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Abstract

We propose to compose dynamic tree structures that

place the objects in an image into a visual context, help-

ing visual reasoning tasks such as scene graph generation

and visual Q&A. Our visual context tree model, dubbed

VCTREE, has two key advantages over existing structured

object representations including chains and fully-connected

graphs: 1) The efficient and expressive binary tree encodes

the inherent parallel/hierarchical relationships among ob-

jects, e.g., “clothes” and “pants” are usually co-occur and

belong to “person”; 2) the dynamic structure varies from

image to image and task to task, allowing more content-

/task-specific message passing among objects. To construct

a VCTREE, we design a score function that calculates the

task-dependent validity between each object pair, and the

tree is the binary version of the maximum spanning tree

from the score matrix. Then, visual contexts are encoded by

bidirectional TreeLSTM and decoded by task-specific mod-

els. We develop a hybrid learning procedure which inte-

grates end-task supervised learning and the tree structure

reinforcement learning, where the former’s evaluation re-

sult serves as a self-critic for the latter’s structure explo-

ration. Experimental results on two benchmarks, which re-

quire reasoning over contexts: Visual Genome for scene

graph generation and VQA2.0 for visual Q&A, show that

VCTREE outperforms state-of-the-art results while discov-

ering interpretable visual context structures.

1. Introduction

Objects are not alone. They are placed in the visual con-

text: a coherent object configuration attributed to the fact

that they co-vary with each other. Extensive studies in cog-

nitive science show that our brains inherently exploit visual

contexts to understand cluttered visual scenes comprehen-

sively [4, 6, 37]. For example, even the girl’s leg and the

horse are not fully observed in Figure 1, we can still infer

“girl riding horse”. Inspired by this, modeling visual con-

Is the girl sitting on 
the horse correctly?

Chain

Fully-Connected Graph

What is on the 
little girl’s head?

Dynamic Tree (ours)

Helmet

Yes

Figure 1. Illustrations of different object-level visual context struc-

tures: chains [57], fully-connected graphs [50], and dynamic tree

structures constructed by the proposed VCTREE. For the purpose

of efficient context encoding by using TreeLSTM [44], we trans-

form the multi-branch trees (left) to the equivalent left-child right-

sibling binary trees [14], where the left branches (red) indicate the

hierarchical relations and right branches (blue) indicate the par-

allel relations. The key advantages of VCTREE over chains and

graphs are hierarchical, dynamic, and efficient.

texts is also indispensable in many modern computer vi-

sion systems. For example, state-of-the-art CNN architec-

tures capture the context by convolutions of various recep-

tive fields and encode it into multi-scale feature map pyra-

mid [8, 27, 60]. Such pixel-level visual context (or local

context [16]) arguably plays one of the key roles in clos-

ing the performance gap of the “mid-level” vision between

humans and machines, such as R-CNN based object detec-

tion [27, 29, 40], instance segmentation [18, 38], and FCN
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based semantic segmentation [8, 9, 56].

Modeling visual contexts explicitly on the object-level

has also been shown effective in “high-level” vision tasks

such as image captioning [54] and visual Q&A [46]. In

fact, the visual context serves as a powerful inductive bias

that connects objects in a particular layout for high-level

reasoning [26, 30, 46, 54, 36, 28]. For example, the spa-

tial layout of “person” on “horse” is useful for determining

the relationship “ride”, which is in turn informative to lo-

calize the “person” if we want to answer “who is riding on

the horse?”. However, those works assume that the con-

text is a scene graph, whose detection per se is a high-

level task and not yet reliable. Without high-quality scene

graphs, we have to use a prior layout structure. As shown in

Figure 1, two popular structures are chains [57] and fully-

connected graphs [7, 10, 15, 25, 50, 55, 49], where the con-

text is encoded by sequential models such as bidirectional

LSTM [19] for chains and CRF-RNN [61] for graphs.

However, these two prior structures are sub-optimal.

First, chains are oversimplified and may only capture sim-

ple spatial information or co-occurrence bias; though fully-

connected graphs are complete, they lack the discrimina-

tion between hierarchical relations, e.g., “helmet affiliated

to head”, and parallel relations, e.g., “girl on horse”; in addi-

tion, dense connections could also lead to message passing

saturation in the subsequent context encoding [50]. Second,

visual contexts are inherently content-/task-driven, e.g., the

object layouts should vary from content to content, question

to question. Therefore, fixed chains and graphs are incom-

patible with the dynamic nature of visual contexts [47].

