
Learning to Combine Bottom-Up and Top-Down

Segmentation

Anat Levin and Yair Weiss⋆

School of Computer Science and Engineering,

The Hebrew University of Jerusalem

www.cs.huji.ac.il/ ∼{alevin, yweiss}

Abstract. Bottom-up segmentation based only on low-level cues is a notoriously

difficult problem. This difficulty has lead to recent top-down segmentation algo-

rithms that are based on class-specific image information. Despite the success of

top-down algorithms, they often give coarse segmentations that can be signifi-

cantly refined using low-level cues. This raises the question of how to combine

both top-down and bottom-up cues in a principled manner.

In this paper we approach this problem using supervised learning. Given a

training set of ground truth segmentations we train a fragment-based segmenta-

tion algorithm which takes into account both bottom-up and top-down cues si-

multaneously, in contrast to most existing algorithms which train top-down and

bottom-up modules separately. We formulate the problem in the framework of

Conditional Random Fields (CRF) and derive a novel feature induction algorithm

for CRF, which allows us to efficiently search over thousands of candidate frag-

ments. Whereas pure top-down algorithms often require hundreds of fragments,

our simultaneous learning procedure yields algorithms with a handful of frag-

ments that are combined with low-level cues to efficiently compute high quality

segmentations.

1 Introduction

Figure 1 (replotted from [2]) illustrates the importance of combining top-down and

bottom-up segmentation. The leftmost image shows an image of a horse and the mid-

dle column show three possible segmentations based only on low-level cues. Even a

sophisticated bottom-up segmentation algorithm (e.g. [10, 11]) has difficulties correctly

segmenting this image.

The difficulty in pure low-level segmentation has led to the development of

top-down, class-specific segmentation algorithms [3, 9, 16]. These algorithms fit a

deformable model of a known object (e.g. a horse) to the image - the shape of the

deformed model gives an estimate of the desired segmentation. The right-hand column

of figure 1 shows a top-down segmentation of the horse figure obtained by the algorithm

of [3]. In this algorithm, image fragments from horses in a training database are corre-

lated with the novel image. By combining together the segmentations of the fragments,

the novel image is segmented. As can be seen, the top-down segmentation is better than

any of the bottom-up segmentations but still misses important details.

⋆ Research supported by the EU under the DIRAC Project. EC Contract No.027787.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part IV, LNCS 3954, pp. 581–594, 2006.

c© Springer-Verlag Berlin Heidelberg 2006

582 A. Levin and Y. Weiss

Fig. 1. The relative merits of the bottom-up and the top-down approaches, replotted from [2].

(a) Input image. (b) The bottom-up hierarchical segmentation at three different scales. (c) The

top-down approach provides a meaningful approximation for the figureground segmentation of

the image, but may not follow exactly image discontinuities.

In recent years, several authors have therefore suggested combining top-down and

bottom-up segmentation [2, 15, 12, 5]. Borenstein et al. [2] choose among a discrete set

of possible low-level segmentations by minimizing a cost function that includes a bias

towards the top-down segmentation. In the image parsing framework of Tu et al. [12]

object-specific detectors serve as a proposal distribution for a data-driven Monte-Carlo

sampling over possible segmentations. In the OBJ-CUT algorithm [5] a layered pictorial

structure is used to define a bias term for a graph-cuts energy minimization algorithm

(the energy favors segmentation boundaries occurring at image discontinuities).

These recent approaches indeed improve the quality of the achieved segmentations

by combining top-down and bottom-up cues at run-time. However, the training of the

bottom-up and top-down modules is performed independently. In the work of Boren-

stein and colleagues, training the top-down module consists of choosing a set of frag-

ments from a huge set of possible image fragments. This training is performed without

taking into account low-level cues. In the image parsing framework [12], the top-down

module are object detectors trained using AdaBoost to maximize detection performance.

Again, this training is performed without taking into account low-level cues. In the OBJ-

CUT algorithm, the training of the pictorial structures is performed using a combination

of AdaBoost (for the local detectors) and Gaussian modeling (for the relative location

of parts). Once again, this training does not take into account low-level cues.

