptions: 

ASSUMPTION (A.1): u, v are C2; u(c) is defined for all c> 0, v(n) for all 
0 < n <n< . 

ASSUMPTION (A.2): u' > 0, u" < 0, v' > 0, v" > 0, for all c, n in the above 
domains. 

ASSUMPTION (A.3): v'(n) oo as n n. 

ASSUMPTION (A.4): U'(c) oo as c 0. 

The differentiability assumed in (A.1) is necessary in order for us to be able to 
use results from the stability analysis of smooth dynamical systems in analyzing 
convergence in Section 3. Conditions (A.2) state that preferences are monotone 
and concave in consumption and leisure. The upper bound on labor supply 
assumed in (A.3) is inessential, since we assume below that agents have beliefs 
that would result in a bounded labor supply in any event. Condition (A.4) is the 

4It will be apparent that the method of analysis of learning dynamics employed here will in fact 
apply to a broader class of models of which this one is an example. The only properties of the model 
needed are that agents choose a state variable n, based upon forecasts of a variable R,+1 so as to 
maximize the expected value of a criterion function V(n,, R,+) that is concave in n,, and that the 
equilibrium value of R, +l be determined by agents' choices according to a smooth function 
R, = R(n,, n,+l). 

5 This specification follows Azariadis (1981). A model in which agents supply labor and consume in 
both periods of life results in equilibrium conditions of the same form as those derived here, so that 
extension of the model to that case is trivial. See, e.g., Grandmont (1986). In that case, n, in the 
equations below is to be interpreted as excess supply by the young (i.e., labor supplied in excess of 
their own consumption), and c, as excess demand by the old. 

The model presented here also has a structure quite similar to the cash-in-advance monetary 
economy of Lucas and Stokey (1987), in the case of no endowment shocks or money growth shocks. 
(On the existence of stationary sunspot equilibria in the Lucas-Stokey model, see Woodford (1987b, 
sec. 2A).) Hence the results of this paper immediately indicate that adaptive learning dynamics may 
converge to stationary sunspot equilibria in that model as well. Such an interpretation of our analysis 
here would be especially attractive since in that case the same agent would be adjusting his estimates 
from period to period in response to new data, rather than successive generations modifying the 
beliefs of their predecessors and since in that case it would be more plausible to assume that the 
structure of the economy could remain fixed for a large number of "periods." 
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280 MICHAEL WOODFORD 

only assumption that is at all restrictive; this condition guarantees that desired 
labor supply (and hence desired real balances) will be positive regardless of the 
rate of return expected on money. 

A young agent in period t expecting a (possibly stochastic) real return R,?1 on 
fiat money held from period t to period t + 1, chooses his labor supply n, to 
maximize 

(1.1) Et[u(n,R,+?) - v(n,)] 

where Et denotes the expectation of agents in period t. (Throughout, we assume 
that all agents form expectations in the same way.) Since (1.1) is a concave 
function of n,, the optimal labor supply is the unique n, satisfying 

(1.2) v'(n,) = Et [R?+lu'(n,R,+?)] - 

We assume a constant supply of fiat money M > 0. This must be held by the 
old at the beginning of each period; hence the consumption demand each period 
is c, = M/pt, where p, is the price of the period t good in terms of money. Goods 
market clearing then implies n, = M/p, as well, so that R?+1 =ptlpt+ = n + In- 
In a rational expectations equilibrium, agents' expectations about the distribution 
of Rt+1 must coincide with the true conditional distribution for n+ 1/n, so that 
(1.2) implies 

(1.3) n,v'(n,) = Et [n,+ju'(n+?)] . 

A stationary rational expectations equilibrium (s.r.e.e.) is then a stationary 
stochastic process for n, that satisfies (1.3). 

One stationary equilibrium is n, = n* for all t, where n* is the unique solution 
to u'(n*) = v'(n*). ((A.1)-(A.4) imply that the solution exists, is unique, and 
satisfies 0 < n* < n.) This is the familiar monetary steady state of the overlapping 
generations model of fiat money, the equilibrium that is consistent with the 
quantity theory of money. If lim c cu'(c) = 0, then another stationary solution 
is nt = 0 for all t. This is the familiar nonmonetary (autarchic) steady state of the 
overlapping generations model. These are the only equilibria in which n, is 
constant. Azariadis shows that there may also exist s.r.e.e. in which prices and 
allocations are stochastic, despite the absence of any random element in prefer- 
ences, endowments, or technology. 

Azariadis considers the case in which agents observe a random variable s, (the 
"sunspot" variable), which takes a finite number of values {1,..., m } and follows 
a Markov process with transition probabilities 7Tij > 0 for i, j = 1, ..., m (Oij = 

probability of moving to state j from state i). The sunspot variable has no effect 
upon the economy except through agents' expectations that may be conditioned 
upon it. He considers the existence of stationary rational expectations equilibria 
in which n = ni whenever s,= i, for i = 1,..., m. In this case, (1.3) becomes a 
system of m coupled equations for (nl,..., nm): 

(1.4) n1v'(nj) = F,gjknku (nk) 
k 
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SUNSPOTS 281 

for j= 1,..., m. A stationary sunspot equilibrium is any s.r.e.e. (i.e., solution to 
(1.4)) in which ni # ni for some i, j. 

If we define, for any vector n E (0, nf)f, the vector F by 

(1.5) Fj(n) = nJ >'T'jknku'(nk) -v'(n), 
k 

then s.r.e.e. in which money is always valued are just zeroes of F. Our assump- 
tions (A.1)-(A.4) on preferences imply the following. 

LEMMA 1: There exists an n > 0 such that 0 < nk < n, and nk < ni < n for all 
j#k, imply Fk(n)>O. 

PROOF: It follows from (A.2) and (A.4) that for any k,(1 -nkk)u(f) + 

7Tkku'(n) - v'(n) is positive for small enough n. Choose n > 0 such that this is so. 
Then under the hypothesis, Fk(n) is at least as large as this expression, since 
n u'(n) > nku'(f) for all j 0 k. 

LEMMA 2: There exists an n <n such that n < nk < n, and n < ni < nk for all 
j#k, imply Fk(n)<O. 

PROOF: It follows from (A.2) and (A.3) that for any k, (1 - 7Tkk)u'(n) + 

7Tkku'(n) - v'(n) is negative for n close enough to n. Choose n- < n such that this 
is so. Then under the hypotheses, Fk(n) is no greater than this expression, since 
nju'(nj) < nku'(n) for all j # k. 

These results imply that F has no zeroes, apart from the origin, other than in 
(n, n-)m. Accordingly, stationary sunspot equilibria, if they exist, lie within that 
set. 

Azariadis and Guesnerie (1982) establish the following sufficient condition for 
the existence of stationary sunspot equilibria, in the case m = 2, and the result is 
easily seen to extend to general m. 

PROPOSITION 1: Let A(n) (- 1)I Det DF(n). If A(n*) <0, there exist sta- 
tionary sunspot equilibria. (Here we use n* to represent the m-vector whose elements 
all equal n*, i.e., the monetary steady state.) 

Given Lemmas 1 and 2, this result follows immediately from the Poincare-Hopf 
index theorem,6 as in the argument of Azariadis and Guesnerie. 

They also establish the following sufficient condition in terms of preferences 
alone: 

PROPOSITION 2: If 

(1.6) n*v"(n*) + n*u"(n*) + 2u'(n*) < , 

6 See Milnor (1965). For applications of this theorem to general equilibrium theory, see Mas-Colell 
(1985, pp. 188-222). 
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282 MICHAEL WOODFORD 

then there exist sets of transition probabilities rij > 0 such that A(n*) < 0. Thus 
there exist sunspot variables for which stationary sunspot equilibria exist. 

PROOF: If (1.6) holds, A(n*) < 0 for the probabilities r12 = 1, 0lj= ? for all 
j = 2, rjl = 1 for all j # 1, and 'Tjk = 0 for all j, k # 1. By continuity, A continues 
to be negative even when the zeroes are made small positive quantities. 

Condition (1.6) is just the condition for perfect foresight equilibrium to be 
indeterminate near the monetary steady state, i.e., for there to exist a continuum 
of perfect foresight equilibria all converging asymptotically to the monetary 
steady state.7 As it is well known that such a continuum of equilibria may exist, 
even in the case that both leisure and second-period consumption are normal 
goods (see Woodford (1984)), condition (1.6) is satisfied by a nonempty open set 
of economies. 

For technical reasons, connected with the analysis of learning dynamics below, 
it is convenient to modify the Azariadis model by introducing preference shocks. 
Let us suppose that the disutility of labor for the young in period t is in fact 
given by v(nt) - Etnt, where v is a function with the properties assumed above, 
and Et is an independently and identically distributed (i.i.d.) random variable 
with bounded support, mean zero, and variance a 2 > 0. Let us also assume that 
the variables { e t} are independent of the sunspot process { st }. Finally, let us 
suppose that Et is only observed after labor supply nt has been chosen. Then (1.2) 
becomes 

(1.7) v'(n,) = Et[Rt+lu'(ntR,+l) + Et]. 