In this paper, we propose a model dubbed VCTREE, pi-

oneering to compose dynamic tree structures for encoding

object-level visual context for high-level visual reasoning

tasks, such as scene graph generation (SGG) and visual

Q&A (VQA). Given a set of object proposals in an im-

age (e.g., obtained from Faster-RCNN [40]), we maintain

a trainable task-specific score matrix of the objects, where

each entry indicates the contextual validity of the pairwise

objects. Then, a maximum spanning tree can be trimmed

from the score matrix, e.g., the multi-branch trees shown in

Figure 1. This dynamic structure represents a “hard” hierar-

chical layout bias of what objects should gain more contex-

tual information from others, e.g., objects on the person’s

head are most informative given the question “what on the

little girl’s head?”; while the whole person’s body is more

important given the question “Is the girl sitting on the horse

correctly?”. To avoid the saturation issue caused by the

densely connected arbitrary number of children, we further

morph the multi-branch trees to the equivalent left-child

right-sibling binary trees [14], where the left branches (red)

indicate the hierarchical relations and right branches (blue)

indicate the parallel relations, then use TreeLSTM [44] to

encode the context.

As the above VCTREE construction is in a discrete

and non-differentiable nature, we develop a hybrid learn-

ing strategy using REINFORCE [20, 41, 48] for tree struc-

ture exploration and supervised learning for context encod-

ing and its subsequent tasks. In particular, the evaluation

result (Recall for SGG and Accuracy for VQA) from super-

vised task can be exploited as a critic function that guide

the “action” of tree construction. We evaluate VCTREE

on two benchmarks: Visual Genome [24] for SGG and

VQA2.0 [17] for VQA. For SGG, we achieve a new state-

of-the-art on all three standard tasks, i.e., Scene Graph Gen-

eration, Scene Graph Classification, and Predicate Classifi-

cation; for VQA, we achieve competitive results on single

model performances. In particular, VCTREE helps high-

level vision models fight against the dataset bias. For ex-

ample, we achieve 4.1% absolute gain in proposed Mean

Recall@100 metric of Predicate Classification than MO-

TIFS [57], and observe higher improvement in VQA2.0 bal-

anced pair subset [45] than normal validation set. Qualita-

tive results also show that VCTREE composes interpretable

structures.

2. Related Work

Visual Context Structures. Despite the consensus on the

value of visual contexts, existing context models are diver-

sified into a variety of implicit or explicit approaches. Im-

plicit models directly encode surrounding pixels into multi-

scale feature maps, e.g., dilated convolution [56] presents a

efficient way to increase receptive field, applicable in var-

ious dense prediction tasks [8, 9]; feature pyramid struc-

ture [27] combines low-resolution contextual features with

high-resolution detailed features, facilitating object detec-

tion with rich semantics. Explicit models incorporate con-

textual cues through object connections. However, such

methods [25, 50, 57] group objects into fixed layouts, i.e.,

chains or graphs.

Learning to Compose Structures. Learning to compose

structures is becoming popular in NLP for sentence rep-

resentation, e.g., Cho et al. [11] applied a gated recur-

sive convolutional neural network (grConv) to control the

bottom-up feature flow for a dynamic structure; Choi et

al. [12] combines TreeLSTM with Gumbel-Softmax, al-

lowing task-specific tree structures automatically learned

from plain text. Yet, only few works compose visual struc-

tures for images. Conventional approaches construct a sta-

tistical dependency graph/tree for the entire dataset based

on object categories [13] or exemplars [32]. Those sta-

tistical methods cannot put per-image objects in a context

as a whole to reason over content-/task-specific fashion.

Socher et al. [43] constructed a bottom-up tree structure to

parse images; however, their tree structure learning is super-

vised while ours is reinforced, which does not require tree

ground-truth.
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(a) Feature Extraction

RoI Spatial

(b) Tree Construction (d1) Scene Graph Generation

(d2) Visual Question Answering

(c) Context Encoding
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Q: What is on the 
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Figure 2. The framework of the proposed VCTREE model. We extract visual features from proposals and construct a dynamic VCTREE

using the learnable score matrix. The tree structure is used to encode the object-level visual context, which will be decoded for each specific

end-task. Parameters in stages (c)&(d) are trained by supervised learning, while those in stage (b) are using REINFORCE with a self-critic

baseline.