Figure 2(a) shows a potential disadvantage of training the top-down model while

ignoring low-level cues. Suppose we wish to train a segmentation algorithm for oc-

topi. Since octopi have 8 tentacles and each tentacle has multiple degrees of freedom,

(a) (b)

Fig. 2. (a) Octopi: Combining low-level information can significantly reduce the required com-

plexity of a deformable model. (b) Examples from horses training data. Each training image is

provided with its segmentation mask.

Learning to Combine Bottom-Up and Top-Down Segmentation 583

any top-down algorithm would require a very complex deformable template to achieve

reasonable performance. Consider for example the top-down algorithm of Borenstein

and Ullman [3] which tries to cover the segmentations in the dataset with a subset of

image fragments. It would obviously require a huge number of fragments to achieve

reasonable performance. Similarly, the layered pictorial structure algorithm of Kumar

et al. [5] would require a large number of parts and a complicated model for modeling

the allowed spatial configurations.

While Octopi can appear in a large number of poses, their low-level segmentation

can be easy since their color is relatively uniform and (depending on the scene) may

be distinct from the background. Thus an algorithm that trains the top-down module

while taking into account the low-level cues can choose to devote far less resources

to the deformable templates. The challenge is to provide a principled framework for

simultaneous training of the top-down and bottom-up segmentation algorithms.

In this paper we provide such a framework. The algorithm we propose is similar at

run-time to the OBJ-CUT and Borenstein et al. algorithms. As illustrated in figure 3,

at run-time a novel image is scanned with an object detector which tries all possible

subimages until it finds a subimage that is likely to contain the object (for most of the

databases in this paper the approximate location was known so no scanning was per-

formed). Within that subimage we search for object parts by performing normalized

correlation with a set of fragments (each fragment scans only a portion of the subim-

age where it is likely to occur thus modeling the spatial interaction between fragment

locations). The location of a fragment gives rise to a local bias term for an energy func-

tion. In addition to the local bias, the energy function rewards segmentation boundaries

occurring at image discontinuities. The final segmentation is obtained by finding the

global minimum of the energy function.

While our algorithm is similar at run-time to existing segmentation algorithms, the

training method is unique in that it simultaneously takes into account low-level and

high-level cues. We show that this problem can be formulated in the context of Con-

ditional Random Fields [7, 6] which leads to a convex cost function for simultaneous

training of both the low-level and the high-level segmenter. We derive a novel feature-

induction for CRFs which allows us to efficiently learn models with a small number of

fragments. Whereas pure top-down algorithms often require hundreds of fragments, our

simultaneous learning procedure yields algorithms with a handful of fragments that are

combined with low-level cues to efficiently compute high quality segmentations.

2 Segmentation Using Conditional Random Fields

Given an image I , we define the energy of a binary segmentation map x as:

E(x; I) = ν
∑

i,j

wij |x(i) − x(j)| +
∑

k

λk|x − xFk,I | (1)

This energy is a combination of a pairwise low-level term and a local class-dependent

term.

584 A. Levin and Y. Weiss

(a) (b) (c) (d)

Fig. 3. System overview: (a) Detection algorithm applied to an input image (b) Fragments search

range, dots indicate location of maximal normalized correlation (c) Fragments local evidence,

overlaid with ground truth contour (d) Resulting segmentation contour

The low level term is defined via a set of affinity weights w(i, j). w(i, j) are high

when the pixels (i, j) are similar and decrease to zero when they are different. Similar-

ity can be defined using various cues including intensity, color, texture and motion as

used for bottom up image segmentation [10]. Thus minimizing
∑

i,j wij |x(i) − x(j)|
means that labeling discontinuities are cheaper when they are aligned with the image

discontinuities. In this paper we used 8-neighbors connectivity, and we set:

wij =
1

1 + σd2
ij

where dij is the RGB difference between pixels i and j and σ = 5 · 104.

The second part of eq 1 encodes the local bias, defined as a sum of local energy

terms each weighted by a weight λk. Following the terminology of Conditional Random

Fields, we call each such local energy term a feature. In this work, these local energy

terms are derived from image fragments with thresholds. To calculate the energy of a

segmentation, we shift the fragment over a small window (10 pixels in each direction)

around its location in its original image. We select the location in which the normalized

correlation between the fragment and the new image is maximal (see Fig 3(b)). The

feature is added to the energy, if this normalized correlation is large than a threshold.