In the case of a rational expectations equilibrium, Et(et) = 0, the true conditional 
expectation, and (1.7) is identical to (1.2). Hence the set of s.r.e.e. is still the 
zeroes of the vector function F defined in (1.5); and Propositions 1 and 2 still 
give sufficient conditions for the existence of stationary sunspot equilibria. 

The taste shocks become significant, however, when we examine learning. We 
assume that agents also must learn the relevant properties of the distribution of 
taste shocks. Particular realizations of { Et } cause fluctuations in agents' estimates 
of the mean of the distribution. This is a source of variation in agents' behavior, 
early in the learning process, even if they do not believe that the sunspot states 
matter and do not behave differently in different sunspot states. This small (but 
unavoidable) variation in agents' behavior creates small fluctuations in the rate of 
return to holding money that will in general exhibit some small, accidental, 
sample correlation with the sunspot process. This sample correlation allows a 
belief in some small degree of significance of sunspot process for forecasting rates 
of return to arise, although it is clear that, unless such a belief is self-confirming 
(i.e., causes behavior that results in data that confirm and even strengthen the 
belief), the agents will asymptotically cease to hold such a belief, since the sample 

7It can be shown, in fact, using the method of Woodford (1986b), that when (1.6) holds, stationary 
sunspot equilibria exist in the case of any stationary sunspot variable st, if nt is allowed to depend 
upon the entire history (s,, S- 1. . . ) rather than only upon the current St. 
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correlation will eventually become negligible unless it has ceased to be accidental. 
If we did not assume the small shocks to fundamentals, on the other hand, it 
might be possible for the economy to remain forever at a s.r.e.e. that is unstable 
(in the sense that small deviations from equilibrium beliefs would be self-con- 
firming if they ever occurred), simply because nothing ever occurs to perturb the 
equilibrium beliefs. Since in real economies fundamentals are always subject to at 
least small random variations, the case we consider is surely the one of greatest 
interest. 

2. AN ADAPTIVE LEARNING PROCESS 

We now wish to consider a process by which agents might come to have the 
beliefs characteristic of one or another of the s.r.e.e. described above. Equation 
(1.7) will continue to characterize optimal labor supply nt, but now the operator 
Et will be taken to refer to the subjective beliefs of agents in period t about the 
distributions from which Rt+1 and -, will be drawn; it may not correspond to the 
true conditional expectation as predicted by our model. Given a particular 
specification of how agents' expectations regarding that distribution evolve in 
response to observations of the rate of return on money, we have a complete 
model of how the economy will evolve. Expectations regarding R,+1 and Et 

determine nt via (1.7), Rt= nt/nt-, provides another observation of the rate of 
return on money, et provides another observation of the taste shock, expectations 
in period t + 1 regarding Rt+2 and Et+, are adjusted accordingly, these then 
determine nt+l, and so on. We wish to consider whether such a process may 
result in convergence to one or another of the s.r.e.e. 

The result, of course, depends upon how agents' expectations are assumed to 
evolve. We suppose that agents believe that the process generating rates of return 
upon money holdings belongs to a certain class M of statistical models, and that 
they use standard statistical procedures to determine which model in that class 
best fits the observed data (or, at any rate, to determine those parameters relevant 
to their decision problem). We also suppose that in each period they take the 
action that represents their current estimate of the optimal action. Some might 
regard these behavioral assumptions as less than fully "rational." After all, the 
maintained hypothesis that the true model belongs to class M is not correct, at 
least until convergence to a s.r.e.e. occurs, in the model presented here; the true 
model is a complicated nonstationary process, since the distribution of values for 
Rt+1 changes as the agents' beliefs evolve. 

But in this respect the learning process examined here is like those considered 
for other types of dynamic economic models by Cyert and DeGroot (1974), Bray 
(1982, 1983), Bray and Savin (1984), and Marcet and Sargent (1986, 1987). 
Indeed, no model that seriously attempts to model behavior under an assumption 
of total ignorance about the equilibrium behavior of prices can avoid being 
unsatisfactory in this respect. Attempts to model "rational learning," such as 
those of Townsend (1983a, 1983b) or Bray and Kreps (1987), require an assump- 
tion of pre-existing coordination of agents' beliefs at some level, e.g., in 
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Townsend's case, common knowledge of a certain covariance matrix describing 
the joint distribution of agents' beliefs.8 

The interest of an exercise of the kind presented here does depend, of course, 
upon an appropriate choice of the class of statistical models M. Certainly M 
must include the pattern of rates of return characteristic of some s.r.e.e.; 
otherwise, one would trivially obtain the result that convergence to a s.r.e.e. never 
occurs, but one would certainly want to question why agents should not eventu- 
ally discard the maintained hypothesis of class M. Secondly, M must be rich 
enough so that if agents maintain a belief in any model belonging to M other 
than one corresponding to a s.r.e.e., their actions will eventually produce observa- 
tions such that some other model belonging to M gives a better fit. That is, we do 
not wish for it to be possible for a model I to be the element of M best fitting 
the data generated by belief in u unless IL is the true model induced by belief 
in It. 

Finally, in order to address the issue of interest to us here, the class M must 
include both the monetary steady state and at least some stationary sunspot 
equilibria, so that convergence to neither is ruled out a priori. An exercise of this 
kind is, in our view, more interesting in a case where there are multiple rational 
expectations equilibria to which the learning process might converge, than in the 
case more often considered, where there is only one. For in the usual case, if the 
analysis indicates that the learning process fails to converge to the rational 
expectations equilibrium, one may well conclude that agents will not in fact 
follow the postulated rule of inference forever, as they should eventually realize 
that their forecasts are not becoming more accurate despite the accumulation of 
data.9 In the case of multiple equilibria, by contrast, it is possible for one 
equilibrium to be found to be unstable under a learning process that nonetheless 
converges to another equilibrium, so that agents need not ever modify their rule 
of inference. 

The interest of the exercise also depends, obviously, upon the rule by which 
agents are assumed to determine which element of M best fits the observed data. 
Any sort of outcome might be produced by assuming a sufficiently foolish rule of 
"inference." Certainly one must assume that agents use a consistent estimator, 
i.e., one such that, if their maintained hypothesis were true, would eventually 
result in their beliefs converging to the true model. (This, of course, does not 
assume away the problem of convergence to rational expectations, since during 
the learning process the maintained hypothesis will not be true.) It will also be 
noted below that the method of estimation assumed here represents a standard 

8See Bray and Kreps (1987) for further discussion. They point out that an assumption of fully 
"rational learning" is possible only in the case of an analysis of how agents learn the value of certain 
parameters within a rational expectations equilibrium that is assumed to exist, not in the case of an 
attempt to model how the degree of coordination of expectations represented by such an equilibrium 
is attained. For an early discussion of why "rational learning" is not implied by the simple 
assumption that agents are fully rational, see Frydman (1982). 

9See, e.g., the comment of Marcet and Sargent (1986, footnote 11). 
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approach, within the literature on adaptive control, to the sort of estimation 
problem with which agents believe themselves to be faced. 

In the present case, we assume that agents entertain the possibility that the 
current sunspot state s, provides information about the distribution of R,+1 and 
E,, and that they seek to determine how much difference st makes by looking at 
past outcomes. The simplest case which allows this issue to be addressed is that 
in which agents suppose that the distribution of R,+, and Et depends only upon 

st (if upon that). That is, they rule out a priori the possibility that other variables, 
including the past history of the sunspot process, could be used to improve their 
forecasts. Note that this maintained hypothesis is consistent both with the 
monetary steady state (in which Rt+1 always equals 1, and Et is always drawn 
from the same distribution) and with any stationary sunspot equilibrium of the 
Azariadis type (in which whenever st=j, R,t1 takes the value nklnj with 
probability Tjk' and E, is always drawn from the same distribution). 

The only other maintained hypothesis is that in the case of any sunspot state 
j, (R,+ 1, E,) is drawn from a distribution Gj with bounded support, and such that 

(2.1a) f[Ru'(nR) - v'(n) + E] dGj (R, E) > 0, 

(2.1b) f[Ru'(n-R) - v'(n-) + E] dGj (R, E) < 0, 

where n, n- are some quantities such that 0 < n < n- < n. We will assume that n is 
close to zero, and n- close to n', so that the maintained hypothesis is not too 
restrictive. These hypotheses insure that agents' labor supply choice is always 
drawn from a compact set [n, n-], regardless of the particular sequence of data 
that may have been observed. The lower bound insures that the level of money 
prices pt is always bounded, while the upper bound insures that it is bounded 
away from zero; together these insure that the observed R, will always be 
bounded. We make the upper bound less than n' in order to insure that the utility 
functions are well defined on the compact set [n, n-]. Furthermore, we will assume 
that the bounds, n, n- in (2.1) have the properties described in Lemmas 1 and 2. 
In this case, all s.r.e.e. of the Azariadis type with n >> 0 are consistent with the 
maintained hypothesis. The point of assuming that agents have a priori knowl- 
edge of this kind is to prevent them from choosing extreme actions on the basis 
of disequilibrium data, of the kind that they could never choose if their beliefs 
about the economy were closer to being correct. 