Visual Reasoning Tasks. Scene Graph Generation (SGG)

task [50, 52] is derived from Visual Relationship Detection

(VRD) [31, 53]. Early work on VRD [31] treats objects as

isolated individuals, while SGG considers each image as a

whole. Along with the widely used message passing mech-

anism [50], a variety of context models [25, 26, 34, 51]

have been exploited in SGG to fine-tune local predictions

through rich global contexts, making it the best competition

field for different contextual models. Visual Question An-

swering (VQA) as a high-level task bridges the gap between

computer vision and natural language processing. State-of-

the-art VQA models [1, 3, 45] rely on bag-of-object visual

attentions which can be considered as a trivial context struc-

ture. However, we propose to learn a tree context structure

that is dynamic to visual content and questions.

3. Approach

As illustrated in Figure 2, our VCTREE model can be

summarized into the following four steps. (a) We adopt

Faster-RCNN to detect object proposals [40]. The visual

feature of each proposal i is presented as xi, concatenat-

ing a RoIAlign feature [18] vi ∈ R
2048 and spatial feature

bi ∈ R
8, where 8 elements indicate the bounding box co-

ordinates (x1, y1, x2, y2), center (x1+x2

2 , y1+y2

2 ), and size

(x2−x1, y2−y1), respectively. Note that the visual feature

xi is not limited to bounding box; segment feature from in-

stance segmentations [18] or panoptic segmentations [23]

could also be alternatives. (b) In Section 3.1, a learnable

matrix will be introduced to construct VCTREE. Moreover,

since the VCTREE construction is discrete in nature and the

score matrix is non-differentiable from the loss of end-task,

we develop a hybrid learning strategy in Section 3.5. (c)

In Section 3.2, we employ Bidirectional Tree LSTM (Bi-

TreeLSTM) to encode the contextual cues using the con-

structed VCTREE. (d) The encoded contexts will be de-

coded for each specific end-task detailed in Section 3.3 and

Section 3.4.

3.1. VCTREE Construction

VCTREE construction aims to learn a score matrix S,

which approximates the task-dependent validity between

each object pair. Two principles guide the formulation of

this matrix: 1) inherent object correlations should be main-

tained, e.g., “man wears helmet” in Figure 2; (2) task re-

lated object pair has higher score than irrelevant ones, e.g.,

given question “what is on the man’s head?”, “man-helmet”

pair should be more important than “man-motorcycle” and

“helmet-motorcycle” pairs. Therefore, we define each ele-

ment of S as the product of the object correlation f(xi,xj)
and the pairwise task-dependency g(xi,xj , q):

⎧

⎨

⎩

Sij = f(xi,xj) · g(xi,xj , q),
f(xi,xj) = σ (MLP(xi,xj)) ,
g(xi,xj , q) = σ(h(xi, q)) · σ(h(xj , q)),

(1)

where σ(·) is the sigmoid function; q is the task feature,

e.g., the question feature encoded by GRU in VQA; MLP is

a multi-layer perceptron; h(xi, q) is the object-task correla-

tion in VQA, which will be introduced later in Section 3.4.

In SGG, the entire g(xi,xj , q) is set to 1, as we assume

that each object pair contributes equally without the ques-

tion prior. We pretrain f(xi,xj) on Visual Genome [24]

for a reasonable binary prior if two objects are related. Yet,

such a pretrained model is not perfect due to the lack of co-

herent graph-level constraint or question prior, so it will be

further fine-tuned in Section 3.5.

Considering S as a symmetric adjacency matrix, we

can obtain a maximum spanning tree using the Prim’s
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Figure 3. The maximum spanning tree from S. In each step, a

node in the remaining pool is connected to the current tree, if it

has the highest validity score.

algorithm [39], with a root (source node) i satisfying

argmaxi
∑

j �= i Sij . In a nutshell, as illustrated in Fig-

ure 3, we construct the tree recursively by connecting the

node from the pool to the tree node if it has the most valid-

ity. Note that during the tree structure exploration in Sec-

tion 3.5, each of the i-th step t(i) in the above tree construc-

tion is sampled from all possible choices in a multinomial

distribution with the probability p(t(i)|t(1), ..., t(i−1),S) in

proportion to the validity. The resultant tree is multi-branch

and is merely a sparse graph with only one kind of connec-

tion, which is still unable to discriminate the hierarchical

and parallel relations in the subsequent context encoding.