Each fragment is associated with a mask fragment xF extracted from the training set

(Fig 8 shows some fragments examples). We denote by xF,I the fragment mask xF

placed over the image I , according to the maximal normalized correlation location. For

each fragment we add a term to the energy function which penalizes for the number of

pixels for which x is different from the fragment mask xF,I , |x−xF,I | =
∑

i∈F |x(i)−
xF,I(i)|. Where i ∈ F means the pixel i is covered by the fragment F after the fragment

was moved to the maximal normalized correlation location (see Fig 3(c)).

Our goal in this paper is to learn a set of fragments {Fk}, thresholds and weights

{λk}, ν that will favor the true segmentation. In the training stage the algorithm is

provided a set of images {It}t=1:T and their binary segmentation masks {xt}t=1:T , as

in figure 2(b). The algorithm needs to select features and weights such that minimizing

the energy with the learned parameters will provide the desired segmentation.

Learning to Combine Bottom-Up and Top-Down Segmentation 585

2.1 Conditional Random Fields

Using the energy (eq. 1) we define the likelihood of the labels x conditioned on the

image I as

P (x|I) =
1

Z(I)
e−E(x;I) where: Z(I) =

∫

x

e−E(x;I)

That is, x forms a Conditional Random Field (CRF) [7]. The goal of the learning process

is to select a set of fragments {Fk}, thresholds and weights {λk}, ν that will maximize

the sum of the log-likelihood over training examples: ℓ(�λ, ν; �F) =
∑

t ℓt(�λ, ν; �F)

ℓt(�λ, ν; �F) = log P (xt|It;�λ, ν, �F) = −E(xt; It, �λ, ν, �F) − log Z(It;�λ, ν, �F) (2)

The idea of the CRF log likelihood is to select parameters that will maximize the like-

lihood of the ground truth segmentation for training examples. Such parameters should

minimize the energy of the true segmentations xt, while maximizing the energy of all

other configurations.

Below we list several useful properties of the CRF log likelihood:

1. For a given features set �F = [F1, ..., FK], if there exists a parameter set �λ∗ =
[λ∗

1, .., λ
∗
K], ν∗ for which the minimum of the energy function is exactly the true

segmentation: xt = arg minx E(x; It, �λ
∗, ν∗, �F). Then selecting α�λ∗, αν∗ with

α → ∞ will maximize the CRF likelihood, since: P (xt|It; α�λ∗, αν∗, �F) = 1 (see

[8]).

2. The CRF log likelihood is convex with respect to the weighting parameters λk, ν as

discussed in [7].

3. The derivative of the log-likelihood with respect to the coefficient of a given fea-

ture is known to be the difference between the expected feature response, and the

observed one. This can be expressed in a simple closed form way as:

∂ℓt(�λ, ν; �F)

∂λk

=
∂ log P (xt|It;�λ, ν, �F)

∂λk

=
∑

i∈Fk

∑

r

pi(r)|r − xFk,It
(i)| −

∑

i∈Fk

|xt(i) − xFk,It
(i)|

= < |xt − xFk,It
| >

P (xt|It;�λ,ν, �F) − < |xt − xFk,It
| >Obs (3)

∂ℓt(�λ, ν; �F)

∂ν
=

∂ log P (xt|It;�λ, ν, �F)

∂ν

=
∑

ij

∑

rs

pij(r, s)wij |r − s| −
∑

ij

wij |xt(i) − xt(j)|

= < |xt(i) − xt(j)| >
P (xt|It;�λ,ν, �F) − < |xt(i) − xt(j)| >Obs(4)

Where pi(r), pij(r, s) are the marginal probabilities P (xi = r|It;�λ, ν, �F), P (xi =

r, xj = s|It;�λ, ν, �F).

