
Learning to categorize objects using 

temporal coherence 

Suzanna Becker· 

The Rotman Research Institute 
Baycrest Center 

3560 Bathurst St. 
Toronto, Ontario, M6A 2E1 

Abstract 

The invariance of an objects' identity as it transformed over time 
provides a powerful cue for perceptual learning. We present an un­
supervised learning procedure which maximizes the mutual infor­
mation between the representations adopted by a feed-forward net­
work at consecutive time steps. We demonstrate that the network 
can learn, entirely unsupervised, to classify an ensemble of several 
patterns by observing pattern trajectories, even though there are 
abrupt transitions from one object to another between trajecto­
ries. The same learning procedure should be widely applicable to 
a variety of perceptual learning tasks. 

1 INTRODUCTION 

A promising approach to understanding human perception is to try to model its 
developmental stages. There is ample evidence that much of perception is learned. 
Even some very low level perceptual abilities such as stereopsis (Held, Birch and 
Gwiazda, 1980; Birch, Gwiazda and Held, 1982) are not present at birth, and appear 
to be learned. Once rudimentary feature detection abilities have been established, 

the infant can learn to segment the sensory input, and eventually classify it into 
familiar patterns. These earliest stages of learning seem to be inherently unsuper-

• Address as of July 1993: Department of Psychology, McMaster University, 1280 Main 
Street West, Hamilton Ontario, Canada, L8S 4K1 

361 



362 Becker 

vised (or "self-supervised"). Gradually, the infant learns to detect regularities in 
the world. One kind of structure that is ubiquitous in sensory information is spatio­
temporal coherence. For example, in speech signals, speaker characteristics such as 
the fundamental frequency are relatively constant over time. At shorter time scales, 
individual words are typically composed of long intervals having relatively constant 
spectral characteristics, corresponding to vowels, with short intervening bursts and 
rapid transitions corresponding to consonants. The consonants also change across 
time in very regular ways. This temporal coherence at various scales makes speech 
predictable, to a certain degree. As one moves about in the world, the visual field 
flows by in characteri3tic patterns of expansion, dilation and translation. Since 
most objects in the visual world move slowly, if at all, the visual scene changes 
slowly over time, exhibiting the same temporal coherence as other sensory sources. 
Independently moving rigid objects are invariant with respect to shape, texture 
and many other features, up to very high level properties such as the object's iden­
tity. Even under nonlinear shape distortions, images like clouds drifting across the 
sky are perceived to have coherent features, in spite of undergoing highly non-rigid 
transformations. Thus, temporal coherence of the sensory input may provide im­
portant cues for segmenting signals in space and time, and for object localization 
and identification. 

2 PREVIOUS WORK 

A common approach to training neural networks to perform transformation­
invariant object recognition is to build in hard constraints which enforce invariance 
with respect to the transformations of interest. For example, equality constraints 
among feature-detecting kernels have been used to enforce translation-invariance 
(Fukushima, 1988; Le Cun et al., 1990). Various other higher-order constraints 
have been used to enforce viewpoint-invariance (Hinton and Lang, 1985; Zemel, 
Hinton and Mozer, 1990) and invariance with respect to arbitrary group transfor­
mations (Giles and Maxwell, 1987). While in the case of translation-invariance 
it is straightforward to hard-wire the appropriate constraints, more general linear 
transformation-in variance requires rather cumbersome machinery, and for arbitrary 
non-linear transformations the approach is difficult if not impossible. 

In contrast to the above approaches, Foldiak's model of complex cell development 
results in translation-invariant orientation detectors without the imposition of any 
hard constraints (Foldiak, 1991). Further, his method is unsupervised. He proposed 
a modified Hebbian learning rule, in which each weight change depends on the unit's 
output history: 

~Wij(t) = a Yi(t) (Xj(t) - Wij(t)) 

where Xj(t) is the activity of the jth presynaptic unit at the tth time step, and Yi(t) 
is a temporally low-pass filtered trace of the postsynaptic activity of the ith unit. 
Whereas a standard Hebb-rule encourages a unit to detect correlations between its 
inputs, this rule encourages a unit to produce outputs which are correlated over 
time. A single unit can therefore learn to group patterns which have zero overlap. 
Foldiak demonstrated this by presenting trajectories of moving lines, with line ori­
entation held constant within each trajectory, to a network whose input features 
were local orientation detectors. Units became tuned to particular orientations, 
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independent of location. 