To this end, we convert the multi-branch tree into an equiv-

alent binary tree, i.e., VCTREE by changing non-leftmost

edges into right branches as in Figure 1. In this fashion,

the right branches (blue) indicate parallel contexts, and left

ones (red) indicate hierarchical contexts. Such a binary tree

structure achieves significant improvements in our SGG and

VQA experiments compared to its multi-branch alternative.

3.2. TreeLSTM Context Encoding

Given the above constructed VCTREE, we adopt Bi-

TreeLSTM as our context encoder:

D = BiTreeLSTM({zi}i=1,2,...,n), (2)

where zi is the input node feature, which will be specified

in each task, and D = [d1,d2, ...,dn] is the encoded object-

level visual context. Each di = [
�

hi;
�

hi] is the concatenated

hidden states from both TreeLSTM [44] directions:

�

hi = TreeLSTM(zi,
�

hp), (3)
�

hi = TreeLSTM(zi, [
�

hl;
�

hr]), (4)

where �and� denote the top-down and bottom-up direc-

tions, respectively; we slightly abuse the subscripts p, l, r to

denote the parent, left child, and right child of node i. The

order of the concatenation [
�

hl;
�

hr] in Eq. (4) indicates the

explicit discrimination between the left and right branches

in context encoding. We use zero vectors to pad all the miss-

ing branches.

ObjectRelation

Union Box RoI Feature Bounding Box FeatureRelation Context

O
bject 

D
ecoding

Relation Prediction

Relationship Decoding

O
bject Prediction

Figure 4. The overview of our SGG Model. The object context

feature will be used to decode object categories, and the pair-

wise relationship decoding jointly fuses the relation context fea-

ture, RoIAlign feature of union box, and bounding box feature,

before prediction.

3.3. Scene Graph Generation Model

Now we detail the implementation of Eq. (2) and how to

decode them for the SGG task as illustrated in Figure 4.

Object Context Encoding. We employ BiTreeLSTM from

Eq. (2) to encode object context representation into Do =
[do

1,d
o
2, ...,d

o
n],d

o
i ∈ R

512. We set inputs zi of Eq. (2) to

[xi;W1ĉi], i.e., concatenation of object visual features and

embedded N-way original Faster-RCNN class probabilities,

where W1 is the embedding matrix that maps each original

label distribution ĉi into R
200.

Relation Context Encoding. We apply an additional Bi-

TreeLSTM using the above do
i as input zi to further encode

the relation context Dr = [dr
1,d

r
2, ...,d

r
n],d

r
i ∈ R

512.

Context Decoding. The goal of SGG is to detect objects

and then predict their relationship. Similar to [57], we adopt

a dynamic object prediction which can be viewed as a de-

coding process in a top-down direction using Eq. (3), that is,

the object class of a child is dependent on its parent. Specifi-

cally, we set the input zi of Eq. (3) to be [do
i ;W2cp], where

cp is the predicted label distribution of the i’s parent, and

W2 embeds it into R
200, then the output hidden is passed to

a softmax classifier to achieve object label distribution ci.

The relationship prediction is in a pairwise fashion. First,

we collect three pairwise features for each object pair: (1)

dij = MLP([dr
i ;d

r
j ]) as the context feature, (2) bij =

MLP([bi; bj ; bi∪j ; bi∩j ]) as the bounding box pair feature,

with i ∪ j, i ∩ j being union box and intersection box, (3)

vij as the RoIAlign feature [18] from the union bounding

box of the object pair. All dij ,vij , bij are under the same

dimension R
2048. Then, we fuse them into a final pairwise

feature: gij = dij · vij · bij , before feed it into the softmax

predicate classifier, where · is element-wise product.

3.4. Visual Question Answering Model

Now we detail the implementation of Eq. (2) for VQA,

and illustrate our VQA model in Figure 5.

6622



Visual Attention Model

Visual Feature

Question
attention

BiTreeLSTM Context Attention Model

Context Feature

Question
attention

Q
uestion G

uided G
ate

Prediction
Candidate A

nsw
ers

Figure 5. The overview of our VQA framework. It contains two

multimodal attention models for visual feature and context feature.

Outputs from both models will be concatenated and passed to a

question-guided gate before answer prediction.

Context Encoding. The context feature in VQA: Dq =
[dq

1,d
q
2, ...,d

q
n], d

q
i ∈ R

1024 is directly encoded from the

bounding box visual feature xi by Eq. (2).

