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Abstract

We consider two players each of whom attempts to predict the behavior of the other, using
no more than the history of earlier predictions. Behaviors are limited to a pair of options, con-
ventionally denoted by 0, 1. Such players face the problem of learning to coordinate choices. The
present paper formulates their situation recursion theoretically, and investigates the prospects
for success. A pair of players build up a matrix with two rows and infinitely many columns, and
are said to “learn” each other if cofinitely many of the columns show the same number in both
rows (either 0 or 1). Among other results we prove that there are two collections of players that
force all other players to choose their camp. Each collection is composed of players that learn
everyone else in the same collection, but no player that learns all members of one collection
learns any member of the other.
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1 Introduction

Sam and Sally like to meet daily in the park, pretending each time that it’s yet another chance
encounter, walking side by side in shy silence. Each shows up punctually at either noon or 6:00 p.m.
hoping the other will have made the same choice. The shifting constraints on their schedules, how-
ever, make it hard to predict who will select which time of arrival, and both suffer disappointment
when there is mismatch. So both Sam and Sally set about trying to predict the other’s choices,
desiring to act in concert. Their predictions are based on no more than the history of earlier events.
For example, on the sixth morning, each might contemplate the matrix:

Sam: noon 6:00 noon noon 6:00
Sally: noon noon 6:00 6:00 6:00

Their separate decisions extend the matrix to a sixth column, which helps determine the choices
made on the seventh morning, and so on without end. We can think of Sam’s policy as a function
that maps each such matrix (of any finite size) into the set {noon, 6:00 p.m.}, and similarly for
Sally. It is said that Sam “learns” Sally’s policy — for short, “Sam learns Sally” — just in case he
eventually begins to select arrival times that match Sally’s forever after. (In such circumstances,
we may also say that Sally learns Sam.) If Sam is clever enough, Sally could embody any of a
wide range of policies without compromising ultimate success, and in this case we say that Sam
learns the entire set of potential policies, even though only one of them will be embodied by Sally’s
dispositions.

Sam and Sally face the problem of learning to coordinate choices. The present paper formulates
their situation abstractly and investigates the prospects for success. To keep matters simple, we
consider only two players facing the same two options on each trial; the options are denoted 0 and
1. A player will thus be identified with a function from the set of all finite binary sequences into
{0, 1}, where any such sequence is conceived as the history of moves of an opposing player. From
a sequence of length n, a player can reconstruct the 2 × n binary matrix that includes his own
responses through move n. So it is not necessary to represent both rows of the matrix explicitly
in players’ inputs; just the opposing player’s moves suffice. In the obvious way, a pair of players
build up a matrix with two rows and infinitely many columns. The players are said to “learn”
each other if the rows in cofinitely many of the columns agree (that is, both are 0 or both are 1).
This conception of players and coordination is threadbare, but highlights the cognitive problem
raised by repeated games between the same participants; each must discover a strategy that fits
the other’s play. A similar paradigm of learned coordination is raised in [Kelly, 1996, p. 267-8].
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The foregoing paradigm will be cast in a recursion-theoretical framework, similar to the devel-
opment of Formal Learning Theory [Jain et al., 1999]. Within the latter tradition (and also in the
paradigm to be developed here), the hypotheses of the learner are generated by a computational
process that meets various constraints but need not be justified by recourse to probability. Discus-
sion of the contrast between Formal Learning Theory and probabilistic approaches to induction is
available in [Earman, 1992, Kelly, 1996, Martin & Osherson, 1998] and in references cited there.

After presentation of the coordination paradigm in the next section, we discuss some of its
properties, including its relation to Formal Learning Theory. One of our theorem concerns the
existence of two collections of players that force all other players to choose their camp. Each
collection is composed of players that learn everyone else in the same collection. But no player
that learns all members of one collection learns any member of the other. Other results concern
cooperation by special classes of players, for example, those with limited memory in the sense that
their present moves depend on a fixed number of immediately preceding stages of the game.

2 The paradigm

2.1 Notation

We use N to denote the natural numbers, 0, 1, 2, . . . . Let s be an infinite sequence over a set
S (by which we mean, an ω-sequence over S). Then for i ∈ N , s(i) is the value of s in the ith
position (counting from 0), and s[i] is the initial finite sequence in s of length i. The length of a
finite sequence σ is denoted by length(σ). The finite sequence of length zero is denoted by ∅. Given
finite sequence σ and i < length(σ), we denote by σ(i) the element in σ’s ith position (counting
from 0). Thus, (1, 0, 1, 1, 0)(0) = 1 and (1, 0, 1, 1, 0)(1) = 0.