586 A. Levin and Y. Weiss

Suppose we are given a set of features �F = [F1, ...FK] and the algorithm task is to

select weights �λ = [λ1, .., λK], ν that will maximize the CRF log likelihood. Given that

the cost is convex with respect to �λ, ν it is possible to randomly initialize the weights

vector and run gradient decent, when the gradients are computed using equations 3,4.

Note that gradient decent can be used for selecting the optimal weights, without com-

puting the explicit CRF log likelihood (eq 2).

Exact computation of the derivatives is intractable, due to the difficulty in comput-

ing the marginal probabilities pi(r), pij(r, s). However, any approximate method for

estimating marginal probabilities can be used. One approach for approximating the

marginal probabilities is using Monte Carlo sampling, like in [4, 1]. An alternative ap-

proach is to approximate the marginal probabilities using the beliefs output of sum

product belief propagation or generalized belief propagation. Similarly, an exact com-

putation of the CRF log likelihood (eq 2) is challenging due to the need to compute the

log-partition function Z(I) =
∫

x
e−E(x;I). Exact computation of Z(I) is in general in-

tractable (except for tree structured graphs). However, approximate inference methods

can be used here as well, such as the Bethe free energy or the Kikuchi approxima-

tions [14]. Monte-Carlo methods can also be used. In this work we have approximated

the marginal probabilities and the partition function using sum product tree-reweighted

belief propagation [13], which provides a rigorous bound on the partition function, and

has better convergence properties than standard belief propagation. Tree reweighted

belief propagation is described in the Appendix.

2.2 Features Selection

The learning algorithm starts with a large pool of candidate local features. In this work

we created a 2, 000 features pool, by extracting image fragments from training images.

Fragments are extracted at random sizes and random locations. The learning goal is

to select from the features pool a small subset of features that will construct the energy

function E, in a way that will maximize the conditional log likelihood
∑

t log P (xt|It).
Since the goal is to select a small subset of features out of a big pool, the required

learning algorithm for this application is more than a simple gradient decent.

Let Ek denote the energy function at the k’th iteration. The algorithm initializes E0

with the pairwise term and adds local features in an iterative greedy way, such that in

each iteration a single feature is added: Ek(x; I) = Ek−1(x; I) + λk|x − xFk,I |. In

each iteration we would like to add the feature Fk that will maximize the conditional

log likelihood. We denote by Lk(F, λ) the possible likelihood if the feature F , weighted

by λ, is added at the k’th iteration:

Lk(F, λ) = ℓ(�λk−1, λ, ν; �Fk−1, F) =
∑

t

log P (xt|It; Ek−1(xt; It) + λ|x − xF,I |)

Straightforward computation of the likelihood improvement is not practical since in

each iteration, it will require inference for each candidate feature and for every possible

weight λ we may assign to this feature. For example, suppose we have 50 training

images, we want to scan 2, 000 features, 2 possible λ values, and we want to perform

10 features selection iterations. This results in 2, 000, 000 inference operations. Given

that each inference operation itself is not a cheap process, the resulting computation can

Learning to Combine Bottom-Up and Top-Down Segmentation 587

not be performed in a reasonable time. However, we suggest a novel efficient way to

approximate the possible contribution from each of the candidate features.

Observation: A first order approximation to the conditional log likelihood can be com-

puted efficiently, without a specific inference process per feature.

Proof:

Lk(F, λ) ≈ ℓk−1(�λk−1, ν) + λ
∂Lk(F, λ)

∂λ

∣

∣

∣

∣

λ=0

(5)

where

∂Lk(F, λ)

∂λ

∣

∣

∣

∣

λ=0

=< |xt − xF,It
| >

P (xt|It;�λk−1,ν, �Fk−1) − < |xt − xF,It
| >Obs (6)

and ℓk−1(�λk−1, ν) =
∑

t log P (xt|It; Ek−1). We note that computing the above first

order approximation requires a single inference process on the previous iteration energy

Ek−1, from which the local beliefs (approximated marginal probabilities) {bk−1
t,i } are

computed. Since the gradient is evaluated at the point λ = 0, it can be computed using

the k − 1 iteration beliefs and there is no need for a specific inference process per

feature.