Multimodal Attention Feature. We adopt a popular at-

tention model from previous work [1, 45] to calculate the

multimodal joint feature m ∈ R
1024 for each question and

image pair:

m = fd(ẑ, q), (5)

where q ∈ R
1024 is the question feature from a one-layer

GRU encoding the sentence; ẑ =
∑N

i=1 αizi is the atten-

tive image feature calculated from the input feature set {zi},

αi = exp (ui)/
∑

k exp (uk) is the attention weight from

object-task correlation ui = h(zi, q) = MLP
(

fd(zi, q)
)

,

with the output of MLP being a scalar; fd can be any

multi-modal feature fusion function, in particular, we adopt

fd(x,y) = ReLU(W3x + W4y) − (W3x − W4y)
2 as

in [59], with W3 and W4 projecting x,y into the same di-

mension. Therefore, we can use Eq. (5) to obtain both the

multimodal visual attention feature mx by setting input zi
to xi and multimodal contextual attention feature md by

setting zi to d
q
i .

Question Guided Gate Decoding. However, the impor-

tance of mx and md varies from question to question, e.g.,

“is there a dog?” only requires visual features for detection,

while “is the man dressed formally?” is highly context de-

pendent. Inspired by [42], we adopt a question guided gate

to select the most related channels from [mx;md]. The

gate vector g ∈ R
2048 is defined as:

g = σ
(

MLP([q;W5lq])
)

, (6)

where lq ∈ R
65 is a one-hot question type vector defined by

prefixed words of questions, which is embedded into R
256

by matrix W5, and σ(·) denotes the sigmoid function.

Finally, we fuse g · [mx;md] as the final VQA feature

and feed it into the softmax classifier.

3.5. Hybrid Learning

Due to the discrete nature of VCTREE construction, the

score matrix S is not fully differentiable from the loss back-

propagated from the end-task loss. Inspired by [20], we

use a hybrid learning strategy that combines reinforcement

learning, i.e., policy gradient [48] for the parameters θ of

S in the tree construction and supervised learning for the

rest parameters. Suppose a layout l, i.e., a constructed VC-

TREE, is sampled from π(l|I, q; θ), i.e., the construction

procedure in Section 3.1, where I is the given image, q is

the task, e.g., questions in VQA. To avoid clutter, we drop

I and q. Then, we define the reinforcement learning loss

Lr(θ) as:

Lr(θ) = −El∼π(l|θ)[r(l)], (7)

where Lr(θ) aims to minimize the negative expected re-

ward r(l), which can be the end-task evaluation met-

rics such as Recall@100 for SGG and Accuracy for

VQA. Then, the above gradient will be ∇θLr(θ) =
−El∼π(l|θ)[r(l)∇θlogπ(l|θ)]. Since it is impractical to esti-

mate all possible layouts, we use the Monte-Carlo sampling

to estimate the gradient:

∇θLr(θ) ≈ −
1

M

M
∑

m=1

(

r(lm)∇θlogπ(lm|θ)
)

, (8)

where we set M to 1 in our implementation.

To reduce the gradient variance, we apply a self-critic

baseline [41] b = r(l̂), where l̂ is the greedy constructed

tree without sampling. So the original reward r(lm) can be

replaced by r(lm)− b in Eq. (8). We observe faster conver-

gence than using a traditional moving baseline [33].

The overall hybrid learning will be alternatively con-

ducted between supervised learning and reinforcement

learning, where we first train the supervised end-task on

pretrained π(l|θ), then fix the end-task as reward function

to learn our reinforcement policy network, after that, we

update the supervised end-task by new π(l|θ). The latter

two stages are running alternatively 2 times in our model.