Otherwise, we have chosen the maintained hypotheses to involve no particular 
assumption about what the distributions Gj might be like. For example, it is not 
assumed that agents believe that R,+1 takes on at most m distinct possible values 
(though this is true in all of the s.r.e.e. considered here). This is so that the 
maintained hypotheses will not be contradicted by any finite sequence of obser- 
vations made prior to convergence of the learning process. An agent's problem in 
period t is then the following. Given that he observes sunspot st =j, he believes 
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that (Rt+1, Et) will be drawn from an unknown distribution Gj. He believes that 
the rates of return on money and taste shocks observed following sunspot state j, 
at such dates in the past when sunspot j has occurred, represent independent 
drawings from the distribution Gj. Using these data, he seeks to estimate the 
following parameter of the distribution Gj: 

nj1_argmax [u(nR)-v(n)+enI dGj(R,E). 

This parameter is all he wishes to know about Gj, since it represents his optimal 
labor supply whenever sunspot state j is observed. Note that (2.1) implies that 
n < n < n. 

The question of how to adjust one's estimate of a parameter such as ni over 
time as additional drawings from the distribution Gj are observed is a standard 
problem in adaptive control.10 A standard approach, which has the advantage of 
giving a recursive algorithm (one that does not require more than a finite number 
of quantities to be stored at any stage of the process), is the "stochastic 
approximation" algorithm of Robbins and Monro (1951). Let nijM be the 
estimate of ni after M drawings from the distribution Gj have been observed. 
Then when an additional observation, (RM+? EM+1), is made, the estimate is 
revised accordingly to the rule 

(2.2) njM+? = flM? h(M+ 1)1[RM+lu'(RM+lnjm) -v'(nM) + n M?1] 

Here h is an arbitrary positive constant indicating how much of an effect each 
new observation is allowed to make upon the estimate. (We suppose that agents 
start out with some arbitrary initial estimates njo.) The rule (2.2) is a sort of 
gradient rule; if (RM+?, EM+1) are such that 

RM+lU'(RM+lnjM) -v (JM) + EM+1 > ?, 

i.e., if a labor supply greater than njM would be desired in the case that one knew 
that the rate of rettrn would equal RM+?, and the taste shock would equal EM+1 

on average, then one's estimate of the optimal labor supply is increased. Given 
the agents' maintained hypothesis regarding the possible range of values for nj, 
however, it is appropriate to modify (2.2) as follows: 

(r.h.s. of (2.2) if that quantity lies within [n, n-, 

(2.3) njM+l = (in if r.h.s. of (2.2) exceeds n-, 

tn if r.h.s. of (2.2) is less than n. 

It is shown in the Appendix that, under the agents' maintained hypothesis, the 
estimator (2.3) converges asymptotically with probability 1 to the true value of 

ni. Hence this method of estimation satisfies a primary desideratum mentioned 

10 See e.g., Ljung and Soderstrom (1983, Chapters 2-3). Because the agents represented in 
economic models typically seek to solve a problem of this form, the Robbins-Monro type of algorithm 
used here should be of very wide applicability in modeling learning dynamics. The Ljung theorems 
stated in the Appendix should similarly be of wide applicability in analyzing convergence in such 
models. 
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above, and has the additional advantages of economizing on the number of 
calculations that must be performed each period, and of not requiring parametric 
specifications of Gj.11 

It is important to notice here that the specification of a learning process does 
not require any explicit representation of agents' beliefs about the distribution of 

(R,+lg 'E) at the time that n, is chosen; it is enough to model the dynamics of 
their estimates of the optimal action. In taking this point of view, we depart from 
much of the literature on learning dynamics in temporary general equilibrium 
theory.'2 In that literature it is usual to explicitly represent agents' expectations 
regarding whatever future prices affect their current decisions, either by a 
particular price vector (in the case of "point" expectations) or by a measure over 
possible price vectors. In defense of our not doing so, we may observe that the 
kind of learning process assumed here is actually used by engineers faced with 
adaptive control problems, and that the procedure has a theoretical justification 
in terms of the consistency of the estimator under agents' maintained hypothesis. 
Furthermore, our procedure is no different, conceptually, from assuming that 
agents estimate the mean, or some other moment of interest, of a distribution 
using some standard technique, without estimating other properties of the distri- 
bution-which is what is assumed in most of the literature on convergence to 
rational expectations equilibrium. Finally, achieving mathematical tractability in 
this manner seems less artificial than preserving an explicit representation of 
agents' beliefs about the relevant prices but requiring these beliefs to take an 
especially simple form (e.g., point expectations) or to evolve in a fashion that 
cannot be justified on decision-theoretic or control-theoretic grounds. 

Let us suppose furthermore that in period t, if st =j, agents choose n on the 
basis of the estimate of ni that they formed using observations only up through 
period t - 1. That is, in the case that st_ = st =1, the observed rate of return 
Rt = pt -/pt is not used to update agents' estimate of ni before nt is chosen. This 
assumption simplifies the dynamic equations, since we do not have to consider 
the simultaneous determination of R, (dependent upon pt which depends on nt 
which depends on nj) and the updated estimate of nj. The simplified procedure 
is slightly less efficient under the maintained hypothesis (agents fail to use one 
available observation in certain cases), but the simplification does not affect our 
analysis of asymptotic convergence,13 since as t grows large the most recent 

11 A more complicated rule, that would still allow a recursive specification and not require 
parametric specification of G or H,, while achieving a greater asymptotic efficiency under agents' 
maintained hypotheses, is described in Ljung and Soderstrom (1983, Section 2.4). In this variant, the 
step size k is allowed to vary as the reciprocal of agents' estimate of 

f [IV"( j) - R2u"( Rn1)] dGC(R). 

Woodford (1986a) shows that stability results closely related to those presented here hold in that case 
as well. 

12See, e.g., Fuchs (1979a,b), Fuchs and Laroque (1976), Grandmont (1985), Grandmont and 
Laroque (1986). 

13 See the discussion by Marcet and Sargent (1986, Section 7), and also the last paragraph of the 
section of the Appendix below that proves Theorem 1. 
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observation has little effect upon the estimates anyway. It will also simplify our 
dynamic equations if we correspondingly assume that the observation Et is not 
incorporated into the estimates n j until period t + 1. 

We assume that agents simultaneously adjust their estimates of the quantities 
n for j = 1, .. ., m, using the rule (2.3) in each case, but with m distinct data sets. 
In order to apply this rule it is necessary to keep track of the number of times 
each sunspot state has occurred, i.e., the number of observations (R,?1, Et) that 
are taken to have been drawn from G. rather than one of the other distributions, 
for each j. (This is the quantity "M + 1" in (2.2).) We can write this number, in 
the case of each state j, as qj1t, where qj, then is the fraction of observations up 
through period t that are taken to be drawings from Gj. We can write a recursive 
formula for the evolution of qj, that is similar in form to (2.2), i.e., 

(2.4a) qjt= qjt-l + t-'[Ij(St-l) -qjt-l] 

where 'Ij(s) = 1 if s =j, 'Ij(s) = 0 if s #Aj. Finally, it will simplify the dynamical 
equations if we assume that when the estimates nit are formed (revising 

nP-_ 
in 

the light of observation (Re, E,)), agents use qj1-lt, rather than qj1t, for the 
quantity "M + 1" in (2.2). In this case we can write t(nii - ni_ and t(qj, - 

q-, l) both as time-invariant functions of (,- l,q ql,-R ,et_,s,1), as shown 
below. Since qj, and qjt- come to be very close, for large t, it is clear that this 
substitution has no effect upon the asymptotic dynamics, but allows us to analyze 
a recursive system of a particularly simple form. 

The joint evolution of agents' beliefs and the rate of return R will be given by 

nj,l+ (h/tqj1_l)[Rtu'(Rfnijt_)-v (ny l)-Et-l] fj*(St-1) 

(2.4b) n 
= 

if this quantity lies within [n,] n] 2b n 
n- if the above quantity lies above n- 

n if the above quantity lies below n, 

(2.4c) Rt= ^Jt_l*J(St)/ ^yt_2*j(St_J- 
1 J 

Equations (2.4) define a recursive stochastic process for the variables (nj , qjt). 
Finally, we assume initial conditions in period one given by some specification of 

n ( j= 1, . ..,m), Eo and no, and we modify (2.4b) in period one to take the 
form 

R= nn.o J (Sl 
iI 

The asymptotic behavior of a recursive system such as (2.4) can be studied 
using the method of Ljung (1975, 1977).14 Briefly, it can be shown that as t grows 
larger, the stochastic trajectories of a system like (2.4) come progressively closer 

14 For other applications of this technique to the analysis of convergence of learning mechanisms 
to rational expectations equilibrium, see Marcet and Sargent (1986, 1987). For a less technical 
exposition of Ljung's method, see Ljung and Soderstrom (1983, Section 4.3.3). 
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to following the deterministic trajectories of a certain associated system of 
ordinary differential equations (o.d.e.). Asymptotic convergence of (2.4) to con- 
stant values for (nkj, qj) then depends upon whether trajectories of the associated 
o.d.e. system converge to a rest point or not. 