While Foldiak's work is of interest as a model of cell development in early visual 
cortex, there are several reasons why it cannot be applied directly to the more 
general problem of transformation-invariant object recognition. One reason that 
Foldiak's learning rule worked well on the line trajectory problem is that the input 
representation (oriented line features) made the problem linearly separable: there 
was no overlap between input features present in successive trajectories, hence it 
was easy to categorize lines of the same orientation. Generally, in more difficult 
pattern classification problem:l (such as digit or speech recognition) the optimal 
input features cannot be preselected but must be learned, and there is considerable 
overlap between the component features of different pattern classes. Hence, a multi­
layer network is required, and it must be able to optimally select features so as to 
improve its classification performance. The question of interest here is whether it 
is possible to train such a network entirely unsupervised? As mentioned above, the 
temporal coherence of the sensory input may be an important cue for solving this 
problem in biological systems. 

3 TEMPORAL-COHERENCE BASED LEARNING 

One way to capture the constraint of temporal coherence in a learning procedure 
is to build it into the objective function. For example, we could try to build repre­
sentations that are relatively predictable, at least over short time scales. We also 
need a constraint which captures the notion of high information content; for exam­
ple, we could require that the network be unpredictable over long time scales. A 
measure which satisfies both criteria is the mutual information between the classifi­
cations produced by the network at successive time steps. If the network produces 
classification C(t) at time t and classification C(t+ 1) at time t+ 1, the mutual infor­
mation between the two successive classifications, averaged over the entire sequence 
of patterns, is given by 

H(Ct) + H(Ct+t) - H(Ct, Ct+t) 

- L (p/)t log (p/)t - L (p/+!)t log (p/+1)t 
; 

+ L {p/p/+1)t log {p/p/+l)t 
i; 

where the angle brackets denote time-averaged quantities. 

A set of n output units can be forced to represent a probability distribution over 
n classes, C E {Cl ... cn }, by adopting states whose probabilities sum to one. This 
can be done, for example, by using the "soft max" activation function suggested by 
Bridle (1990): 

eXi(t) 
t 

Pi = ",n x ·(t) 
~j=l e 1 

= P(C(t) = Ci) 

where Xi is the total weighted summed input to the ith unit, and Pit, the output of 
the ith unit, stands for the probability of the ith class, P( C(t) = CIi). 
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Once we know the probability of the network assigning each pattern to each class, 
we can compute the mutual information between the classifications produced by 
the network at neighboring time steps, e(t) and e(t + 1). This requires sampling, 
over the entire training set, the average probability of each class, as well as the joint 
probabilities of each possible pair of classifications being produced as successive time 
steps. The learning involves adjusting the weights in the network so as to maximize 
the mutual information between the representations produced by the network at 
adjacent time steps. In the experiments reported here, a gradient ascent procedure 
was used with the method of conjugate gradients. 

One problem with maximizing the information measure described above is that for 
a fixed amount of entropy in the classifications, H(et ), the network can always 
improve the mutual information by decreasing the joint entropy, H(et, etJ. In 
order to achieve low joint entropy, the network must try to assign class probabilities 
with high certainty, i.e., produce output values near zero or one. Thus the network 
can always improve its current solution by simply make the weights very large. 
Unfortunately, this often occurs during learning. To discourage the network from 
getting stuck in such locally optimal (but very poor) solutions, we introduce a 
constant A to weight the importance of the joint entropy term in the objective 
function, so as to maximize the following: 

In the simulations reported here, we used a value of 0.5 for A. This effectively 
prevents the network from concentrating all its effort on reducing the joint entropy, 
and forces it to learn more gradually, resulting in more globally optimal solutions. 

We have tested this learning procedure on a simple signal classification problem. 
The pattern set consisted of trajectories of random intensity patterns, drawn from 
six classes, shown in figure 1. Members of the same class consisted of translated ver­
sions of the same pattern, shifted one to five pixels with wrap-around. A trajectory 
consisted of a block of ten randomly selected patterns from the same class. Between 
trajectories, the pattern class changed randomly. The network had six input units, 
twenty hidden units, and six output units. The hidden units used the logistic non­
linearity, 1+~-'" and the output units used the softmax activation function. The 

hidden units had biases but the outputs did not. 1 After training the network on 
1200 patterns (20 trajectories of 10 examples of each of the six patterns) for 300 
conjugate gradient iterations, the output units always became reasonably specific 
to particular pattern classes, as shown for a typical run in Figure 2a). The general 
pattern is that each output unit responds maximally to one or two pattern classes, 
although some of the units have mixed responses. 

This classification problem is extremely difficult for an unsupervised learning pro­
cedure, as there is considerable overlap between patterns in different classes, and 
essentially no overlap between patterns in the same class. It is therefore easy to see 
why a single unit might end up capturing a few patterns from one class and a few 
from another. We can create an easier subproblem by only training the network on 
half the patterns in each class. In this case, the network always learns to separate 
the six pattern classes either perfectly, or nearly so, as shown in figure 2b). 