The set of all finite sequences over {0, 1} is denoted by BISEQ. We do not distinguish between
finite sequences of length one and their sole member. Concatenation among finite sequences is
denoted by ∗.

2.2 Players and learnability

We now record the official definition of a “player,” followed by a definition of the game played
between two of them.
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(1) Definition: Any function from BISEQ into {0, 1} is a player. (Players can thus be partial
or total, computable or uncomputable.) A total function from BISEQ into {0, 1} is called
a total player.

Let players a, b be given. We define by induction two finite or infinite sequences over {0, 1} to
be denoted R〈a, b〉 and R〈b, a〉. The first may be called “a’s response to b,” and the second “b’s
response to a.”

(2) Definition: Suppose that for a given n ∈ N both R〈a, b〉[n] and R〈b, a〉[n] are defined.
Then R〈a, b〉(n) = a(R〈b, a〉[n]) and R〈b, a〉(n) = b(R〈a, b〉[n]).

Thus, for n = 0, the definition implies that R〈a, b〉(0) = a(∅) and R〈b, a〉(0) = b(∅). Observe that
R〈a, b〉 is an ω-sequence if and only if R〈b, a〉 is too. They are both finite if at any stage one of
them is undefined on the sequence produced at the prior stage by the other. Successful encounters
between players give rise to “learning,” as defined next.

(3) Definition: Let player a and set A of players be given. We say that a learns A just in case
for all b ∈ A, R〈a, b〉 and R〈b, a〉 are both ω-sequences and are almost everywhere identical.
If some player learns A, then A is said to be learnable, otherwise unlearnable.

We say that “a learns b” in place of “a learns {b}.” Observe:

(4) Lemma: For all total players a, b,

(a) a learns a;

(b) If a learns b then b learns a.

However, “learns” is not an equivalence relation since it is not transitive. For example, define player
a such that for all σ ∈ BISEQ,

a(σ) =
{

1 if length(σ) > 0 and σ(0) = 1
0 otherwise.

Then it is easy to verify that the constant 1 player learns a, and that a learns the constant 0
function. But the constant 1 function does not learn the constant 0 function.
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2.3 Computable players

Let ϕi, i ∈ N be an acceptable ordering of all partial recursive functions from N to N . (See
[Machtey & Young, 1978] for background on acceptable orderings.) We fix a recursive isomorphism
between N and BISEQ. Via the isomorphism we can conceive each ϕi as a partial recursive function
from BISEQ to N . Going a step further, we conceive every positive number as a code for 1; the
range of ϕi then collapses to a subset of {0, 1}. Under these conventions, the ϕi’s list all of the partial
recursive players, that is, all computable, possibly partial functions from BISEQ to {0, 1}. Since
the remainder of our discussion concerns such players, we henceforth drop the qualifier “partial
recursive,” and abide by the following convention.

(5) Convention: By “player” in what follows is meant “partial recursive player,” in the sense
given by coding BISEQ and {0, 1}, as described above. By “total player” is meant “total
recursive player,” i.e., a total computable map from BISEQ to {0, 1}.

3 Elementary facts about learnability

We now present a few elementary facts about learnability that will help to fix intuitions, and set
the stage for later developments. For the first proposition, we recall that a collection C of learners
is uniformly recursive just in case there is a total computable function f with C = {ϕf(i) | i ∈ N}.

(6) Proposition: Every uniformly recursive collection of total players is learnable. Moreover,
the learner can be taken to be total.

Before proving the proposition, we provide a definition, that will also be useful elsewhere.

(7) Definition: Let σ ∈ BISEQ and player f be given. We define f(σ) ∈ BISEQ by induction
on the length of σ. f(∅) = f(∅). Suppose that f(τ) is defined for τ ∈ BISEQ, and that
x ∈ {0, 1} is given. Then f(τ∗x) = f(τ)∗f(τ∗x).

