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ABSTRACT 

The forward modeling approach is a methodology for learning con

trol when data is available in distal coordinate systems. We extend 

previous work by considering how this methodology can be applied 

to the optimization of quantities that are distal not only in space 

but also in time. 

In many learning control problems, the output variables of the controller are not 

the natural coordinates in which to specify tasks and evaluate performance. Tasks 

are generally more naturally specified in "distal" coordinate systems (e.g., endpoint 

coordinates for manipulator motion) than in the "proximal" coordinate system of 

the controller (e.g., joint angles or torques). Furthermore, the relationship between 

proximal coordinates and distal coordinates is often not known a priori and, if 

known, not easily inverted. 

The forward modeling approach is a methodology for learning control when train

ing data is available in distal coordinate systems. A forward model is a network 

that learns the transformation from proximal to distal coordinates so that distal 

specifications can be used in training the controller (Jordan & Rumelhart, 1990). 

The forward model can often be learned separately from the controller because it 

depends only on the dynamics of the controlled system and not on the closed-loop 

dynamics. 

In previous work, we studied forward models of kinematic transformations (Jordan, 

1988, 1990) and state transitions (Jordan & Rumelhart, 1990). In the current paper, 
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we go beyond the spatial credit assignment problems studied in those papers and 

broaden the application of forward modeling to include cases of temporal credit 

assignment (cf. Barto, Sutton, & Anderson, 1983; Werbos, 1987). As discussed 

below, the function to be modeled in such cases depends on a time integral of the 

closed-loop dynamics. This fact has two important implications. First, the data 

needed for learning the forward model can no longer be obtained solely by observing 

the instantaneous state or output of the plant. Second, the forward model is no 

longer independent of the controller: If the parameters of the controller are changed 

by a learning algorithm, then the closed-loop dynamics change and so does the 

mapping from proximal to distal variables. Thus the learning of the forward model 

and the learning of the controller can no longer be separated into different phases. 

1 FORWARD MODELING 

In this section we briefly summarize our previous work on forward modeling (see 

also Nguyen & Widrow, 1989 and Werbos, 1987). 

1.1 LEARNING A FORWARD MODEL 

Given a fixed control law , the learning of a forward model is a system identification 

problem. Let z = g(s, u) be a system to be modeled, where z is the output or the 

state-derivative, s is the state, and u is the control. We require the forward model 

to minimize the cost functional 

Jm = ~ J (z - z)T(z - z)dt. (1) 

where z = 9(s, u, v) is the parameterized function computed by the model. Once 

the minimum is found, backpropagation through the model provides an estimate 

¥u of the system Jacobian matrix :~ (cf. Jordan, 1988). 

1.2 LEARNING A CONTROLLER 

Once the forward model is sufficiently accurate, it can be used in the training of the 

controller. Backpropagation through the model provides derivatives that indicate 

how to change the outputs of the controller. These derivatives can be used to 

change the parameters of the controller by a further application of back propagation. 

Figure 1 illustrates the general procedure. 

This procedure minimizes the "distal" cost functional 

(2) 

where z· is a reference signal. To see this, let the controller output be given as a 

function u = f(s, z·, w) of the state s·, the reference signal z·, and a parameter 

vector w. Differentiating J with respect to w yields 

J ouT ozT 
"w J = - ow ou (z· - z)dt. (3) 
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Figure 1: Learning a Controller. The Dashed Line Represents Backpropagation. 

The Jacobian matrix ¥u cannot be assumed to be available a priori, but can be 

estimated by backpropagation through the forward model. Thus the error signal 

available for learning the controller is the estimated gradient 

T 0' T .. J ou oz • V'wJ = - - - (z - z)dt. ow OU 
(4) 

We now consider a task in which the foregoing framework must be broadened to 

allow a more general form of distal task specification. 

2 THE TASK 

The task is to learn to regulate an unstable nonminimum-phase plant. We have 

chosen the oft-studied (e.g., Barto, Sutton, & Anderson, 1983; \Vidrow & Smith, 

1964) problem of learning to balance an inverted pendulum on a moving cart. The 

plant dynamics are given by: 

[
M+m 
mlcos(J 

mlcos(J ] [ ~ ] + [ -mlsi~(J ] iP = [ F ] 
I (J -mglszn(J 0 

where m is the mass of the pole, M is the mass of the cart, I is half the pole length, 

I is the inertia of the pole around its base, and F is the force applied to the cart. 

The task we studied is similar to that studied by Barto, Sutton, & Anderson (1983). 

A state-feedback controller provides forces to the cart, and the system evolves until 

failure occurs (the cart reaches the end of the track or the pole reaches a critical 

angle). The system learns from failure; indeed, it is assumed that the only teaching 

information provided by the environment is the signal that failure has occurred. 
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Figure 2: The Network Architecture 

There are several differences between our task and that studied by Barto, Sutton, &. 
Anderson (1983). First, disturbances (white noise) are provided by the environment 

rather than by the learning algorithm. This implies that in our experiments the 

level of noise seen by the controller does not diminish to zero over the course of 

learning. Second, we used real-valued forces rather than binary forces. Finally, we 

do not assume the existence of a "reset button" that reinitializes the system to the 

origin of state space; upon failure the system is restarted in a random configuration. 

3 OUR APPROACH 

In our approach, the control system learns a model that relates the current state of 

the plant and the current control signal to a prediction of future failure. We make 

use of a temporal difference algorithm (Sutton, 1988) to learn the transformation 

from (state, action) pairs to an estimate of the inverse of the time until failure. 