Computing the first order approximation for each of the training images is linear

in the filter size. This enables scanning thousands of candidate features within sev-

eral minutes. As evident from the gradient formula (eq 6) and demonstrated in the

experiments section, the algorithm tends to select fragments that: (1) have low er-

ror in the training set (since it attempts to minimize < |xt − xF,It
| >Obs) and (2)

are not already accounted for by the existing model (since it attempts to maximize

< |xt − xF,It
| >

P (xt|It;�λk−1,ν, �Fk−1)
). First order approximation to the log-likelihood

function were also used by [17] to select features for exponential models fitting.

Once the first order approximations have been calculated we can select a small set

of the features Fk1
...FkN

with the largest approximated likelihood gains. For each of

Algorithm 1. Features Selection

Initialization: E0(xt; It) = ν
∑

ij wij |xt(i) − xt(j)|.
for k=1 to maxItr

1. Run tree-reweighted belief propagation using the k−1 iteration energy Ek−1(xt; It). Com-

pute local beliefs {bk−1

t,i }.

2. For each feature F compute the approximated likelihood using eq 5.

Select the N features Fk1
...FkN

with largest approximated likelihood gains.

3. For each of the features Fk1
...FkN

, and for each scale λ ∈ {λ1, ..., λM}, run tree-

reweighted belief propagation and compute the likelihood Lk(Fkn , λm)
4. Select the feature and scale with maximal likelihood gain:

(Fkn , λm) = arg max
n=1:N, m=1:M

Lk(Fkn , λm)

Set λk = λm, Fk = Fkn , Ek(x; I) = Ek−1(x; I) + λk|x − xFk,I |.

588 A. Levin and Y. Weiss

the selected features, and for each of a small discrete set of possible λ values λ ∈
{λ1, ..., λM}, we run an inference process and evaluate the explicit conditional log

likelihood. The optimal feature (and scale) is selected and added to the energy function

E. The features selection steps are summarized in Algorithm 1.

Once a number of features have been selected, we can also optimize the choice

of weights {λk}, ν using several gradient decent steps. Since the cost is convex with

respect to the weights a local optimum is not an issue.

3 Experiments

In our first experiment we tried to segment a synthetic octopus dataset. Few sample

images are shown in Fig 4. It’s clear that our synthetic octopi are highly non rigid

objects. Any effort to fully cover all the octopi tentacles with fragments (like [2, 9, 5]),

will require a huge number of different fragments. On the other hand, there is a lot

of edges information in the images that can guide the segmentation. The first feature

selected by our algorithm is located on the octopi head, which is a rigid part common

to all examples. This single feature, combined with pairwise constraints was enough to

propagate the true segmentation to the entire image. The MAP segmentation given the

selected feature is shown in Fig 4.

We then tested our algorithm on two real datasets, of horses [3, 2] and cows [9]. We

measured the percentage of mislabeled pixels in the segmented images on training and

testing images, as more fragments are learned. Those are shown for horses in Fig 5(a),

and for cows in Fig 5(b). Note that after selecting 3 fragments our algorithm performs at

over 95% correct on test data for the horse dataset. The algorithm of Borenstein et al. [2]

performed at 95% for pixels in which its confidence was over 0.1 and at 66% for the

rest of the pixels. Thus our overall performance seems comparable (if not better) even

though we used far less fragments. The OBJ-CUT algorithm also performs at around

96% for a subset of this dataset using a LPS model of 10 parts whose likelihood function

takes into consideration chamfer distance and texture and is therefore significantly more

complex than normalized correlation.

Fig. 4. Results on synthetic octopus data. Top: Input images. Middle: response of the local feature,

with the ground truth segmentation contour overlaid in red. Bottom: MAP segmentation contour

overlaid on input image.

Learning to Combine Bottom-Up and Top-Down Segmentation 589

0 2 4 6 8 10 12 14 16 18 20
3.5

4

4.5

5

5.5

6

6.5

Iterations number

E
rr

o
r

p
e
rc

e
n
ts

Training

Testing

0 2 4 6 8 10 12 14 16 18 20
4

6

8

10

12

14

16

Iterations number

E
rr

o
r

p
e
rc

e
n
ts

Training

Testing

(a) (b)

Fig. 5. Percents of miss-classified pixels: (a) Horses data (b) Cows data Note that after 4 fragments

our algorithm performs at over 95% correct on test data for the horse dataset. These results are

comparable if not better than [2, 5] while using a simpler model.

