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Abstract

In this work, we consider one challenging training time attack by modifying training
data with bounded perturbation, hoping to manipulate the behavior (both targeted
or non-targeted) of any corresponding trained classifier during test time when
facing clean samples. To achieve this, we proposed to use an auto-encoder-like
network to generate such adversarial perturbations on the training data together
with one imaginary victim differentiable classifier. The perturbation generator will
learn to update its weights so as to produce the most harmful noise, aiming to
cause the lowest performance for the victim classifier during test time. This can be
formulated into a non-linear equality constrained optimization problem. Unlike
GANs, solving such problem is computationally challenging, we then proposed
a simple yet effective procedure to decouple the alternating updates for the two
networks for stability. By teaching the perturbation generator to hijacking the
training trajectory of the victim classifier, the generator can thus learn to move
against the victim classifier step by step. The method proposed in this paper can
be easily extended to the label specific setting where the attacker can manipulate
the predictions of the victim classifier according to some predefined rules rather
than only making wrong predictions. Experiments on various datasets including
CIFAR-10 and a reduced version of ImageNet confirmed the effectiveness of the
proposed method and empirical results showed that, such bounded perturbations
have good transferability across different types of victim classifiers.

1 Introduction

How to modify the training data with bounded transferable perturbation that can lead to the largest
generalization gap? In other words, we consider the task of adding imperceivable noises to the training
data, hoping to maximally confuse any corresponding classifier so as to make wrong predictions as
much as possible when facing clean test data. In this paper, we refer such perturbed training samples
as training time adversarial training data.

To achieve the above goal, we defined a deep encoder-decoder-like network to generate such pertur-
bations. Meanwhile, we used an imaginary neural network acting as the victim classifier, and the
goal here is to train both networks simultaneously that can cause the lowest accuracy for the victim
classifier on clean test set. We can thus formulate such problem into a non-linear equality constrained
optimization problem. Unlike GANs [9], such optimization problem is much harder to solve, and a
direct implementation of alternating updates will lead to unstable result. Inspired by some common
techniques in reinforcement learning such as introducing a separate record tracking network like
target-nets to stabilize Q-learning [19], we proposed a similar approach by decoupling the training
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procedure for both networks. By doing so, the optimization procedure is much stable in practice. In
other words, the adversarial perturbation generator is trained by hijacking the training procedure of
the victim classifier. By doing so, the noise generator will learn to move against the victim classifier
step by step.

A similar setting is data poisoning [20] proposed in the security community. However, their goal is
quite different compared with this work. The main goal for this work is to reveal some intriguing
properties of neural networks by adding bounded perturbations to the training data, whereas data
poisoning focuses on the restriction that only a few training data is allowed to change. In other
words, in traditional data poisoning tasks, the attackers goal is to add or modify training data as few
as possible, whereas training time adversarial data put the constraint on the perturbation levels (as
human imperceivable as possible). Moreover, having full control of training data (instead of changing
a few) is a realistic assumption. For instance, in some applications an agent may agree to release
some internal data for peer assessment or academic research, but does not like to enable the data
receiver to build a model which performs well on real test data; this can be realized by applying such
adversarial noises before the data release. In addition, when taking this from data privacy aspect,
such procedure is quite different from releasing synthetic data via GANs. Consider a company selling
surveillance cameras and the user will store all the data been taken (these photos cannot be synthetic
for obvious reasons). On the other hand, the user certainly does not want any other unauthorized third
parties to steal the data and train a classifier. Then, our proposed procedure is suitable for this kind of
task since now the user can just make self-perturbations on its own data for protection.

The other contribution of this work is that, such formalization can be easily extended to the label
specific case, where one wants to specifically fool the classifier of recognizing one input pattern into a
specifically predefined class, rather than making a wrong prediction only. Finally, experimental results
showed that, the learned noises is effective and robust to other machine learning models with different
structure or even different types such as Random Forest [4] or Support Vector Machine(SVM) [6].

The rest of the paper is organized as follows: First, we will give a formalization for the proposed
problem and describe the optimization procedure. Experimental results are then presented and finally
conclusion and future works are discussed.

2 Related Works

One subject which closely relates to our work is data poisoning. The task of data poisoning dates
back to the pre-deep learning times. For instance, there has been some research on poisoning the
classical models, including SVM [2], Linear Regression [14], and Naive Bayes [21] which basically
transform the poisoning task into a convex optimization problem.