4. Experiments on Scene Graph Generation

4.1. Settings

Dataset. Visual Genome (VG) [24] is a popular benchmark

for SGG. It contains 108,077 images with tens of thousands

of unique object and predicate relation categories, yet most

of categories have very limited instances. Therefore, pre-

vious works [26, 50, 58] proposed various VG splits that

remove rare categories. We adopted the most popular one

from [50], which selects top-150 object categories and top-

50 predicate categories by frequency. The entire dataset is

divided into the training set and test set by 70%, 30%, re-

spectively. We further picked 5,000 images from training

set as the validation set for hyper-parameter tuning.
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Scene Graph Generation Scene Graph Classification Predicate Classification

Model R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

VRD [31] - 0.3 0.5 - 11.8 14.1 - 27.9 35.0

AsscEmbed [34] 6.5 8.1 8.2 18.2 21.8 22.6 47.9 54.1 55.4

IMP⋄ [50] 14.6 20.7 24.5 31.7 34.6 35.4 52.7 59.3 61.3

TFR [21] 3.4 4.8 6.0 19.6 24.3 26.6 40.1 51.9 58.3

FREQ⋄ [57] 20.1 26.2 30.1 29.3 32.3 32.9 53.6 60.6 62.2

MOTIFS⋄ [57] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1

Graph-RCNN [51] - 11.4 13.7 - 29.6 31.6 - 54.2 59.1

Chain 21.2 27.1 30.3 33.3 36.1 36.8 59.4 66.0 67.7

Overlap 21.4 27.3 30.4 33.7 36.5 37.1 59.5 66.0 67.8

Multi-Branch 21.5 27.3 30.6 34.3 37.1 37.8 59.5 66.1 67.8

VCTREE-SL 21.7 27.7 31.1 35.0 37.9 38.6 59.8 66.2 67.9

VCTREE-HL 22.0 27.9 31.3 35.2 38.1 38.8 60.1 66.4 68.1

Table 1. SGG performances (%) of various methods. ⋄ denotes the methods using the same Faster-RCNN detector as ours. IMP⋄ is reported

from the re-implemented version [57].

SGGen SGCls PredCls

Model mR@100 mR@100 mR@100

MOTIFS⋄ [57] 6.6 8.2 15.3

FREQ⋄ [57] 7.1 8.5 16.0

VCTREE-HL 8.0 10.8 19.4

Table 2. Mean recall (%) of various methods across all the 50 pred-

icate categories.

Protocols. We followed three conventional protocols to

evaluate our SGG model: (1) Scene Graph Generation

(SGGen): given an image, detect object bounding boxes

and their categories, and predict their relationships; (2)

Scene Graph Classification (SGCls): given ground-truth

object bounding boxes in an image, predict the object cate-

gories and their relationships; (3) Predicate Classification

(PredCls): given the object categories and their bounding

boxes in the image, predict their relationships.

Metrics. Since the annotation in VG is incomplete and

biased, we followed the conventional Recall@K (R@K =

20,50,100) as the evaluation metrics [31, 50, 57]. How-

ever, it is well-known that SGG models trained on biased

datasets such as VG have low performances for less fre-

quent categories. To this end, we introduced a balanced

metric called: Mean Recall (mR@K). It calculates the re-

call on each predicate category independently, and then av-

erages the results. So, each category contributes equally.

Such a metric reduces the influence of some common yet

meaningless predicates, e.g., “on”, “of”, and gives equal

attention to those infrequent predicates, e.g., “riding”, “car-

rying”, which are more valuable to high-level reasoning.

4.2. Implementation Details

We adopted Faster-RCNN [40] with VGG backbone

to detect object bounding boxes and extract RoI features.

Since the performance of SGG highly depends on the under-

lying detector, we used the same set of parameters as [57]

for fair comparison. Object correlations f(xi,xj) in Eq. (1)

will be pretrained on ground-truth bounding boxes with

class-agnostic relationships (i.e., foreground/background
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Figure 6. The statistics of left-branch (hierarchical) nodes and

right-branch (parallel) nodes of the “street” category.

relationships), using all possible symmetric pairs without

sampling. In SGGen, top-64 object proposals were se-

lected after non-maximal suppression (NMS) with 0.3 IoU.

We set background/foreground ratio for predicate classifi-

cation to 3, and capped the number of training samples at

64 (retained all foreground pairs if possible). Our model

is optimized by SGD with momentum, using learning rate

lr = 6 · 10−3 and batch size b = 5 for supervised learning,

and lr = 6 · 10−4, b = 1 for reinforcement learning.