The intuition is the following. When t is large, each new observation of st and 

R, changes the estimates nj and q; very little. Hence nj and qj will remain 
approximately constant for many successive periods, and the distribution of 
values taken by R,+ 1 whenever st = j will also remain approximately constant (as 
this depends only upon n,..., n'm). But then the changes n1j - nj1, and 
qjt - -1 will, for many successive periods, be well approximated by successive 
realizations of the sum of a finite state Markov process and an i.i.d. variable. 
(Here we also use the fact that for t large enough, we can choose a long sequence 
of successive periods t + 1, .. ., t + N and still have (t + N)-'1 t-1.) The total 
change in n, and qj over this sequence of N successive periods will, for N large 
enough, then be approximately deterministic, by a law of large numbers. 

Equations (2.4a-c) then become approximately 

njt+ N ni, Nt 
- 

h ( qj qj) 'Tjk (n klnj) U(n k) - V(nj) 

qjt+N- qjt Nt-l[q* -qj], 

where n,, qj represent the values which ni and qj, have remained close to 
throughout these N periods, and qJ* represents the long-run frequency with 
which sunspot state j occurs. (Here we assume that all n k are sufficiently far 
from the boundary values n and n- that the bounds can be ignored.) Note that 
the size of each of these movements becomes smaller as t is made larger (for a 
given N). For large enough t, the deterministic changes become approximately 
those of a continuous time o.d.e. system 

(2.5a) hJy=h(qj*/qj)[ gjk(nk/nj)u (nk)-v (nJ)j, 

(2.5b) 4j = 
[qj* - q], 

where the dots denote derivatives with respect to a rescaled time variable T, 

which increases as 

s=1 

and where we have dropped the hats on the state variables ni. 
In the Appendix, we show that the results of Ljung can be used to establish the 

following conclusions about the asymptotic behavior of the recursive system 
(2.4): 

THEOREM 1: Suppose that the associated o. d.e. system (2.5) has an invariant set 
I whose domain of attraction includes all of the compact set D = [n, n-] m x [q, I] 
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for some O < q < minj qj*, and the trajectories of the o.d.e. system point inward at 
all points on the boundary of D. Then (n1, q,) -- I under the dynamics (2.4) with 
probability 1 as t -* oo. 

THEOREM 2: For any point (nA, qA) E [n, n] X (O, lI], either (a) (n', q4) is a fixed 
point of the associated o. d.e. system (2.5), and the linearization of the o. d.e. system 
at (n, q) is of the form 

[ .] = A [ ^] 
q - q 

where the matrix A has no eigenvalues with positive real part; or (b) there exists a 
neighborhood N of (ni, q^) such that the probability that (n, q) -* N under the 
dynamics (2.4) is zero. 

These theorems allow us to reduce the analysis of the convergence properties of 
(2.3) to a simple study of the stability of the fixed points of (2.5). Theorem 1, for 
example, implies that if the associated o.d.e. system has a globally stable fixed 
point, then the stochastic system (2.4) converges to those estimates with probabil- 
ity 1, while Theorem 2 says that there is no probability of convergence to any 
constant values that are not a locally stable fixed point of the associated o.d.e. 
system. 

3. CONVERGENCE RESULTS 

We now turn to the stability analysis of the associated o.d.e. system (2.5). Note 
that it can be written 

(3.1a) nj = h (qj*lqj) Fj(n), 

(3.1b) qj= qj* - qj, 

where Fj(n) is defined by (1.5). Lemmas 1 and 2 then imply the following. 

LEMMA 3: Let n, n be chosen to have the properties described in Lemmas 1 and 
2. Then for any 0 < q < minj q *, the trajectories of the o.d.e. system (3.1) point 
inward on the boundary of the set D = [n, nh]m X [q, 1]m. 

By Theorem 1, it follows that there exists a set I, the union of all the co-limit 
sets of points in D under the deterministic dynamics (2.5), such that (ne, q,) > I 
with probability 1. Whatever this set is like, it will be bounded away from the 
boundary of D. Hence it turns out that the bounds on the values that may be 
taken by the estimates hi cease to bind asymptotically with probability 1. One 
consequence is then that, under the kind of learning dynamics postulated here, 
there is no possibility of a self-fulfilling hyperinflation being generated; there is 
no positive probability of learning dynamics tending toward n = 0 (the nonmone- 
tary steady state) for t large. This result would suggest that the concern for the 
"tenuousness" of monetary equilibrium in the overlapping generations model, 
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that is often expressed (see, e.g., Wallace (1980)), because there is a continuum of 
hyperinflationary perfect foresight equilibria, is in fact unwarranted. In this 
respect our results support those of Lucas (1986). 

Lucas' results are also corroborated by the following: 

PROPOSITION 3: Suppose that m = 1, i.e., no sunspot variable is observed, and 
agents simply seek to learn the rate of return on money holdings (that, in this case, 
they presume to be constant). Then learning dynamics of the kind postulated here 
converge with probablity one to the monetary steady state, n = n*. 

PROOF: In this case, q = 1 forever (since there is only one state). The system 
(3.1) reduces to 

h = h [u'(n) - v'(n)]. 

By Assumptions (A.2)-(A.4), n = n* is a globally stable fixed point of this o.d.e. 
Then convergence of the learning process follows from Lemma 3 and Theorem 1. 

In treating the case m > 1, we will assume the regularity condition: 

(R) At each s.r.e.e. with n >> 0, no eigenvalue of DF has zero real part. 
Consequently, A(n) # 0. 

It is evident that (R) will be satisfied for generic preferences; this will allow us to 
classify s.r.e.e. in terms of the sign of Ai(n) in certain results below. 

Further immediate consequences of the form (3.1) are then the following: 

LEMMA 4: Along any trajectory of the o.d.e. system (3.1), qj -qJ* as T -o 00. 

Therefore (by Theorem 1) qjt -* qJ* with probability 1 under the stochastic dynamics 
(2.4) as t - oo0. Furthermore, the invariant set I is of the form J X { q* }, where J is 
the union of the w-limit sets of the points in [n, n]im under the o.d.e. system 

(3.2) A 1 = h?(n). 

LEMMA 5: For any point (n, q) e [n, n]m X (0, 1]m, there exists a neighborhood 
N of (ni, q) such that the probability that (ne, q,) -- N under the dynamics (2.4) is 
zero, unless q = q*, F(nf) = 0 (i.e., n is a s.r.e.e.), and DF(nf) has all eigenvalues 
with negative real part. 

Lemma 5 follows from Theorem 2, because (3.1) implies that the matrix A 
referred to in Theorem 2, evaluated at a point (n', q*) where F(n') = 0, has the 
form 

A= [DF(n) 2 ] 

where Im is the m X m identity matrix. By the regularity assumption (R), DF(n) 
has no eigenvalues with positive real part if and only if all its eigenvalues have 
negative real part. 

One case in which stronger conclusions are possible is the following. 
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PROPOSITION 4: Suppose m = 2, i.e., the sunspot variable is a two state Markov 
process. Then the learning dynamics converge with probability 1 to one of the s. r. e. e. 
with n >> 0, and it must converge to one at which A (n) > 0, of which there must 
exist at least one. If A(n*) < 0 at the monetary steady state, then stationary 
sunspot equilibria exist (by Proposition 1), and the learning dynamics converge with 
probability 1 to one of the stationary sunspot equilibria. 

The proof is in the Appendix. This proposition demonstrates that there exist 
conditions under which the learning dynamics necessarily converge to a station- 
ary sunspot equilibrium. Hence it is possible for such equilibrium fluctuations to 
arise, even if agents do not start out with exactly the beliefs characteristic of these 
equilibria. In fact, it is possible to converge to a sunspot equilibrium even when 
agents start out believing that the sunspot variable is of no significance, even with 
beliefs consistent with the monetary steady state-as long as agents entertain the 
hypothesis that the sunspot variable might improve their forecasts, and are 
willing to change their forecast rule as data indicating a correlation of Rt+1 with 

st are collected. Accordingly, we find that Lucas' conjecture is not true for all 
economies and all plausible learning rules-the monetary steady state (the 
unique equilibrium consistent with the quantity theory of money) need not be the 
equilibrium reached by a process of learning from experience. 

While the condition that A(n*) < 0 at the monetary steady state is sufficient 
for the learning dynamics to converge to a sunspot equilibrium (with probability 
1), it would not appear to be necessary in order for this to occur with positive 
probability. Following Marcet and Sargent (1987), we may say that a s.r.e.e. 
n >> 0 is locally stable under the learning dynamics if there exists a compact set 
D, containing a neighborhood of n, such that it is possible to modify the 
dynamics (2.4), so that they remain as before whenever the n, given by (2.4) lies 
in D, but are restricted to lie within D otherwise as well, and thus obtain a 
stochastic process that converges to (f,q*) with probability 1. Then Ljung's 
theorems (see Appendix) allow one to show that a s.r.e.e. R ? 0 is locally stable 
under the learning dynamics if and only if DF(f) has all eigenvalues with 
negative real part. When m = 2 the eigenvalues of DF(n) will have a negative 
real part if and only if A (n) >> 0, so that in this case the Poincare-Hopf index 
theorem15 implies that if there are any stationary sunspot equilibria, at least one 
must be locally stable. Grandmont (1987) shows that it is possible for stationary 
sunspot equilibria to exist even when perfect foresight equilibrium is determinate 
at the monetary steady state. As a result one can demonstrate the existence of 
locally stable sunspot equilibria even in cases in which Proposition 4 does not 
allow us to prove that the learning dynamics must converge to a sunspot 
equilibrium. 