Poisoning for deep models, however, is a more challenging one. Kon et.al. [16] first proposed the
possibility of poisoning deep models via the influence function to derive adversarial training examples.
Currently, there have been some popular approaches to data poisoning. For instance, sample specific
poisoning aims to manipulate the model’s behavior on some particular test samples. [24, 5, 11]. On
the other hand, general poison attacks aiming to reduce the performance on cleaned whole unseen
test set [16, 20]. As explained in the previous section, one of the differences with data poisoning is
that the poisoning task mainly focuses on modifying as few samples as possible whereas our work
focus on adding bounded noises as small as possible. In addition, our noise adding scheme can be
scaled to much larger datasets with good transferability.

Another related subject is adversarial examples or testing time attacks, which refers to the case of
presenting malicious testing samples to an already trained classifier. Since the classifier is given and
fixed, there is no two-party game involved. Researches showed deep model is very sensitive to such
adversarial examples due to the high-dimensionality of the input data and the linearity nature inside
deep neural networks [10]. Some recent works showed such adversarial examples also exist in the
physical world [8, 1], making it an important security and safety issue when designing high-stakes
machine learning systems in an open and dynamic environment. Our work can be regarded as a
training time analogy of adversarial examples. There have been some works on explaining the
effectiveness of adversarial examples. The work in [26] proposed that it is the linearity inside neural
networks that makes the decision boundary vulnerable in high dimensional space. Although beyond
the scope of this paper, we tested several hypotheses on explaining the effectiveness of training time
adversarial noises.
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Figure 1: An overview for learning to confuse: Decoupling the alternating update for fθ and gξ

3 The proposed method

Consider the standard supervised learning procedure for classification where one wants to learn
the mapping fθ : X → {0, 1}K from data where K is the number of classes being predicted. To
learn the optimal parameters θ∗, a loss function such as cross-entropy for classification L(fθ(x), y) :
R

k × Z+ → R+ on training data is often defined and empirical risk minimization [27] can thus be
applied, that is, one wants to minimize the loss function on training data as:

θ∗ = argmin
θ

∑

(x,y)∼D

[L(fθ(x), y)] (1)

When fθ is a differentiable system such as neural networks, stochastic gradient descent (SGD) [3] or
its variants can be applied by updating θ via gradient descent

θ ← θ − α∇θL(fθ(x), y), (2)

where α refers to the learning rate.

The goal for this work is to perturb the training data by adding artificially imperceivable noise such
that during testing time, the classifier’s behavior will be dramatically different on the clean test-set.

To formulate this, we first define a noise generator gξ : X → X which takes one training sample x in
X and transform it into an imperceivable noise pattern in the same space X . For image data, such
constraint can be formulated as:

∀x, ‖gξ(x)‖∞ ≤ ǫ (3)

Here, the ǫ controls the perturbation strength which is a common practice in adversarial settings [10].
In this work, we choose the noise generator gξ to be an encoder-decoder neural network and the
activation for the final layer is defined to be: ǫ · (tanh(·)) to facilitate the constraint (3).

With the above motivation and notations, we can then formalize the task into the following optimiza-
tion problem as:

max
ξ

∑

(x,y)∼D

[L(fθ∗(ξ)(x), y)],

s.t. θ∗(ξ) = argmin
θ

∑

(x,y)∼D

[L(fθ(x+ gξ(x)), y)]
(4)

In other words, every possible configuration ξ is paired with one classifier fθ∗(ξ) trained on the
corresponding modified data, the goal here is to find a noise generator gξ∗ such that the paired
classifier fθ∗(ξ∗) to have the worst performance on the cleaned test set, compared with all the other
possible ξ.

This non-convex optimization problem is challenging, especially due to the nonlinear equality
constraint. Here we propose an alternating update procedure using some commonly accepted tricks
in reinforcement learning for stability [19] which is simple yet effective in practice.

First, since we are assuming fθ and gξ to be neural networks, the equality constraint can be relaxed
into

θi = θi−1 − α · ∇θi−1
L(fθi−1

(x+ gξ(x)), y) (5)
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where i is the index for SGD updates.

Second, the basic idea is to alternatively update fθ over adversarial training data via gradient descent
and update gξ over clean data via gradient ascent. The main problem is that, if we directly using
this alternating approach, both networks fθ and gξ won’t converge in practice. To stabilize this
process, we propose to update fθ over the adversarial training data first, while collecting the update
trajectories for fθ, then, based on such trajectories, we update the adversarial training data as well as
gξ by calculating the pseudo-update for fθ at each time step. Such whole procedure is repeated T
trials until convergence. The detailed procedure is illustrated in Algorithm 1 and Figure 1.