4.3. Ablation Studies

We investigated the influence of different structure con-

struction policies. They are reported on the bottom half

of Table 1. The ablative methods are (1) Chain: sorting

all the objects by
∑

j:j �=i Sij , then constructing a chain,

which is different from the left-to-right ordered chain in

MOTIFS [57]; (2) Overlap: iteratively constructing a bi-

nary tree by selecting the node with largest number of over-

lapped objects as parent, and dividing the rest nodes into

left/right sub-trees by relatively positions of their bound-

ing boxes; (3) Multi-Branch: the maximum spanning tree

generated from score matrix S, using Child-Sum TreeL-

STM [44] to incorporate context; (4) VCTREE-SL: the

proposed VCTREE trained by supervised learning; (5) VC-

TREE-HL: the complete version of VCTREE, trained by

hybrid learning for structure exploration in Section 3.5. As

we will show that Multi-Branch is significantly worse than
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VQA2.0 Validation Accuracy

Model Yes/No Number Other All Balanced Pairs

Graph 81.8 44.9 56.6 64.5 36.3

Chain 81.8 44.5 56.9 64.6 36.3

Overlap 81.8 44.8 57.0 64.7 36.4

Multi-Branch 82.1 44.3 56.9 64.7 36.6

VCTREE-SL 82.3 45.0 57.0 64.9 36.9

VCTREE-HL 82.6 45.1 57.1 65.1 37.2

Table 3. Accuracies (%) of various context structures on the

VQA2.0 validation set.

VCTREE, so there is no need to conduct hybrid learning ex-

periment on Multi-Branch. We observe that VCTREE per-

forms better than other structures, and it is further improved

by hybrid learning for structure exploration.

4.4. Comparisons with State-of-the-Arts

Comparing Methods. We compared VCTREE with state-

of-the-art methods in Table 1: (1) VRD [31], FREQ [57]

are methods without using visual contexts. (2) AssocEm-

bed [34] assembles implicit contextual features by stacked

hourglass backbone [35]. (3) IMP [50], TFR [21], MO-

TIFS [57], Graph-RCNN [51] are explicit context models

with a variety of structures.

Quantitative Analysis. From Table 1, compared with the

previous state-of-the-art MOTIFS [57], the proposed VC-

TREE has the best performances. Interestingly, Overlap tree

and Multi-Branch tree are better than other non-tree context

models. From Table 2, the proposed VCTREE-HL shows

larger absolute gains of PredCls under mR@100, which in-

dicates that our model learns non-trivial visual context, i.e.,

not merely class distribution bias as in FREQ and partially

in MOTIFS. Note that MOTIFS [57] is even worse than its

FREQ [57] baseline under mR@100.

Qualitative Analysis. To better understand what context is

learned by VCTREE, we visualized a statistics of left-/right-

branch nodes for nodes classified as “street” in Figure 6.

From the left pie, the hierarchical relations, we can see the

node categories are long-tailed, i.e., top-10 categories cover

the 73% of the instances; while the right pie, the parallel re-

lations, are more uniformly distributed. This demonstrates

that VCTREE captures the two types of context success-

fully. More qualitative examples of VCTREEs and their

generated scene graph can be viewed in Figure 7. The com-

mon errors are generally synonymous labels, e.g., “jeans”

vs. “pants”, “man” vs. “person”, and over-interpretation,

e.g., the “tail” of bottom left “dog” is considered as “leg”,

as it appears at the place where “leg” should be.

5. Experiments on Visual Q&A

5.1. Settings

Datasets. We evaluated the proposed VQA model on

VQA2.0 [17]. Compared with VQA1.0 [2], VQA2.0

has more question-image pairs for training (443,757)

VQA2.0 test-dev

Model Yes/No Number Other All

Teney [45] 81.82 44.21 56.05 65.32

MUTAN [5] 82.88 44.54 56.50 66.01

MLB [22] 83.58 44.92 56.34 66.27

DA-NTN [3] 84.29 47.14 57.92 67.56

Count [59] 83.14 51.62 58.97 68.09

Chain 82.74 47.31 58.93 67.42

Graph 83.53 47.09 58.6 67.56

VCTREE-HL 84.28 47.78 59.11 68.19

Table 4. Single-model accuracies (%) on VQA2.0 test-dev, where

MUTAN and MLB are re-implemented versions from [3].