Unfortunately it is not possible to say as much when m > 2. For example, 
when m > 2, the o.d.e. system (3.2) is more than two-dimensional, so that we can 

15 See footnote 6. Technically, the theorem applies to a compact set with smooth boundary, which 
[n, n]m is not. However, as above, we can easily "round of' the corners of this set and still obtain a 
set such that the vector field F points inward everywhere on the boundary. 
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no longer use Bendixson's criterion to rule out closed orbits, as in the proof of 
Proposition 4. And when m > 2, an index of + 1 no longer still implies that all 
eigenvalues of DF(n) have negative real part. However, an index of -1 does 
imply that not all eigenvalues of DF(n) have negative real part, so that the s.r.e.e. 
must be unstable (by Theorem 2). Accordingly we have the following proposi- 
tion: 

PROPOSITION 5: Let m be an arbitrary finite number of states. Then if A(n*) < 0 
at the monetary steady state, the learning dynamics converge to that s.r.e.e. with 
probability zero. In particular, if perfect foresight equilibrium is indeterminate at 
the monetary steady state, there exists an open set of transition probability matrices 

7Tjk for which the monetary steady state is unstable. 

This result indicates that it is possible for the monetary steady state to be 
unstable for arbitrary m; but when m > 2 we do not then know that the learning 
dynamics converge to one of the stationary sunspot equilibria. Since o.d.e. system 
(3.2) might have a stable limit cycle or a chaotic attractor, we do not know that 
the learning dynamics need ever converge. 

In Woodford (1987b), it is shown that for arbitrary m one can construct robust 
examples of economies in which the learning dynamics must converge to a 
stationary sunspot equilibrium, although no very general characterization is 
available in this case. The two-state sunspot processes to which Proposition 4 
applies are degenerate cases of an m-state process, for any m > 2, and it can be 
shown that the o.d.e. system (3.2) for the degenerate m-state model is a Morse- 
Smale dynamical system (Palis (1969)); hence the global dynamics are struc- 
turally stable (Palis and Smale (1970)) under perturbations of the transition 
probability matrix away from the degenerate case. 

4. ALTERNATIVE SPECIFICATIONS OF AGENTS' INFORMATION 

The above analysis (especially Proposition 4) indicates conditions under which 
the learning dynamics converge with probability 1 to one of a small set of 
stationary sunspot equilibria. However, in reaching this result we have assumed 
that all agents observe a particular sunspot variable, and sort their observations 
of (Rt+,, et) on the basis of it, and that no agents sort their observations on the 
basis of any other random variable. In fact, our stability results are quite sensitive 
to variations in the specification of the variables that agents use in their forecasts. 
In this section, we briefly consider two extensions of the model of Section 
2-allowing agents to use additional sunspot variables in their forecasts, and 
allowing different agents to use different variables. 

The demonstration that a given s.r.e.e. is locally stable when all agents use in 
their forecasts only the most recent observation of a single sunspot variable st, 
does not mean that the mere fact that all agents observe st suffices to insure that 
this s.r.e.e. is locally stable and hence a possible outcome of the learning 
dynamics. For if agents begin to use in their forecasts some other random 
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variable as well, even one that is distributed completely independently of st, the 
local stability of the s.r.e.e. in question may be reversed. A simple example of 
how this can occur is provided by the contrast between Propositions 3 and 4 of 
Section 3; use of an additional variable in forecasting (the case of Proposition 4) 
can render unstable an equilibrium (the monetary steady state) that would be 
stable if that variable were ignored (as in the case of Proposition 3). 

Evans (1987) proposes a distinction between "weak" and "strong" expecta- 
tional stability that we may adapt to the present context. A s.r.e.e. will be said to 
be weakly stable if it is locally stable under the sort of learning dynamics 
modeled in Section 2, when agents use in their forecasts only the random 
variables which affect the equilibrium choice of nt in the s.r.e.e. in question (i.e., 
the minimum information set consistent with that equilibrium). It will be said to 
be strongly stable, though, only if it continues to be locally stable when agents 
also use some other finite-state Markov variable, independent of the variables in 
the minimum information set, regardless of what the stochastic properties (i.e., 
transition probability matrix) of the additional variable might be. Under this 
terminology, the monetary steady state is always weakly stable, by Proposition 3, 
but may not be strongly stable, by Proposition 4. 

The following result establishes a case in which the monetary steady state is 
strongly stable. 

PROPOSITION 6: Let u'(n*) + n*u"(n*) > 0. (This is a local version of the 
condition of "gross substitutability," under which labor supply nt will be an 
increasing function of Rt+1, when the latter is a point expectation, in a neighbor- 
hood of Rt+1 = 1.) Then the monetary steady state is strongly stable. 

PROOF: We have indicated in the proof of Proposition 4 that DjFj(n*) < 0 for 
all j. One also observes that 

DkFj(n*) = g7jk [ u'(n*) + n*u"(n*)] /n* 

for all j ' k, which is positive under the hypothesis. Furthermore, 

EDkFj(n*) = u"(n*) - v"(n*) < 0 
k 

by (A.2). It follows that the matrix DF(n*) has a dominant diagonal, and by the 
well-known theorem of McKenzie (Takayama (1974, Theorem 4.C.2)), all its 
eigenvalues have negative real part. Accordingly, the monetary steady state is 
locally stable. Since this result is independent of m or of the transition probabil- 
ity matrix, it is strongly stable. 

Note that proof would go through for any other s.r.e.e. with n >> 0, assuming 
that u'(nj) + nju"(nj) > 0 for all j. (One shows in the general case that 
EknkDkFj(n*) < 0.) Accordingly if the condition of "gross substitutability" holds 
globally, all s.r.e.e. are strongly stable. However, as Azariadis (1981) first showed, 
there can be no stationary sunspot equilibria in this case. 
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It is not known whether stationary sunspot equilibria can ever be strongly 
stable, although it is easy to construct examples showing that they need not be 
(see Woodford (1987b)). Evans (1987) shows that for a particular parametric 
class of utility functions, it is impossible for two-state stationary sunspot equilib- 
ria to be "strongly expectationally stable." However, his "expectational stability" 
criterion, while related to local stability under the learning dynamics treated 
here,'6 is not an identical criterion, so that his proof does not work for our case. 
(Nor does it work, even for his stability criterion, outside his special class of 
utility functions.) In particular, Evans shows that in his case a two-state sunspot 
equilibrium is always unstable when an additional independent two-state sunspot 
variable is introduced, with transition probability matrix Pjk close enough to 
Pll = P22= 0, P12 = P21 = 1. But it is shown in Woodford (1987b) that one can 
easily construct counterexamples to this latter proposition, in the case of our own 
explicit learning dynamics. 

But even if Evans' instability thesis were correct in our case, this would not be 
a reason to suppose that the monetary steady state is in some sense more 
" robust" in general than are the sunspot equilibria. For if it were indeed true that 
no sunspot equilibria were ever strongly stable, then when A(n*) < 0, one would 
have to conclude that no s.r.e.e. are strongly stable. Hence it would not be 
sensible to propose that only strongly stable equilibria should be regarded as 
possible outcomes of the learning process. 

What the foregoing discussion does clearly indicate is that the conditions for 
instability presented in Section 3 represent more robust results than the condi- 
tions presented under which equilibria are stable. For an instability result can 
never be overturned by supposing that agents use some additional, independent 
random variable in their forecasts. 

PROPOSITION 7: Let r, and st be two independent finite-state (p-state and 
m-state respectively) sunspot variables, and let n be a stationary sunspot equilibrium 
in which output nt depends upon st only. Suppose that n is unstable under the 
learning dynamics when agents use only st in their forecasts. Then the sanme 
equilibrium is also unstable when agents use both rt and st in their forecasts. 

PROOF: Let rt have transition matrix Pab, a, b = 1,..., p, and st have transi- 
tion matrix '7jkI j, k = 1,..., m. Let aj denote the overall state in which rt = a, 
St= j. Then at the equilibrium n, when agents use both rt and st in their 
forecasts, the mp x mp matrix DF has the form 

DajFaj = Paa7TjknjU n j), 

DbkFaj Pab'Tjkl IUk, if bk # aj, 

where Uj = u'(nj) + nju"(nj), Vj = v'(nj) + njv"(nj). 

16 For further discussion of the relationship, see Woodford (1986a). 
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Now suppose that e E Rm is an eigenvector of DF when only s, is used, with 
eigenvalue X. Then 

gkUkek,= (Vj+ Xnj)ej 
k 

for j= 1,..., m. It follows that the mp-vector e defined by eaj = e1 is an 
eigenvector of DF when both r, and s, are used, again with eigenvalue X, since 

E 2 DbFJbkFaj1bk [J [ Pab7TjkUkek 1Vjej 
b k b k 

=Xej =Xe aj 

Hence all m eigenvectors of DF in the former case are also among the mp 
eigenvectors of DF in the latter case. If the equilibrium is unstable in the former 
case, at least one eigenvalue has positive real part, and so at least one has positive 
real part in the latter case as well, making the equilibrium again unstable. 

Hence, for example, the conclusion that the monetary steady state is unstable 
when A(n*) < 0 remains robust under the addition to agents' information set of 
additional independent sunspot variables. 