Algorithm 1: Deep Confuse

Input: Training data D, number of trials T , max iteration for training a classification model maxiter,
learning rate of classification model αf ,learning rate of the Noise Generator αg , batch size b

Output: Learned Noise Generator gξ
1 ξ ← RandomInit()
2 for t = 1 to T do
3 θ0 ← RandomInit()
4 L← empty list
5 // Update fθ while keeping gξ fixed
6 for i = 0 to maxiter do
7 (xi, yi) ∼ D // Sample a mini-batch of training data
8 L.append((θi, xi, yi))

9 xadversarial
i ← xi + gξ(xi)

10 θi+1 ← θi − αf∇θiL(fθi(x
adversarial
i ), yi) // Update model fθ by SGD

11 end
12 // update gξ via a pseudo-update of fθ
13 for i = 0 to maxiter do
14 (θi, xi, yi)← L[i]
15 θ′ ← θi − αf∇θiL(fθi(xi + gξ(xi)), yi) // Pseudo-update fθ over the current adversarial data
16 ξ ← ξ + αg∇ξL(fθ′(x), y) // Update gξ over clean data

17 end

18 end
19 return gξ

Finally, we introduce one more modification for efficiency. Notice that storing the whole trajectory
of the gradient updates when training fθ is memory inefficient. To avoid directly storing such
information, during each trial of training, we can create a copy of gξ as g′ξ and let g′ξ to alternatively

update with fθ, then copy the parameters back to gξ . By doing so, we can merge the two loops within
each trial into a single one and don’t need to store the gradients at all. The detailed procedure is
illustrated in Algorithm 2.

Algorithm 2: Mem-Efficient Deep Confuse

Input: Training data D, number of trials T , max iteration for training a classification model maxiter,
learning rate of classification model αf ,learning rate of the Noise Generator αg , batch size b

Output: Learned Noise Generator gξ
1 ξ ← RandomInit()
2 g′ξ ← gξ.copy()
3 for t = 1 to T do
4 θ0 ← RandomInit()
5 for i = 0 to maxiter do
6 (xi, yi) ∼ D // Sample a mini-batch

7 θ′ ← θi − αf∇θiL(fθi(xi + g′ξ(xi)), yi) // Update g′ξ using current fθ
8 ξ′ ← ξ′ + αg∇ξ′L(fθ′(x), y)

9 xadversarial
i ← xi + gξ(xi)

10 θi+1 ← θi − αf∇θiL(fθi(x
adversarial
i ), yi) // Update fθ by SGD

11 end

12 gξ ← g′ξ
13 end
14 return gξ
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4 Label Specific Adversaries

In this section, we give a brief introduction of how to transfer our settings to the label specific
scenarios. The goal for label specific adversaries is that the adversary not only wants the classifier to
make the wrong predictions but also want the classifier’s predictions specifically according to some
pre-defined rules. For instance, the attacker wants the classifier to wrongly recognize the pattern
from class A specifically to Class B (thus not to Class C). To achieve this, denote η : Z+ → Z+ as a
pre-defined label transformation function which maps one label to another. Here η is pre-defined by
the attacker, and it transforms a label index into another different label index. Such label specific
adversary can thus be formalized into:

min
ξ

∑

(x,y)∼D

[L(fθ∗(ξ)(x), η(y))],

s.t. θ∗(ξ) = argmin
θ

∑

(x,y)∼D

L(fθ(xi + gξ(xi)), yi)
(6)

It is easy to show that optimizing the above problem is nearly identical with the procedure described in
Algorithm 2. The only thing needed to be changed is to replace the gradient ascent into gradient decent
in line 10 in Algorithm 2 and replace η(y) to y in the same line while keeping others unchanged.

5 Experiment

To validate the effectiveness of our method, we used the classical MNIST [18], CIFAR-10 [17] for
multi-classification and a subset of ImageNet [7] for 2-class classification. Concretely, we used a
subset of ImageNet (bulbul v.s. jellyfish) consists of 2,600 colored images with size 224×224×3
for training and 100 colored images for testing. Random samples for the adversarial training data is
illustrated in Figure 2.

(a) 2-Class ImageNet

(b) MNIST

(c) CIFAR-10

Figure 2: First rows: original training samples. Second rows: adversarial training samples.