Thus, if f is defined on all the initial segments of σ (which will be the case if f is total), then f(σ)
is the finite sequence of 0’s and 1’s that f produces in response to the sequence σ. Notice that
when f(σ) is defined, its length is positive. We denote by f(σ)− the result of removing the last
(rightmost) digit from f(σ).
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Proof of Proposition (6): Let total recursive e : N → N be such that for all i ∈ N , ϕe(i) is total.
We define by induction a player f that learns C = {ϕe(i) | i ∈ N}. Let f(∅) = ϕe(0)(∅). Suppose
that f is defined on all σ ∈ BISEQ with length(σ) ≤ n. Given x ∈ {0, 1} and σ ∈ BISEQ with
length(σ) = n, let i(σ) ∈ N be greatest with i(σ) ≤ n, and ϕe(j)(f(σ)−)− 6= σ for all j < i(σ). Set
f(σ∗x) = ϕe(i(σ))(f(σ)). Clearly, f is total recursive.

To see that f learns C, let g ∈ C be given. Suppose that g = ϕe(n). Then it is easy to verify
that for some m ≤ n, R〈ϕe(n), f〉(p) = R〈ϕe(m), f〉(p) = R〈f, ϕe(m)〉(p) for cofinitely many p ∈ N .

The converse to Proposition (6) is false. Indeed:

(8) Proposition: There is a learnable collection of total players that is contained in no learn-
able, uniformly recursive collection of total players.

To prove the proposition we rely on other useful definitions along with an obvious lemma.

(9) Definition: Let σ ∈ BISEQ and player f be given. We say that f starts with σ just in
case for all τ ∈ BISEQ with length(τ) = m < length(σ), f(τ) = σ(m).

(10) Definition: Let σ ∈ BISEQ and total player g be given. Let player f be such that:

(a) f starts with σ;

(b) for all τ ∈ BISEQ with length(τ) ≥ length(σ), f(τ) = 1− g(f(τ−)).

Then f is said to disagree with g starting at σ.

Of course, if player g is total, and f disagrees with g starting at σ ∈ BISEQ, then f is total also.
The following lemma is obvious.

(11) Lemma: Let σ ∈ BISEQ and total player g be given. Suppose that player f disagrees with
g starting at σ. Then g does not learn f .

Proof of Proposition (8): Given n ∈ N with ϕn total, let an denote the (total) player that
disagrees with ϕn starting at 1n0. We claim that C = {an |ϕn total} witnesses the proposition.

To see that C is learnable, let player p operate as follows. For as long as the input is an
unbroken string of 1’s, p puts out 1. If the first zero is encountered after receiving n 1’s, then for
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all τ ∈ BISEQ with τ ⊇ 1n0, and for all x ∈ {0, 1}, p(τ∗x) = 1 − ϕn(p(τ)). It is clear that if
ϕn is total, then p learns an. (But p is not total: if n is an index for ∅, then p is defined on no
sequence that extends 1n0.) It is also clear that no total player learns C since each total ϕn fails
to learn an. Hence C is contained in no learnable, uniformly recursive collection of total players
since Proposition (6) implies that any such collection (and all of its subsets) is learnable by a total
player.

As a corollary to the preceding proof we see that restricting attention to just the total players
reduces the possibilities for cooperation. Indeed:

(12) Corollary: There is a learnable collection of total players that cannot be learned by any
total player.

Proof: Let C be as defined in the proof of Proposition (8). As shown above, C is a learnable
collection of total players but every total player fails to learn at least one f ∈ C.

3.1 No strict improvement of the competence of total players

It is natural to consider player f to be more cooperative than player g if the set of players that f
learns strictly includes the set that g learns. We shall now see that such a relation never obtains if
f and g are total. To proceed, we rely on the following counterpart to Definition (10).

(13) Definition: Let σ ∈ BISEQ and player g be given. Let player f be such that:

(a) f starts with σ;

(b) for all τ ∈ BISEQ with length(τ) ≥ length(σ), f(τ) = g(f(τ−)).

Then f is said to agree with g starting at σ.

Obviously, if player g is total and player f agrees with g starting at σ ∈ BISEQ, then f is total
also. Equally obviously:

(14) Lemma: Let σ ∈ BISEQ and total player g be given. Suppose that player f agrees with g

starting at σ. Then g learns f .