Our results in Section 3 also depend upon an assumption that all agents are 
attempting to learn the significance of the same m-state sunspot variable. An 
obvious question is the robustness of our conclusions to various sorts of hetero- 
geneity in agents' information sets (or their maintained hypotheses about what 
variables might matter). We first consider the case in which only a fraction a of 
the population use the sunspot variable in forecasting. The remaining agents also 
use a Robbins-Monro algorithm to estimate their optimal labor supply, but under 
a maintained hypothesis that (R,+?, -,) are always drawn from the same distribu- 
tion G, regardless of the current sunspot state. Obviously, when a < 1 the 
economy cannot ever get to a sunspot equilibrium of the kind described in 
Section 1, although it might converge to a pseudo-equilibrium in which the action 
of the nonsunspot watchers is optimal subject to the constraint that they not act 
differently in the different sunspot states. One can, however, consider the stability 
of the monetary steady state under learning dynamics of this sort. As one might 
expect, a smaller fraction a of sunspot watchers makes it harder for a belief in 
sunspots on the part of those agents to become self-fulfilling. 

PROPOSITION 8: Consider an economy in which only a fraction a of the popula- 
tion are sunspot watchers, as described above. Then for any given specification of 
preferences, there exists a fraction a* > 0 such that if a < a*, the monetary steady 
state is stable. 
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PROOF: The o.d.e. system corresponding to (3.2) in this case is 

41a -hF_Tjk "ank+ a)N U (ank+(1-a)N j , () 

k ank? (1 -a)N un'k I a N ) (4.1b) 1i= h Tjk 
ank +(1- a)N Ul ank+(l-a)N N vfN 

(= k (an + (1-a)N an1 + (1-a)N 

where n1 is the sunspot-watchers' estimate of the optimal labor supply in sunspot 
state j, N is the sunspot-ignorers' estimate of the optimal labor supply. Lineariz- 
ing around the monetary steady state (n1 = = nm = N = n*), (4.1) becomes 

(4.2 [ hB C][N-n*] 

where 

A = aDF(n*) + (1-a)CI, 

C = uff(n*) - v'(n*). 

The eigenvalues of the matrix in (4.2) are accordingly C and the m quantities 
aX + (1 - a)C where A (i =,...,m) are the eigenvalues of DF(n*). Since 
C < 0 (by (A.2)), it follows that whatever the eigenvalues of DF(n*) might be, 
there exists an a* > 0 such that the monetary steady state is locally stable for all 
a < a*. 

This result indicates that Proposition 4 only provides a cogent explanation of 
how an economy could diverge from the monetary steady state, and end up in a 
sunspot equilibrium, insofar as there is a sunspot variable that one can reason- 
ably expect a large fraction of the population to consider potentially useful for 
forecasting purposes. One possibility would be if a sufficiently striking accidental 
correlation between fluctuations in asset returns (due, perhaps, to fundamental 
shocks that are not observable to a large number of agents) and a particular 
sunspot variable happened to occur, which, once noticed and publicized, led to a 
large number of agents' using that variable in their forecasts, so that the 
correlation came to be perpetuated (and rendered nonaccidental). 

Perhaps a more interesting possibility would be an interpretation of the 
variable st as in fact a small shock to fundamentals, so that agents would 
necessarily be led to use it in their forecasts. Under the same circumstances under 
which the Azariadis model has stationary sunspot equilibria, introduction of a 
very small shock to fundamentals (with the same stochastic properties as the 
sunspot variable considered previously) will result in the existence of multiple 
s.r.e.e. in which output responds only to the fundamental shock."7 In one of these 
(a small perturbation of the former monetary steady state), the response to the 

17 See Woodford (1986b, Theorem 2). 
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shock is similarly small, but in others (perturbations of the former sunspot 
equilibria) the response to the shock is much larger than the shock itself. In 
equilibria of the latter sort, the fluctuations in output are effectively due to 
self-fulfilling expectations, rather than the changes in fundamentals-the shock 
to fundamentals acts like a sunspot variable, cuing shifts in agents' expectations. 
If one supposes that agents must learn how much to change their forecasts in 
response to the shock, through a learning process of the kind modeled above, one 
finds that under the same conditions under which the monetary steady state is 
unstable in the pure sunspot case, the small-response equilibrium will be unsta- 
ble; and under the same conditions under which one or more sunspot equilibria 
are stable, one or more of the large-response equilibria will be stable. 

5. CONCLUSION 

Our results indicate that one of Lucas' (1986) conjectures is not always correct: 
a plausible learning process need not always converge to the quantity-theoretic 
equilibrium, the monetary steady state. This point can be sharpened by consider- 
ing an economy in which the Markov process st represents the stochastic rate of 
growth of the money supply between periods t - 1 and t, where new money is 
paid out in proportion to existing money holdings. There will still be a s.r.e.e. in 
which Rt+I is always equal to 1, and this will be the quantity-theoretic equilib- 
rium, in which the rate of growth of money prices between t -1 and t will 
always exactly equal the rate of growth of the money supply. But corresponding 
to the stationary sunspot equilibria discussed above, there will now be s.r.e.e. in 
which different realizations of the rate of growth of the money supply correspond 
to different levels of output, and in which the rate of inflation will not always 
equal the rate of growth of the money supply.18 Equations (2.4) still describe the 
learning dynamics in this case, and so the results of Section 3 give conditions 
under which the learning dynamics converge to one of the non-quantity-theoretic 
equilibria. 

Our results are contrary to the spirit of Lucas' remarks in a deeper sense as 
well. Lucas proposes that the analysis of learning processes may allow one to 
solve the challenge posed to the predictive claims of economic theory by large 
multiplicities of rational expectations equilibria in models such as the overlap- 
ping generations model, by allowing one to pick out a single equilibrium as the 
one to which a reasonable learning process should converge. Our results, how- 
ever, do not suggest that it will always be easy to single out a single equilibria on 
such grounds. 

This does not, however, mean that such a model implies no testable predictions 
about the long run state of the economy. Nontrivial restrictions upon the data are 
implied by all s.r.e.e. of a given model.9 And while our formal results provide no 
general demonstration that learning must eventually converge to a s.r.e.e., they 

18 See Farmer and Woodford (1984), and Woodford (1986, Section 4). 
19 See Woodford (1987b, Section 4). 
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cast no doubt upon such a presumption. Finally, a theory that identifies the 
situations in which sunspot equilibria are or are not possible can be of use, 
without having to be able to predict that one of the many possible equilibria must 
occur. One may, for example, be interested in the design of policy regimes that 
are not subject to the sort of endogenous instability represented by the existence 
of sunspot equilibria, as argued in Woodford (1987a). 

Dept. of Economics, University of Chicago, 1126 East 59th Street, Chicago, IL 
60637, U.S.A. 

Manuscript received July, 1985; final revision received March, 1989. 

APPENDIX 

PROOF OF THEOREM 1: Theorem 1 is a straightforward application of a theorem due to Ljung 
(1975, 1977). We restate Ljung's theorem here, in the form that we make use of, because it is not 
well-known among economists. In particular, we require a less restrictive version of the theorem than 
is used by Marcet and Sargent (1986, 1987). 

Consider a recursive algorithm of the form 

(a.1) xt = Xt_ 1 + t-1Q (Xt- 1, Zt), 

(a.2) = =A(x, )z,1 + B(xt_ )e, 

where x, is an n-vector of estimates, zt is an m-vector of additional state variables, e, is a p-vector of 
exogenous random shocks, Q is a vector-valued function, and A and B are matrix-valued functions. 
We make the following assumptions on the form of the algorithm. (In each case, DR is some open, 
connected subset of R,, in which the assumptions are valid.) 

(R.1) Ie,I is bounded with probability 1 for all t. 

(R.2) A (x) has all eigenvalues strictly inside the unit circle, for all x E DR. 

(R.3) A and B are Lipschitz continuous functions of x, i.e., there exists a finite constant C such 
that IA(xl) - A(x2)1 < Clxl - x21, for xl, x2 E DR, and analogously for B. Furthermore, 
B(x) is bounded for all x E DR. 

Note that (R.1)-(R.3) imply the existence of a bounded invariant set DZ C R', such that zo E DZ 
implies zt E D. for all t, with probability 1. We also assume the following. 

(R.4) Q is a Cl function of x and z, and its derivatives are bounded, for all x E DR and 
z E D. 

(R.5) For x E DR, define the sequence of random variables {2,(x1)} by zt(x) =A(x1)it_(x) + 
BF (x) et; zo (3c) = O- 

(In other words, this is what the evolution of zt would be, by (a.2), if x, were to remain fixed at x.) 
Then the limit 

f (X-)-= lim Eo Q (X-) it(x 
t __ 0 

exists for all x- E DR, where Eo denotes the expectation prior to the realization of any of the random 
shocks { el, e2, ... }. Furthermore 

limt Q1 , fr l (x)) = (x) t ? ?? S=1 
with probability 1, for all xc E- DR. 
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Assumptions (R.1)-(R.5) are stronger than, but suffice to imply, the "assumptions III" of Ljung 
(1975) (or equivalently, the "assumptions C" of Ljung (1977)). In particular, (R.2) is an unnumbered 
assumption made by Ljung; Ljung's III.1 is implied by (R.4); III.2 is part of (R.3); III.3 is part of 
(R.5); III.4 is implied by the boundedness assumptions of (R.1), (R.3), and (R.4); and III.5 and III.6 
are implied by the special form we have written for (a.l). 