Fig. 6. Testing results on horses data. Top row: Input images. Second row: Response of the local

features and the boundary feature, with the ground truth segmentation contour overlaid in red.

Bottom row: MAP segmentation contour overlaid on input image.

Fig. 7. Testing results on cows’ data with 4 features. Top row: Input images. Second row: Re-

sponse of the local features and the boundary feature, with the ground truth segmentation contour

overlaid in red. Bottom row: MAP segmentation contour overlaid on input image.

590 A. Levin and Y. Weiss

Fig. 8. The first 3 horse fragments selected by the learning algorithm

(Input Images)

(One Fragment)

(Two Fragments)

(Three Fragments)

Fig. 9. Training results on horses data. For each group: Top row - response of the local features

and the boundary feature, with the ground truth segmentation contour overlaid in red. Middle

row - MAP segmentation. Bottom row - MAP segmentation contour overlaid on input image.

In the horses and cows experiments we rely on the fact that we are searching for a

shape in the center of the window, and used an additional local feature predicting that

the pixels lying on the boundary of the subimage should be labeled as background.

Learning to Combine Bottom-Up and Top-Down Segmentation 591

In Fig 6 we present several testing images of horses, the ground truth segmentation,

the local features responses and the inferred segmentation. While low level informa-

tion adds a lot of power to the segmentation process, it can also be misleading. For

example, the example on the right of Fig 9 demonstrates the weakness of the low level

information.

In Fig 7 we present segmentation results on cows test images, for an energy function

consisting of 4 features. The segmentation in this case is not as good as in the horses’

case, especially in the legs. We note that in most of these examples the legs are in

a different color than the cow body, hence the low-level information can not easily

propagate labeling from the cow body to its legs. The low level cue we use in the

work is quite simple- based only on the RGB difference between neighboring pixels.

It’s possible that using more sophisticated edges detectors [10] will enable a better

propagation.

The first 3 horse fragments that were selected by the algorithm are shown in Fig 8. In

Fig 9 we illustrate the first 3 training iterations on several training images. Quite a good

segmentation can be obtained even when the response of the selected features does not

cover the entire image. For example the first fragment was located around the horse’s

front legs. As can be seen in the first 3 columns of Fig 9, some images can be segmented

quite well based on this single local feature. We can also see that the algorithm tends to

select new features in image areas that were mislabeled in the previous iterations. For

example, in several horses (mainly the 3 middle columns) there is still a problem in the

upper part, and the algorithm therefore selects a second feature in the upper part of the

horse. Once the second fragment was added there are still several mislabeled head areas

(see the 3 right columns), and as a result the 3rd fragment is located on the horse head.

4 Discussion

Evidence from human vision suggests that humans utilize significant top-down infor-

mation when performing segmentation. Recent works in computer vision also suggest

that segmentation performance in difficult scenes is best approached by combining top-

down and bottom-up cues. In this paper we presented an algorithm that learns how

to combine these two disparate sources of information into a single energy function.

We showed how to formulate the problem as that of estimation in Conditional Ran-

dom Fields which will provably find the correct parameter settings if they exist. We

introduced a novel feature induction algorithm for CRFs that allowed us to efficiently

search over thousands of image fragments for a small number of fragments that will

improve the segmentation performance. Our learned algorithm achieves state-of-the-

art performance with a small number of fragments combined with very rudimentary

low-level cues.

Both the top-down module and the bottom-up module that we used can be signifi-

cantly improved. Our top-down module translates an image fragment and searches for

the best normalized correlation, while other algorithms also allow rescaling and rota-

tion of the parts and use more sophisticated image similarity metrics. Our bottom-up

module uses only local intensity as an affinity function between pixels, whereas other

algorithms have successfully used texture and contour as well. In fact, one advantage

of the CRFs framework is that we can learn the relative weights of different affinity

592 A. Levin and Y. Weiss

functions. We believe that by improving both the low-level and high-level cues we will

obtain even better performance on the challenging task of image segmentation.