The classifier fθ during training we used for MNIST is a simple Convolutional Network with 2
convolution layers having 20 and 50 channels respectively, followed by a fully-connected layer
consists of 500 hidden units. For the 2-class ImageNet and CIFAR-10, we used fθ to be a CNN with
5 convolution layers having 32,64,128,128 and 128 channels respectively, each convolution layer is
followed by a 2×2 pooling operations. Both classifiers used ReLU as activation and the kernel size is
set to be 3×3. Cross-entropy is used for loss function whereas the learning rate and batch size for the
classifiers fθ are set to be 0.01 and 64 for MNIST and CIFAR-10 and 0.1 and 32 for ImageNet. The
number of trials T is set to be 500 for both cases.

The noise generator gξ for MNIST and ImageNet consists of an encoder-decoder structure where
each encoder/decoder has 4 4x4 convolution layers with channel numbers 16,32,64,128 respectively.
For CIFAR-10, we use a U-Net [23] which has larger model capacity. The learning rate for the noise
generator gξ is set to be 10−4 via Adam [15].
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5.1 Performance Evaluation of Training Time Adversary

Using the model configurations described above, we trained the noise generator gξ and its corre-
sponding classifier fθ with perturbation constraint ǫ to be 0.3, 0.1, 0.032, for MNIST, ImageNet and
CIFAR-10, respectively. The classification results are summarized in Table 1. Each experiment is
repeated 10 times.

(a) MNIST-Train (b) ImageNet-Train (c) CIFAR-Train

(d) MNIST-Test (e) ImageNet-Test (f) CIFAR-Test

Figure 3: First row: Deep features of the adversarial training data. Second row: Deep features of the
cleaned test data.

Table 1: Test accuracy (mean±std) when the classifier is trained on the original clean training set and
the adversarial training set,respectively.

MNIST ImageNet CIFAR-10
Clean Data 99.32± 0.05 88.5± 2.32 77.28± 0.17
Adversarial Data 0.25± 0.04 54.2± 11.19 28.77± 2.80

When trained on the adversarial datasets, the test accuracy dramatically dropped to only 0.25± 0.04,
54.2± 11.19 and 28.77± 2.80, a clear evidence of the effectiveness for the proposed method.

We also visualized the activation of the final hidden layers of fθs trained on the adversarial training
sets in Figure 3. Concretely, we fit a PCA [22] model on the final hidden layer’s output for each fθ on
the adversarial training data, then using the same projection model, we projected the clean data into
the same space. It can be shown that the classifier trained on the adversarial data cannot differentiate
the clean samples.

It is interesting to know how does the perturbation constraint ǫ affects the performance in terms
of both accuracy and visual appearance. Concretely, on MNIST dataset, we varied ǫ from 0 (no
modification) to 0.3, with a step size of 0.05 while keeping other configurations the same and the
results are illustrated in Figure 4.

The test accuracy in Figure 4 refers to the corresponding model performance trained on the different
adversarial training data with different ǫ. From the experimental result, we observed a sudden drop in
performance when ǫ exceeds 0.15. Although beyond the scope of this work, we conjecture this result
is related or somewhat consistent with a similar theoretical guarantee for the robust error bound when
ǫ is 0.10 [28].

Finally, we examined the results when the training data is partially modified. Concretely, under
different perturbation constraint, we varied the percentage of adversaries in the training data while
keeping other configurations the same. The results are demonstrated in Figure 5. Random flip refers
to the case when one randomly flip the labels in the training data.
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Figure 4: Effect of varying ǫ.
Figure 5: Varying the ratio of adversaries
under different ǫ.

5.2 Evaluation of Transferability

In a more realistic setting, it is important to know the performance when we use a different classifier.
Concretely, denote the original conv-net fθ been used during training as CNNoriginal. After the
adversarial data is obtained, we then train several different classifiers on the same adversarial data
and evaluate their performance on the clean test set.

For MNIST, we doubled/halved all the channels/hidden units and denote the model as CNNlarge and
CNNsmall accordingly. In addition, we also trained a standard Random Forest [4] with 300 trees and
a SVM [6] using RBF kernels with kernel coefficient equal to 0.01. The experimental results are
summarized in Figure 6.

Figure 6: Test performance when using different classifiers. The horizontal red line indicates random
guess accuracy.

The blue histograms in Figure 6 correspond to the test performance trained on the clean dataset,
whereas orange histograms correspond to the test performance trained on the adversarial dataset.
From the experimental results, it can be shown that the adversarial noises produced by gξ are general
enough such that even non-NN classifiers as random forest and SVM are also vulnerable and produce
poor results as expected.