Ljung proves the following theorem: 

THEOREM Al: Consider an algorithm of the form (a.l)-(a.2), and suppose that it satisfies 
(R.1)-(R.5). Assume furthermore that (i) there is a compact set D1 c DR such that xt E D1 infinitely 
often with probability 1; (ii) the o.d.e. system 

(a.3) x =f (x) 

has an invariantt set I whose domain of attraction includes all of D/. Then xt - I with probability 1 as 
t - oo. 

This is Corollary 1 to Theorem 1 of Ljung (1975), or Theorem 1 of Ljung (1977). 
The application to algorithm (2.4) is as follows. Here x, = (ni,, q,), a 2m-vector (of which one 

element of q, is redundant), zt = (fi, ii, - _1, E (st-1)), and e, = (e,1, 4(s,), '(st,_)). In writing 
the above we use the notation 

nt=E nl,_ AJ (st ) 

for the level of output actually supplied in period t. We can choose DR to be any open connected set 
such that 

[ 
"I 

n x [q,i] c DR C DKC (0, n) X R+x + 

where q is some quantity 0 < q < mn q., and DK is some compact set. Since we have assumed that 
?, has bounded support, and 4i(s,) tal?es on only m different values, (R.1) is satisfied. 

The matrices A and B are in this case: 

O O0 O O0 n,1 01 

Al=I o o o0 B(xt-1)= 0 0 0 
g j' [1 g oj 

O0 O O O- 0 O Ij 

Since all eigenvalues of A are zero, (R.2) and (R.3) are satisfied. The set DZ can be chosen to be 
N2 X supp H X M where 

N = { n E R"3q E R" such that (n, q) E DR} 

and M is the finite set of values that 4(s,) can take. 
Let us neglect for the moment the bounds (n, -n) in (2.4). Then the vector function Q is (Q1, Q2), 

where 

Ql (x, zt) =hq, 1[(fin/i1t-)u'(ht) - 
v'(n.) - 1- J(St-,), 

Q2 (x, zt) 
= 

y (St_ 1) -qJ. 

Given that in,t and ql are bounded away from zero, that ii is bounded away from n, and 
Assumption (A.1) on u and v, assumption (R.4) is satisfied. 

In this case, for any x- E DR, we can write 

Q( , M,()) = t ( + M2t C et- 1 

where Mlt and M2, are finite state Markov processes, independent of the { ,} process. (We will 
similarly write M2t(x)' in the case of the decomposition of Ql, etc.) By independence, we can write 
EO[Q(x, z,(x))] = E0[ Ml,(x)], and then by a familiar property of finite state Markov processes (Doob 
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(1953), pp. 173-174), the limit of this expression as t -+ oo exists and is equal to (f1(x), f2(x)) where 

f, ( J/J)[EnXk ( nkln U ( nk )V ( n 

fJ2(X) =q7l 
_q,. 

Furthermore, by the strong law of large numbers for finite state Markov processes (Doob (1953), p. 
219)), 

iim t-l ml M(x) =f(x) 
t + ?0 

with probability 1. We can also write 

(a.4) X J 1 ( /J ( r-I ) 
r=1 n=L r=_ 

where each E' is the value of et_ in the nth period t such that 4J((sr ) =j, and -(t) is the number 
of such periods up through period t, i.e., 

T(t) = E 4'(Sr-1) 
r=1I 

Now of the three terms on the right-hand side of (a.4), the first is a constant (that depends upon 
x), the second is a sum of independently and identically distributed (i.i.d.) random variables with 
mean zero, and the third is a sum of variables that form a finite state Markov process. By the law of 
large numbers for i.i.d. random variables (Doob (1953), pp. 142, 145), the second term converges to 
zero with probability 1 as t -- oo, while by the law of large numbers for finite state Markov processes 
cited above, the third term converges to qJ* with probability 1. Hence expression (a.4) converges to 
zero with probability 1 as t -. oo. Since M2t(x)j = 0 for all j, these components of 
t r. 1M2r(-),r are zero for all t. Hence 

iim t - lE Q(x Zr() f CO 
t >?? r=1 

with probability 1, and condition (R.5) is satisfied. 
Theorem Al then implies Theorem 1, if it can be shown that x, enters the set D - [n, n]m X [q, 1]m 

infinitely often with probability 1. By the law of large numbers for a finite state Markov process, 
qt . q* with probability 1. Hence qt E=- [q, i]tm infinitely often, with probability 1. It remains only to 
show that n, enters [n, i]n" infinitely often. But this is guaranteed by our assumption that (because of 
their maintained hypothesis) agents never allow the estimates hlt to leave the interval [n, n]. Ljung 
(1975, Theorem 3 and discussion, or 1977, Theorem 4 and discussion) shows that one can insure the 
"boundedness condition" needed for Theorem Al by a modification of the algorithm (a.1) of this 
sort, with the qualification that, in order to rule out an accumulation point on the boundary of the set 
D, one must show that the trajectories of the o.d.e. system (a.3) point inward at all points on the 
boundary. The latter condition is part of the hypothesis of Theorem 1 stated in the text. 

Although we will not discuss the generalization here, it is worth noting that Ljung states Theorem 
Al for the case of algorithms in which the vector function Q may be time-varying. This extension 
would be necessary if we were to replace the qjtll in (2.4b) with q71 (which would be the 
straightforward application of (2.2), since qt, is a time varying function of (x,-1, zt)). Similarly, if we 
were to assume that agents choose n, using the estimates n, that take into account the observation 
(R,, e,1)-instead of continuing to use n,-1-we would find that, in the case that s, =St = 

j, t (1J, - h1j_- ) would be a time-varying function of (x,-1, z,). Ljung's theorem is general enough to 
handle these cases as well, and in fact one finds that neither modification has any effect upon the 
asymptotic dynamics. 
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PROOF OF THEOREM 2: Ljung also shows the following. 

THEOREM A2: Consider an algorithm of the form (a.1)-(a.2), and suppose that it satisfies 
(R.1)-(R.5). Then suppose that x* E DR is such that for an arbitrary neighborhood N of x*, the 
probability that x, -+ N is positive. Then f (x*) = O. 

This is Theorem 4 of Ljung (1975), stated under more restrictive assumptions as part of Theorem 2 
of Ljung (1977). Since the "assumptions III" of Ljung (1975) suffice, our assumptions (R.1)-(R.5) 
suffice as well. Application to the algorithm (2.4), as in the proof of Theorem 1 above, gives half of 
Theorem 2. 

We now impose additional assumptions upon the general class of recursive algorithms under 
consideration. 

(R.6) For any x E DR such that f (x) = 0, Eo[Q(x, z,(x))] is C' for x in a neighborhood of x, 
and the derivatives converge uniformly in this neighborhood as t -+ oo. 

(R.7) For any x E DR such that f(x) = 0, and any left eigenvector v of Df(x-) whose 
eigenvalue has positive real part, there exists a constant C > 0 such that for any sequence 
of positive constants { y, }, and any M > N, 

M 2 M 

(.)Eo 1 yt,vQ((x~), z,(x~)) > CIV12 E 
t2. 

t =N t =N 

Following Ljung, one can then show the following. 

THEOREM A3: Consider an algorithm of the form (a.1)-(a.2), and suppose that it satisfies 
(R.1)-( R.7). Then suppose x* E DR is such that for an arbitrary neighborhood N of x*, the probability 
that xt -+ N is positive. Then Df (x*) has no eigenvalues with positive real part. 

This corresponds to Theorem 5 of Ljung (1975), or equivalently to part of Theorem 2 of Ljung 
(1977). Ljung's statement of the theorem, however, assumes a stronger restriction upon the algorithm 
than does ours. For Ljung assumes, in addition to (R.6) and a condition related to (R.7), that his 
"assumptions I or II" (the "assumptions A or B" of Ljung (1977)) are satisfied. Our assumptions 
(R.1)-(R.5) imply all of the "assumptions I" of Ljung (1975), except I.1, the assumption that { e, } is 
i.i.d. In our case, the { 4i(s,)} are not independently distributed. However, examination of the proof of 
Theorem 5 given in Ljung (1975) shows that the version of (R.7) given here suffices to allow proof 
of Ljung's Lemma D.1, even without the assumption that {e,} is i.i.d. And the assumption of 
independence is used nowhere else in the Proof of Theorem 5. (See also the remark about 
generalization of Theorem 5 in Appendix G of Ljung (1975).) 

The algorithm (2.4) is easily shown to satisfy (R.6) and (R.7). Since for any x e DR, Q(x, z,(x)) is 
a finite state Markov process, with the transition probabilities between the states independent of x, 
we can write 

EQ[ Q( x, z, (x))] = PjQj (x) 

where Pj, represents the probability of being in state j in period t. This expression is C' in x because 
each of the time-invariant functions Qj (x) is C1, and its derivatives E P, DQ1 (x) converge uniformly 
in a neighborhood of any x E DR, because DQj(x) is continuous and Pji converges. Thus (R.6) is 
satisfied. 