5 Appendix: Tree-Reweighted Belief Propagation and

Tree-Reweighted Upper Bound

In this section we summarize the basic formulas from [13] for applying tree-rewighted

belief propagation and for computing the tree-rewighted upper bound.

For a given graph G, we let µ
e

= {μe|e ∈ E(G)} represent a vector of edge appear-

ance probabilities. That is, μe is the probability that the edge e appears in a spanning tree

of the graph G, chosen under a particular distribution on spanning trees. For 2D-grid

graphs with 4-neighbors connectivity a reasonable choice of edges distributions is µ
e

=
{

μe = 1
2 |e ∈ E(G)

}

and for 8-neighbors connectivity, µ
e

=
{

μe = 1
4 |e ∈ E(G)

}

.

The edge appearance probabilities are used for defining a tree-rewighted mas-

sages passing scheme. Denote the graph potentials as: Ψi(xi) = e−Ei(xi),

Ψij(xi, xj) = e−Eij(xi,xj), and assume P (x) can be factorized as: P (x) ∝
∏

i Ψi(xi)
∏

i,j Ψij(xi, xj). The tree-rewighted massages passing scheme is defined as

follows:

1. Initialize the messages m0 = m0
ij with arbitrary positive real numbers.

2. For iterations n=1,2,3,... update the messages as follows:

mn+1
ji (xi) = κ

∑

x′

j

exp(−
1

μij

Eij(xi, x
′
j)−Ej(x

′
j))

⎧

⎨

⎩

∏

k∈Γ (j)\i

[

mn
kj(x

′
j)

]μkj

[

mn
ij(x

′
j)

](1−μji)

⎫

⎬

⎭

where κ is a normalization factor such that
∑

xi
mn

ji(xi) = 1.

The process converges when mn+1
ji = mn

ji for every ij.

Once the process has converged, the messages can be used for computing the local

and pairwise beliefs:

bi(xi) = κ exp(−Ei(xi))
∏

k∈Γ (i)

[mki(xi)]
μki (7)

bij(xi, xj) = κ exp(−
1

μij

Eij(xi, xj) − Ei(xi) − Ej(xj))

∏

k∈Γ (i)\j [mki(xi)]
μki

[mji(xi)]
(1−μij)

∏

k∈Γ (j)\i [mkj(xj)]
μkj

[mij(xj)]
(1−μji)

(8)

We define a pseudo-marginals vector �q = {qi, qij} as a vector satisfying:
∑

xi
qi(xi) = 1 and

∑

xj
qij(xi, xj) = qi(xi). In particular, the beliefs vectors in

equations 7,8 are a peseudo-marginals vector. We use the peseudo-marginals vectors

for computing the tree-rewighted upper bound.

Denote by θ the energy vector θ = {Ei, Eij}. We define an “average energy”

term as: �q · θ =
∑

i

∑

xi
−qi(xi)Ei(xi) +

∑

ij

∑

xi,xj
−qij(xi, xj)Eij(xi, xj).

We define the single node entropy: Hi(qi) = −
∑

xi
qi(xi) log qi(xi). Similarly, we

Learning to Combine Bottom-Up and Top-Down Segmentation 593

define the mutual information between i and j, measured under qij as: Iij(qij) =
∑

xi,xj
qij(xi, xj) log

qij(xi,xj)
(

∑

x′

j
qij(xi,x

′

j
)

)

(

∑

x′

i
qij(x′

i
,xj)

)
. This is used to define a free en-

ergy: F(�q; µ
e
; θ) � −

∑

i Hi(qi) +
∑

ij μijIij(qij) − �q · θ.

In [13] Wainwright et al prove that F(�q; µ
e
; θ) provides an upper bound for the log

partition function:

log Z =

∫

x

exp(−
∑

i

Ei(xi) −
∑

ij

Eij(xi, xj)) ≤ F(�q; µ
e
; θ)

They also show that the free energy F(�q; µ
e
; θ) is minimized using the peseudo-

marginals vector �b defined using the tree-rewighted messages passing output. Therefore

the tighter upper bound on log Z is provided by �b.