1 Removing biases from the outputs helps prevent the network from getting trapped in 
local maxima during learning. 
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Figure 1: The set of 6 random patterns used to create pattern trajectories. Each pat­

tern was created by randomly setting the intensities of the 6 pixels, and normalizing 
the intensity profile to have zero mean. 

4 DISCUSSION 

Becker and Hinton (1992) showed that a network could learn to extract a continuous 
parameter of visual scenes which is coherent across space, by maximizing the mutual 
information between the outputs of two network modules that receive input from 
spatially adjacent parts of the input. Here, we have shown how the same idea 

can be applied to the temporal domain, to perform a discrete classification of the 
input assuming temporal coherence. We could also apply the same algorithm to the 
problem of unsupervised multi-sensory integration, by forming classifications which 
are coherent across different sensory modalities, as well as across time. 

One advantage of the approach presented here over unsupervised learning proce­
dures such as competitive learning is that units must co-operate to try to find 
a globally optimal solution. There is therefore incentive for each unit to try to 
improve the temporal predictability of all of the output units' classifications over 

time, including its own; this discourages anyone unit from trying to model all of 
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Figure 2: The probability of each output unit responding for each of the six classes 

of patterns, averaged over 1200 cases. In a) the pattern trajectories contained six 

shifted examples of each class, while in b) there were three examples of each class. 



Learning to categorize objects using temporal coherence 367 

the patterns. Additionally, because we have a well-defined objective function for 
the learning, the procedure can be applied to multi-layer networks which discover 
features specifically tuned to the classification problem. 

However, there are a few drawbacks to using this learning procedure. One is that 
if any lower-order temporally coherent structure exists, the network will invariably 
discover it. So, for example, if the pattern classes differ in their average intensity, the 
network can easily learn to separate them simply by detecting the average intensity 
of the inputs and ignoring all other information. Similarly, if the spatial location of 
pattern features varies slowly .md predictably over time, the network tends to learn 
a spatial map rather than solving the higher-order problem of pattern classification. 
On the other hand, this suggests that a sequential approach to modelling temporally 
coherent structure may be possible: an initial processing stage could try to model 
low-order temporal structure such as local spatial correlations, a second processing 
stage could model the remaining structure in the output of the first over a larger 
spatio-temporal extent, and so on. 

A second drawback is the space complexity of the algorithm: for a network with 
n output units, each must store n2 joint probability statistics and n individual 
probabilities.2 The storage complexity can be reduced from n 2 + n to just two 
statistics per output unit by optimizing a more constrained objective function in 
which each output unit assumes a maximum entropy distribution for the other n - 1 
units. It then need only consider the average probability of its own output, and 
the joint probability of its output at successive time steps. In this case, the mutual 
information can be approximated by a sum of n terms: 

L H(Ci,t) + H(Ci,t+d - H(Ci,t, Ci,t+d 
i 

where H(Ci,t) = - (Pit)t log (Pit)t - n~l (1 - Pit)t log n~l (1 - Pit)t is the entropy 
of the ith output unit under the maximum entropy assumption for the other output 

units, and the other constrained entropies are computed similarly. 

A final drawback of the learning procedure presented here, as discussed earlier, is 
its tendency to become trapped in local optima with very large weights. We dealt 
with this by introducing a constant parameter, A, to dampen the importance of the 
joint entropy term. A more principled way to deal with the problem of local optima 
is to use stochastic rather than deterministic output units, resulting in a stochastic 

gradient descent learning procedure (although this would increase the simulation 
time considerably). Another way of obtaining more globally optimal solutions might 
be to consider the predictability of classifications over longer time scales rather than 
just at pairwise time steps, as was done in Foldicik's model (1991). The network 
could thus maximize the mutual information between its current response and a 
weighted average of its responses over the last few time steps. 

2Note, however, that the complexity (both in time and space) of the computation of 
these statistics is negligible relative to that of the gradient calculations, assuming there 
are many more weights than the squared number of output units in the network. 
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5 CONCLUSIONS 

The invariance of an objects' identity over time, with respect to transformations it 
may undergo as it and/or the observer move, provides a powerful cue for perceptual 
learning. We have demonstrated that a network can learn, entirely unsupervised, 
to build translation-invariant object detectors based on the assumption of temporal 
coherence about the input. This procedure should be widely applicable to a variety 
of perceptual learning tasks, such as identifying phonemes in speech, segmenting 
objects in images of trajectories, and classifying textures in tactile input. 
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