VQA2.0 test-standard

Model Yes/No Number Other All

Teney [45] 82.20 43.90 56.26 65.67

MUTAN [5] 83.06 44.28 56.91 66.38

MLB [22] 83.96 44.77 56.52 66.62

DA-NTN [3] 84.60 47.13 58.20 67.94

Count [59] 83.56 51.39 59.11 68.41

Chain 83.06 47.38 58.95 67.68

Graph 84.03 47.08 58.82 68.0

VCTREE-HL 84.55 47.36 59.34 68.49

Table 5. Single-model accuracies (%) on VQA2.0 test-standard,

where MUTAN and MLB are re-implemented versions from [3].

and validation (214,354), and all the question-answer

pairs are balanced by making sure the same question

can have different answers. In VQA2.0, the ground-

truth accuracy of a candidate answer is considered as

the average of min(#Humans votes
3 , 1) over all 10 select 9

sets. Question-answer pairs are organized in three answer

types: i.e. “Yes/No”, “Number”, “Other”. There are also

65 question types determined by prefixed words, which we

used to generate question-guided gates. We also tested

our models on a balanced subset of validation set, called

Balanced Pairs [45], which requires the same question on

different images with two different yet perfect (with 1.0

ground-truth score) answers. Since Balanced Pairs strictly

removes question-related bias, it reflects the ability of a con-

text model to distinguish subtle differences between images.

5.2. Implementation Details

We employed a simple text preprocessing for questions

and answers, which changes all characters into lower-case

and removes special characters. Questions were encoded

into a vocabulary of the size 13,758 without trimming. An-

swers used a 3,000 vocabulary selected by frequency. For

fair comparison, we used the same bottom-up feature [1] as

previous methods [1, 3, 45, 59], which contains 10 to 100

object proposals per image extracted by Faster-RCNN [40].

We used the same Faster-RCNN detector to pretrain the

f(xi,xj). Since candidate answers were represented by

probabilities rather than one-hot vectors in VQA2.0, we al-

lowed the cross-entropy loss calculating soft categories, i.e.,

probabilities of ground-truth candidate answers. We used

Adam optimizer with learning rate lr = 0.0015 and batch

size b = 256, lr decayed at ratio of 0.5 every 20 epochs.
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Figure 7. Left: the learned tree structure and generated scene graphs in VG. Black color indicates correctly detected objects or predicates;

red indicates the misclassified ones; blue indicates correct predictions that not labeled as ground-truth. Right: interpretable and dynamic

trees subject to different questions in VQA2.0.

5.3. Ablation Studies

In addition to the 5 structure construction policies in-

troduced in Section 4.3, we also implemented a fully-

connected graph structure using the message passing mech-

anism [50]. From Table 3, the proposed VCTREE-HL out-

performs all the context models on three answer types.

We further evaluated the above context models on

VQA2.0 balanced pair subset [45]: the last column of Ta-

ble 3, and found that the absolute gains between VCTREE-

HL and other structures are even larger than those on the

original validation set. Meanwhile, as reported in [45], dif-

ferent architectures or hyper-parameters in non-contextual

VQA model normally gain less improvements on the bal-

anced pair subset than overall validation set. Thus, it sug-

gests that VCTREE indeed use better context structures to

alleviate the question-answer bias in VQA.

5.4. Comparisons with State-of-the-Arts

Comparing Methods. Table 4 & 5 reports the single-model

performances of various state-of-the-art methods [3, 5, 22,

45, 59] on both test-dev and test-standard sets. For fair com-

parison, the reported methods are all using the same Faster-

RCNN features [1] as ours.

Quantitative Analysis. The proposed VCTREE-HL shows

the best overall performance in both test-dev and test-

standard. Note that though Count [59] has close overall per-

formance to our VCTREE, it mainly improves the “Num-

ber” task by the elaborately designed model, while the pro-

posed VCTREE is a more general solution.

Qualitative Analysis. We visualized several examples of

VCTREE-HL on the validation set. They illustrate that the

proposed VCTREE is able to learn dynamic structures with

interpretability, e.g., in Figure 7, given the right middle im-

age with the question “Is there any snow on the trees?”, the

generated VCTREE locates the “tree” then searching for the

“snow”, while with question “What sport is the man do-

ing?”, the “man” appears to be the root.

6. Conclusions

In this paper, we proposed a dynamic tree structure

called VCTREE to capture task-specific visual contexts,

which can be encoded to support two high-level vision

tasks: SGG and VQA. By exploiting VCTREE, we ob-

served consistent performance gains in SGG on Visual

Genome and in VQA on VQA2.0, compared to models with

or without visual contexts. Besides, to justify that VCTREE

learns non-trivial contexts, we conducted additional exper-

iments against the category bias in SGG and the question-

answer bias in VQA, respectively. In the future, we intend

to study the potential of a dynamic forest as the underlying

context structure.
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