(15) Proposition: For all distinct total players f, g, there is a total player h that f learns and
that g does not. (Two total players are distinct if they have different values on a common
binary sequence.)
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Proof: Recall that for σ ∈ BISEQ of positive length, σ− is the result of removing the last (rightmost)
digit from σ. Also recall that for all players f and σ ∈ BISEQ, length(f(σ)) > 0. Let total players
f, g be distinct. Then there is σ ∈ BISEQ such that f(σ) 6= g(σ). Choose (total) player h0 that
agrees with f starting at f(σ), and (total) player h1 that disagrees with g starting at g(σ). Define
player h such that:

(a) for all τ ∈ BISEQ with length(τ) = n < length(σ), h(τ) = σ(n);

(b) for all τ ∈ BISEQ such that τ ⊇ f(σ), h(τ) = h0(τ).

(c) for all τ ∈ BISEQ such that τ ⊇ g(σ), h(τ) = h1(τ).

(d) for all other τ ∈ BISEQ, h(τ) = 0.

Then h agrees with f starting at σ, so by Lemma (14) f learns h. On the other hand, h disagrees
with g starting at σ, so by Lemma (11), g does not learn h.

(16) Corollary: Given player f , let scope(f) be the class of players that f learns. There are
no total players g, f such that scope(g) ⊂ scope(f).

That is, the competence of a total player cannot be strictly improved. On the other hand, it
is obvious that the competence of some partial players (e.g., the empty player) can be strictly
improved (e.g., by the uniform 1-player).

4 Uncooperativeness

The following result shows that there can be two societies such that a child can learn to cooperate
with either of them but not both. Indeed, any player who cooperates with one of the societies will
be incapable of cooperating with any member of the other.

(17) Proposition: There are two infinite sets A,B of total players with the following properties.

(a) Every pair of players in A learn each other, and every pair of players in B learn each
other. (That is, for all a, b ∈ A, a learns b, and for all a, b ∈ B, a learns b.)

(b) No player that learns A learns any member of B, and no player that learns B learns
any member of A. (That is, suppose that player c learns A. Then c learns no b ∈ B.
Similarly, suppose that player c learns B. Then c learns no a ∈ A.)
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Proof: We say that player a is “1-tempted” just in case there is a player c such that for cofinitely
many m ∈ N , R〈a, c〉(m) = 1. Similarly, we say that a is “0-tempted” just in case there is a player
c such that for cofinitely many m ∈ N , R〈a, c〉(m) = 0. (The sets of 1-tempted and 0-tempted
players intersect, but are distinct.)

Let ai, i ∈ N enumerate all the 1-tempted players. (No assumption is made about the effective
calculability of this enumeration.) We define by induction a sequence Zi of players. It will be the
case that:

(18) For all i ∈ N ,

(a) Zi is not 1-tempted;

(b) for all j < i, R〈Zj , Zi〉 6= R〈ai, Zi〉 (that is, Zj does not appear to Zi to be ai);

(c) for all j < i, R〈Zi, Zj〉 6= R〈aj , Zj〉 (that is, Zi does not appear to Zj to be aj);

(d) ai does not learn Zi;

(e) for all players c, if c learns Zi then c is 0-tempted.

Let i ∈ N be given, and suppose that for all j < i, Zj has been defined, and verifies (18) for j. We
define Zi and show that it also verifies (18).

The first part of the definition is designed to satisfy (18)b. Since ai is 1-tempted, there is a
player c such that R〈ai, c〉(m) = 1 for cofinitely many m ∈ N . By our induction hypothesis and
(18)a, for all j < i, Zj is not 1-tempted. So, for all j < i there is m(j) ∈ N with R〈Zj , c〉[m(j)] 6=
R〈ai, c〉[m(j)]. It follows that there is n0 ∈ N such that for all j < i, R〈Zj , c〉[n0] 6= R〈ai, c〉[n0].
For all σ ∈ BISEQ with length(σ) ≤ n0 we define Zi(σ) = c(σ). Hence, for all j < i, R〈Zj , Zi〉[n0] =
R〈Zj , c〉[n0] 6= R〈ai, c〉[n0] = R〈ai, Zi〉[n0]. It follows immediately that for all j < i, R〈Zj , Zi〉 6=
R〈ai, Zi〉, verifying (18)b.