(a) CIFAR-10 (b) Two-class Imagenet

Figure 7: Test performance when using different model architectures.The horizontal red line indicates
random guess accuracy.
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For CIFAR-10 and ImageNet, we tried a variety of conv-nets including VGG [25], ResNet [12]
and DenseNet [13] with different layers, and evaluate the performance accordingly. The results are
summarized in Figure 7. Again, good transferability of the adversarial noise is observed.

5.3 The Generalization Gap and Linear Hypothesis

To fully illustrate the generalization gap caused by the adversaries, after we obtained the adversarial
training data, we retrained 3 conv-nets (one for each data-sets) having the same architecture as fθ
and plotted the training curves as illustrated in Figure 8. A clear generalization gap between training
and testing is observed. We conjecture the deep model tends to over-fits towards the training noises
gξ(x).

(a) MNIST. (b) 2-class ImageNet. (c) CIFAR-10.

Figure 8: Learning curves for fθ

To validate our conjecture, we measured the predictive accuracy between the true label and the
predictions fθ(gξ(x)) taking only adversarial noises as inputs. The results are summarized in Table 2.
Notice 95.15%, 93.00% and 72.98% test accuracy is obtained on the test set.

This interesting result confirmed the conjecture that the model does over-fit to the noises. Here we
give one possible explanation. We hypothesize that it is the linearity inside deep models that make
the adversarial effective. In other words, fθ(gξ(x)) contributes most when minimizing L(fθ(x +
gξ(x)), y). This result is deeply related and consistent with the results from adversarial examples
[10] and the memorization property for DNNs [29].

Figure 9: Clean samples and their correspond-
ing adversarial noises for MNIST, CIFAR-10
and ImageNet

Table 2: Prediction accuracy taking only
noises as inputs. That is, the accuracy be-
tween the true label and fθ(gξ(x)) where x is
the clean sample.

Noisetrain Noisetest

MNIST 95.62 95.15

ImageNet 88.87 93.00

CIFAR-10 78.57 72.98

5.4 Weight Visualizations

Instead of visualizing deep features of the adversarial data, it is also interesting to directly plotting the
trained weights of the victim classifier as a visual interpretation of the effectiveness. Concretely, we
visualized the weights of two linear SVMs trained on clean and adversarial training data, respectively.
Our results are shown in Figure 10.

It can be shown that, compared with image templates (top row) obtained from clean training data,
the victim SVM weights (bottom row) trained on adversarial data went to the opposite direction
and trend to over-fits on image corners. This result is also hinted that, the decision boundary in a
high-dimensional space is indeed easy to manipulate, which in-turn give the attacker the chance of
producing training time adversarial data.
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Figure 10: LinearSVM weights visualization for MNIST. Top row: Weights trained on clean training
data. Bottom row: Weights trained on adversarial training data.

5.5 Label Specific Adversaries

To validate the effectiveness in label specific adversarial setting, without loss of generalizability, here
we shift the predictions by one. For MNIST dataset, we want the classifier trained on the adversarial
data to predict the test samples from class 1 specifically to class 2, and class 2 to class 3 ... and class
9 to class 0. Using the method described in section 4, we trained the corresponding noise generator
and evaluated the corresponding CNN on the test set, as illustrated in Figure 11.

(a) Clean Training Data (b) Non-label specific setting (c) Label-specific setting

Figure 11: The confusion matrices on test set under different scenarios for MNIST dataset. They
summarized the test performance of classifier trained on (a) clean training data (b) Non-label specific
setting and (c) label-specific setting.

Compared with the test accuracy (0.25± 0.04) in the non-label specific setting, the test accuracy also
dropped to 1.48± 0.21, in addition, the success rate for targeting the desired specific label increased
from 0.00 to 79.7± 0.38. Such results gave positive supports for the effectiveness in label specific
adversarial setting. Notice this is only a side-product of the proposed method to show the formulation
can be easily modified to achieve some more user-specific tasks.

6 Conclusion

In this work, we proposed a general framework for generating training time adversarial data by letting
an auto-encoder watch and move against an imaginary victim classifier. We further proposed a simple
yet effective training scheme to train both networks simultaneously by decoupling the alternating
update procedure for stability. Experiments on image data confirmed the effectiveness of the proposed
method, in particular, such adversarial data is still effective even to use a different victim classifier,
making it more useful in a realistic setting.

Theoretical analysis or some more improvements for the optimization procedure is planned as future
works. In addition, it is interesting to design adversarially robustness classifiers against this scheme.
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