This result follows the line of approximations to the log partition function using free

energy functions. As stated in [14], when standard belief propagation converges, the

output beliefs vector is a stationary point of the bethe free energy function, and when

generalized belief propagation converges, the output beliefs vector is a stationary point

of the Kikuchi free energy function. However, unlike the bethe free energy and Kikuchi

approximations, the tree-rewighted free energy is convex with respect to the peseudo-

marginals vector, and hence tree-rewighted belief propagation can not end in a local

minima.

A second useful property of using the tree-rewighted upper bound as an approxima-

tion for the log partition function, is that computing the likelihood derivatives (equa-

tions 3-4) using the beliefs output of tree-rewighted massages passing, will result in

exact derivatives for the upper bound approximation.

In this paper we used F(�b; µ
e
; θ) as an approximation for the log partition

function, where �b is the output of tree-rewighted belief propagation. We also used the

tree-rewighted beliefs �b in the derivatives computation (equations 3-4), as our approxi-

mation for the marginal probabilities.

References

1. A. Barbu and S.C. Zhu. Graph partition by swendsen-wang cut. In Proceedings of the IEEE

International Conference on Computer Vision, 2003.

2. E. Borenstein, E. Sharon, and S. Ullman. Combining top-down and bottom-up segmenta-

tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshop on Perceptual Organization in Computer Vision, June 2004.

3. E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In Proc. of the Euro-

pean Conf. on Comput. Vision, May 2002.

4. X. He, R. Zemel, and M. Carreira-Perpi. Multiscale conditional random fields for image la-

beling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2004.

5. M. Pawan Kumar, P.H.S. Torr, and A. Zisserman. Objcut. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2004.

6. S. Kumar and M. HebertMultiscale. Discriminative random fields: A discriminative frame-

work for contextual interaction in classification. In Proceedings of the IEEE International

Conference on Computer Vision, 2003.

594 A. Levin and Y. Weiss

7. John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Proba-

bilistic models for segmenting and labeling sequence data. In Proc. 18th International Conf.

on Machine Learning, pages 282–289. Morgan Kaufmann, San Francisco, CA, 2001.

8. Yann LeCun and Fu Jie Huang. Loss functions for discriminative training of energy-based

models. In Proc. of the 10-th International Workshop on Artificial Intelligence and Statistics

(AIStats’05), 2005.

9. B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and segmentation

with an implicit shape model. In Proceedings of the Workshop on Statistical Learning in

Computer Vision, Prague, Czech Republic, May 2004.

10. J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image segmen-

tation. In K.L. Boyer and S. Sarkar, editors, Perceptual Organization for artificial vision

systems. Kluwer Academic, 2000.

11. E. Sharon, A. Brandt, and R. Basri. Segmentation and boundary detection using multiscale

intensity measurements. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2001.

12. Z.W. Tu, X.R. Chen, A.L Yuille, and S.C. Zhu. Image parsing: segmentation, detection,

and recognition. In Proceedings of the IEEE International Conference on Computer Vision,

2003.

13. M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Tree-reweighted belief propagation and

approximate ml estimation by pseudo-moment matching. In 9th Workshop on Artificial In-

telligence and Statistics, 2003.

14. J. S. Yedidia, W.T. Freeman, and Y. Weiss. Constructing free-energy approximations and

generalized belief propagation algorithms. IEEE Transactions on Information Theory,

51:2282–2312, 2005.

15. S.X. Yu and J. Shi. Object-specific figure-ground segregation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2003.

16. A. Yuille and P. Hallinan. Deformable templates. In Active Vision, A. Blake and A. Yuille,

Eds. MIT press, 2002.

17. Song Chun Zhu, Zing Nian Wu, and David Mumford. Minimax entropy principle and its

application to texture modeling. Neural Computation, 9(8):1627–1660, 1997.

	Introduction
	Segmentation Using Conditional Random Fields
	Conditional Random Fields
	Features Selection

	Experiments
	Discussion
	Appendix: Tree-Reweighted Belief Propagation and Tree-Reweighted Upper Bound