The next part of the definition of Zi is designed to satisfy (18)c. For all j < i and all τ ∈ BISEQ
of length n0+j, Zi(τ) = 1−aj(τ). It follows that for all j < i, R〈Zi, Zj〉[n0+j+1] 6= R〈aj , Zj〉[n0+
j + 1], which directly implies (18)c.

To complete the definition of Zi, let γ ∈ BISEQ be given with length(γ) = q0 ≥ n0 + i.
Proceeding by induction we suppose that for all δ ∈ BISEQ with length(δ) < q0, Zi(δ) is defined.
So in particular [by Definition (2)], both R〈ai, Zi〉[q0] and R〈Zi, ai〉[q0] are defined. We distinguish
two cases.

Case 1: γ 6= R〈ai, Zi〉[q0]. Then Zi(γ) = 0.
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Case 2: γ = R〈ai, Zi〉[q0]. Then if q0 is even, Zi(γ) = 0, and if q0 is odd, Zi(γ) =
1− ai(R〈Zi, ai〉[q0]).

Note that if i = 0, there is no j < i, hence n0 = i = 0. Thus Z0(∅) can be defined arbitrarily,
and for the remaining binary sequences the construction proceeds according to Cases 1 and 2.

Let us verify (18)a,d,e. Cases 1 and 2 ensure that for all players b, R〈Zi, b〉[2n] = 0 for cofinitely
many n ∈ N , hence Zi is not 1-tempted, verifying (18)a. It is clear from case 2 that for infinitely
many n ∈ N , R〈ai, Zi〉(n) 6= R〈Zi, ai〉(n), which implies (18)d. For (18)e, let player c be given.
If R〈c, Zi〉 = R〈ai, Zi〉 then case 2 implies that c does not learn Zi. So, assume that R〈c, Zi〉 6=
R〈ai, Zi〉. It follows from case 1 that R〈Zi, c〉(n) = 0 for cofinitely many n. Hence if c learns
Zi, then R〈c, Zi〉(n) = 0 for cofinitely many n, in which case c is 0-tempted. This verifies (18)e.
Finally, we observe that Zi is total computable because for all j ≤ i, aj is total computable.

We take A of the proposition to be {Zi | i ∈ N}. To verify (17)a with respect to A, let i, j ∈ N
be given with i < j. By (18)b, R〈Zj , Zi〉 6= R〈ai, Zi〉. Hence, case 1 implies that R〈Zi, Zj〉(n) = 0
for cofinitely many n ∈ N . Similarly, by (18)c, R〈Zi, Zj〉 6= R〈aj , Zj〉. Hence, case 1 implies that
R〈Zj , Zi〉(n) = 0 for cofinitely many n ∈ N . It follows that Zi learns Zj . Relying on Lemma (4),
we have thus demonstrated:

(19) For all i, j ∈ N , Zi learns Zj .

Now let bi, i ∈ N enumerate all the 0-tempted players. In fashion parallel to the preceding
discussion we may define a sequence Yi of players such that:

(20) For all i ∈ N ,

(a) Yi is not 0-tempted;

(b) for all j < i, R〈Yj , Yi〉 6= R〈bi, Yi〉 (that is, Yj does not appear to Yi to be bi);

(c) for all j < i, R〈Yi, Yj〉 6= R〈bj , Yj〉 (that is, Yi does not appear to Yj to be bj);

(d) bi does not learn Yi;

(e) for all players c, if c learns Yi then c is 1-tempted.

We take B of the proposition to be {Yi | i ∈ N}. By the same reasoning as before, we have:

(21) For all i, j ∈ N , Yi learns Yj .
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The first clause of Proposition (17) follows immediately from (19) and (21). For the second
clause, let player c and i ∈ N be given, and suppose that c learns Yi ∈ B. We show that c does not
learn A = {Zi | i ∈ N}. By (20)e, c is 1-tempted. Hence there is j ∈ N with c = aj . So by (18)d,
c does not learn Zj , and thus does not learn A. The complementary case where c learns Zi ∈ A is
parallel.

5 Players with special properties.

5.1 Three kinds of players

Further insight into coordination can be achieved by studying subsets of players who embody
characteristics that might be seen in human players. In the present section we consider three such
subsets. Intuitively, “forgiving” players are not deterred from coordination by the early moves of
their partners, “blind” players pay no attention to their opponents, and “memory limited” players
base their choices only on the recent history of the game. Formally, these ideas are defined as
follows.