In the case of algorithm (2.4), f(x) = 0 implies that x has the form (n?, q*), for some n? E [n, ii]". 
Furthermore, at any such point, Df (x) is block-diagonal, since f'(no, q) = 0 independently of q and 
f 2(n, q*) = 0 independently of n. Hence the left eigenvectors of Df(x) are either of the form (vl, 0), 
where v, is a left eigenvector of DIf', or of the form (0, v2), where v2 is a left eigenvector of D2f 2. 
Since D2 f 2 = - I., all eigenvectors of the latter sort have eigenvalue - 1. Hence we need only verify 
inequality (b.1) for an arbitrary nonzero vector of the form (v,,0). 
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In this case, at a point x = (no, q*), 

M 2 

Eo E -y, Q( x, z, ( x) 
t=N 

2 
M Eo 7E v (y 1 ) hq* E( n) -Et I 

t=N k k 

M 2 t=N k 

M 
2 

Eo E -yt2E vj0| tj)q- E noln u'( no, 1k (St) 
- vE- no 

t=N 

= ( y2) h2a2Zvl1j. 

t=N 

HIere we have used the fact that the variables { E,}are independent of one another and of the 
variables { s, }. This establishes (b.l), where CIvI2 = h 2JlJ oethat this formula implies a finite 
constant C regardless of the metric used for 1v12. Hence (R.7) is satisfied as well. Theorem A2 then 
implies the part of Theorem 2 that remained to be proved. 

Note the role in this last part of the proof of the assumption that there exist the taste shocks { Et } 
even though the variance of these shocks may be arbitrarily small. In the absence of the taste shocks, 
in the case of the monetary steady state, x = (n*, q*), one would have Q(x, z,x) = 0 for all possible 
sunspo)t histories, so that (R.7) would not be satisfied, if in fact (as is shown in the text to be possible) 
there should exist an eigenvalue of Df(x) with positive real part. 

CONVERGENCE OF THE ROBBINS-MONRO ALGORITHM 

It is asserted in the text that, if agents' maintained hypothesis were true, the estimator (2.3) would 
converge with probability 1 to the true value n1. This is a simple application of Theorem Al used 
above to prove Theorem 1. In this case x, = h11, and z, = e,= (R,, e,i1). We can choose DR to be any 
open interval containing [_, ni], and bounded away from both 0 and n. 

Since, according to agents' maintained hypothesis, both CJand H1 have bounded support, (R.1) is 
satisfied. The matrix A is made up entirely of zeroes, while B is the identity matrix. Since both are 
constant, and all eigenvalues of A are zero, (R.2) and (R.3) are satisfied. The set Dz can be chosen to 
be supp G1 X supp HJ. 

The function Q is 

Since CJis bounded both above and away from zero, and DR is bounded away from ni, Assumptions 
(Al1) imply that (R.4) is satisfied. Finally, since according to agents' maintained hypothesis, z, is 
identically and independently distributed, 

-r Cr 1 rEV oeta hsfruaipisafnt 

This content downloaded from 128.59.154.119 on Mon, 25 Nov 2013 12:53:40 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


304 MICHAEL WOODFORD 

is independent of t, and, by the law of large numbers for i.i.d. variables (Doob (1953, p. 142)), 

rim t- I E Q(x, it () =f (X) 
t- ?o s=1 

with probability 1. Hence (R.5) is satisfied as well, and Theorem Al applies. 
Now Q is a strictly decreasing function of nj, so f (nj) must be as well. Then f has a unique zero 

at n1. (Note that f (n.) = 0 is just the first order condition for optimal labor supply in sunspot state 
j.) The o.d.e. (a.3) has trajectories pointing inward at the boundaries of the interval [, -n], and the 
domain of attraction of the fixed point n1 includes all of [n, -n]. Hence nj - n1 with probability 1. 

For further discussion of the convergence of algorithms of this type, see Ljung and Soderstrom 
(1983). 

PROOF OF PROPOSITION 4: We will make use of the following extension of the familiar Poincare- 
Bendixson Theorem for two-dimensional flows (Sansone and Conti (1964, Theorem IV.4)). 

LEMMA 6: Consider a C1 o. d.e. system defined on a compact subset D of R2, such that trajectories 
point inward everywhere on the boundary of D, and suppose that all fixed points of the o. d.e. system are 
hyperbolic. Suppose also that no w-limit set of any trajectory in D contains a Jordan curve. Then every 
trajectory in D converges to a fixed point. 

PROOF OF THE LEMMA: The assumption that all fixed points are hyperbolic implies, by the inverse 
function theorem, that each is locally unique. This implies, by a standard argument (see, e.g., 
Mas-Colell (1985), Proposition 5.5.2), that the fixed points in D are finite in number. Then by 
Theorem VII.4.2 of Hartman (1973), the w-limit set of any trajectory y(t) in D consists either of a 
fixed point, a closed orbit, or of a finite set of fixed points {xi } and a finite or infinite set of 
trajectories { yj }, such that for each j, yj does not pass through a fixed point, but converges to one of 
the fixed points xi as t -+ oo and also to one of them as t -+ - oo. The case of a closed orbit is ruled 
out by hypothesis. We wish to show that in the third case as well, there must exist a Jordan curve as 
part of the limit set. Then the limit set must be a fixed point. 

We argue as follows. If the limit set contains more than one fixed point, it must contain at least 
one trajectory Yl, since the limit set must be connected. This trajectory Yl converges to a fixed point 
xl as t -. oo. If Yl also converges to xl as t -+ oo, we have established the existence of a Jordan curve. 
Suppose not. Then let B be the closure of a ball around xl, chosen to be small enough that it does 
not contain all of Yl, and such that Yl enters the ball at only one point. (Because of the hyperbolicity 
of xl, a small enough ball must have this property.) 

Since xl belongs to the w-limit set of Yl, there must exist a sequence of times { t" } such that 
y(t") -. xl as n -. oo. There will also exist some N such that y(t") e B for all n > N. But since the 
w-limit set also includes points outside of B, the trajectory y(t) must leave B infinitely often. For 
each n > N, let t' denote the first time after t, that the trajectory leaves B. Then for each n > N, 
y( t') lies on the boundary of B, at a point at which the trajectories of the o.d.e. system point outward. 
Since y(t.) converges, y(t') must converge as well, to some point 

- 
on the boundary of B, and the 

trajectory of the o.d.e. system passing through 
- 

must either point outward or be tangent to the 
boundary. This point y must also belong to the w-limit set, but it cannot be part of y,, nor even part 
of the stable manifold of xl. 

Since such a point exists, no matter how small the ball B is made, there must exist as part of the 
limit set another trajectory Y2 that approaches xl as a limit point. Trajectory Y2 cannot be part of the 
stable manifold of xl, and hence must be part of the unstable manifold. By the Hartman lemma cited 
above, Y2 must converge to one of the fixed points xi as t -+ oo; let that fixed point be X2. If x2 = xl, 
we have proved the existence of a Jordan curve, made up of the trajectory Y2 and the point xl. 
Likewise, if x2 is the point to which Yl converges as t -+ oo, we have proved the existence of a Jordan 
curve, made up of Yl, Y2, xl, and x2. 

Suppose neither is the case. Then we can repeat the above reasoning at point x2, and so show the 
existence, as part of the limit set, of another trajectory y3, belonging to the unstable manifold of x2. 
This trajectory converges to some fixed point x3 as t -+ oo. Continuing this reasoning, since the 
number of fixed points in D is finite, we eventually must show the existence of a Jordan curve. Since 
all the fixed points are hyperbolic, the trajectories connecting them all form parts of the stable and 
unstable manifolds of each fixed point, and the Jordan curve is piecewise smooth. There is 
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accordingly no difficulty in defining the line integral used in the proof of Bendixson's criterion. 

PROOF OF PROPOSITION 4: By Theorem 1 and Lemma 3, the learning dynamics converge with 
probability 1 to set I, as noted earlier, and by Lemma 4, I = J X { q*}. We wish to determine the 
elements of J. We first observe that 

(c.l) Dj Fj ( n) = q7r, u"( nj )- E: s7k n k ul( n k )nj - v"( nj) < G 
k*j 

at any point n >> 0, because of (A.2). It follows that the divergence D1 F1 + D2 F2 is negative at all 
points in [n, n-]2, and hence, by Bendixson's criterion (Sansone and Conti (1964, Theorem IV.21)), the 
o.d.e. system (3.2) cannot have any closed orbits. (We use here again Lemma 3.) From the proof given 
by Sansone and Conti it is evident that the same criterion in fact rules out any Jordan curve that is a 
union of trajectories and hyperbolic fixed points, since the same line integral could be defined and 
would have to vanish in that case as well.2 

Lemma 6 applies to our case because (R) implies that the fixed points of (3.2) are hyperbolic. 
Since in our case there can be no Jordan curve made up of trajectories, no w-limit set can contain a 
Jordan curve. Lemma 6 then implies that J consists solely of fixed points. It then follows from 
Lemma 5 that there is probability zero of converging to any s.r.e.e. unless DF(n) has both eigenvalues 
with negative real parts. But by (c.1), the trace of DF(n) must be negative, so that at least one 
eigenvalue has negative real part. Hence both eigenvalues have negative real parts if and only if 
A(n) > 0. 
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