This mapping is then used as a differentiable forward model in the learning of the 

controller-the controller is changed so as to minimize the output of the model and 

thereby maximize the time until failure . 

The overall system architecture is shown in Figure 2. We describe each component 

in detail in the following sections. 

An important feature that distinguishes this architecture from previous work (e.g., 
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Barto, Sutton, & Anderson, 1983) is the path from the action unit into the forward 

model. This path is necessary for supervised learning algorithms to be used (see 

also Werbos, 1987). 

3.1 LEARNING THE FORWARD MODEL 

Temporal difference algorithms learn to make long term predictions by achieving 

local consistency between predictions at neighboring time steps, and by grounding 
the chain of predictions when information from the environment is obtained. In our 

case, if z(t) is the inverse of the time until failure, then consistency is defined by 

the requirement that z-l(t) = z-l(t + 1) + 1. The chain is grounded by defining 

z(T) = 1, where T is the time step on which failure occurs. 

To learn to estimate the inverse of the time until failure, the following temporal 

difference error terms are used. For time steps on which failure does not occur, 

( ) 1 A( ) 
e t = 1 + £-1 (t + 1) - z t , 

where £(t) denotes the output of the forward model. When failure occurs, the target 

for the forward model is set to unity: 

e(t) = 1 -- £(t) 

The error signal e(t) is propagated backwards at time t + 1 using activations saved 

from time t. Standard backpropagation is used to compute the changes to the 

weights. 

3.2 LEARNING THE CONTROLLER 

If the controller is performing as desired, then the output of the forward model 

is zero (that is, the predicted time-until-failure is infinity). This suggests that an 

appropriate distal error signal for the controller is zero minus the output of the 

forward model. 

Given that the forward model has the control action as an input, the distal error 

can be propagated backward to the hidden units of the forward model, through the 

action unit, and into the controller where the weights are changed (see Figure 2). 

Thus the controller is changed in such a way as to minimize the output of the 

forward model and thereby maximize the time until failure. 

3.3 LEARNING THE FORWARD MODEL AND THE CONTROLLER 

SIMULTANEOUSLY 

As the controller varies, the mapping that the forward model must learn also varies. 

Thus, if the forward model is to provide reasonable derivatives, it must be contin

uously updated as the controller changes. We find that it is possible to train the 

forward model and the controller simultaneously, provided that we use a larger 

learning rate for the forward model than for the controller. 
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4 MISCELLANY 

4.1 RESET 

Although previous studies have assumed the existence of a "reset button" that 

can restart the system at the origin of state space, we prefer not to make such an 

assumption. A reset button implies the existence of a controller that can stabilize 

the system, and the task of learning is to find such a controller. In our simulations, 

we restart the system at random points in state space after failure occurs. 

4.2 REDUNDANCY 

The mapping learned by the forward model depends on both the state and the ac

tion. The action, however, is itself a function of the state, so the action unit provides 

redundant information. This implies that the forward model could have arbitrary 

weights in the path from the action unit and yet make reasonable predictions. Such 

a model, however, would yield meaningless derivatives for learning the controller. 

Fortunately, backpropagation tends to produce meaningful weights for a path that 

is correlated with the outcome, even if that path conveys redundant information. 

To further bias things in our favor, we found it useful to employ a larger learning 

rate in the path from the action unit to the hidden units of the forward model (0.9) 

than in the path from the state units (0.3). 

4.3 REPRESENTATION 

As seen in Figure 2, we chose input representations that take advantage of symme

tries in the dynamics of the cart-pole system. The forward model has even symmetry 

with respect to the state variables, whereas the controller has odd symmetry. 

4.4 LONG-TERM BEHAVIOR 

There is never a need to "turn off" the learning of the forward model. Once the pole 

is being successfully balanced in the presence of fluctuations, the average time until 

failure goes to infinity. The forward model therefore learns to predict zero in the 

region of state space around the origin, and the error propagated to the controller 
also goes to zero. 

5 RESULTS 

We ran twenty simulations starting with random initial weights. The learning rate 

for the controller was 0.05 and the learning rate for the forward model was 0.3, 

except for the connection from the action unit where the learning rate was 0.9. 

Eighteen runs converged to controller configurations that balanced the pole, and 

two runs converged on local minima. Figure 3 shows representative learning curves 

for six of the successful runs. 

To obtain some idea of the size of the space of correct solutions, we performed an 

exhaustive search of a lattice in a rectangular region of weight space that contained 
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Figure 3: Learning Curves for Six Runs 

all of the weight configurations found by our simulations. As shown in Figure 4, 

only 15 out of 10,000 weight configurations were able to balance the pole. 

6 CONCLUSIONS 

Previous wor k within the forward modeling paradigm focused on models of fixed 

kinematic or dynamic properties of the controlled plant (Jordan, 1988,1990; Jordan 

&, Rumelhart, 1990). In the current paper, the notion of a forward model is broader. 

The function that must be modeled depends not only on properties of the controlled 

plant, but also on properties of the controller. Nonetheless, the mapping is well

defined, and the results demonstrate that it can be used to provide appropriate 

incremental changes for the controller. 

These results provide further demonstration of the applicability of supervised learn

ing algorithms to learning control problems in which explicit target information is 

not available. 
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Figure 4: Performance of Population of Controllers 
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