(22) Definition: Two total players are finite variants (of each other) iff the symmetric difference
of their graphs is finite. Let total player f be given.

(a) f is forgiving just in case for all pairs g, h of total players that are finite variants of
each other, f learns g iff f learns h.

(b) f is blind just in case for all σ, τ ∈ BISEQ of the same length, f(σ) = f(τ).

(c) Let n ∈ N be given. f is n memory-limited just in case for all σ, τ ∈ BISEQ with
length at least n, if the latest (“rightmost”) finite sequence of length n in σ and τ are
identical, then f(σ) = f(τ).

We now explore various properties of these kinds of players. To begin, it is shown that the blind
and the forgiving form but one set of players.

5.2 All and only the blind are forgiving

(23) Proposition: Every blind player is forgiving.

Proof: Suppose that player f is blind, that f learns total g, and that total g′ is a finite variant of
g. Because f learns g we may choose m ∈ N such that:
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(24) For all p ≥ m, R〈f, g〉(p) = R〈g, f〉(p).

Because g and g′ are finite variants, we may choose n > m such that for all σ ∈ BISEQ with
length(σ) ≥ n, g′(σ) = g(σ). Let p ≥ n ≥ m be given. Then R〈f, g′〉[p] = R〈f, g〉[p] by f ’s
blindness. By the choice of p it follows that R〈g′, f〉(p) = R〈g, f〉(p). From the last two equations
and (24) it follows that R〈f, g′〉(p) = R〈g′, f〉(p).

(25) Proposition: Every forgiving player is blind.

Proof: Suppose that player g is not blind. We will show that g is not forgiving. If g is not total
then by Definition (22)a g is not forgiving and we are done. So assume that g is total. By g’s
non-blindness, there are σ0, σ1 ∈ BISEQ such that length(σ0) = length(σ1) = n and g(σ0) 6= g(σ1).
Choose player f0 that agrees with g starting at σ0, and player f1 that disagrees with g starting at
σ1. Define total player h such that:

(a) for all σ ∈ BISEQ with length(σ) ≤ n, h(σ) = σ0(length(σ)),

(b) for all σ ∈ BISEQ with σ ⊇ g(σ0), h(σ) = f0(σ),

(c) for all σ ∈ BISEQ with σ ⊇ g(σ1), h(σ) = f1(σ),

(d) for all other σ ∈ BISEQ, h(σ) = 0.

Then h agrees with g starting at σ0, so by Lemma (14) g learns h. Now define total player h′ such
that:

(a) for all σ ∈ BISEQ with length(σ) ≤ n, h′(σ) = σ1(length(σ)),

(b) for all σ ∈ BISEQ with σ ⊇ g(σ0), h′(σ) = f0(σ),

(c) for all σ ∈ BISEQ with σ ⊇ g(σ1), h′(σ) = f1(σ),

(d) for all other σ ∈ BISEQ, h(σ) = 0.

Then h′ disagrees with g starting at σ1, so by Lemma (11) g does not learn h′ Since h and h′ are
finite variants, g is not forgiving.

Putting Propositions (23) and (25) together yields the identity of the blind and forgiving subsets
of players.

Let f be the constant 1 function, let g be the constant 0 function. Then both f and g are blind.
Plainly, no blind player learns {f, g}. We thus obtain as a corollary to Propositions (23) and (25):
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(26) Corollary: There is a set of two forgiving players that no forgiving player learns.

5.3 Unlearnability of blind and forgiving players

Blindness (and hence, forgivingness) is such a debilitating property that it might be thought possible
to learn the entire class of blind players (albeit, not necessarily blindly). This is not the case,
however, as will be seen in the present subsection. We rely on the following fact, proved via a
technique introduced in [Blum & Blum, 1975].

(27) Proposition: There are two learnable collections of blind players whose union is not
learnable.

We proceed via a definition and some lemmas.

(28) Definition: Call a player f blindly zero just in case f is blind, and for all but finitely
many σ ∈ BISEQ, f(σ) = 0. Let Z be the collection of all blindly zero players.

Clearly:

(29) Lemma:

(a) Z is learnable, and is composed of blind players.

(b) Every player that learns Z is total.

Now recall that the standard enumeration of an r.e. set Wi is the sequence of numbers that results
from the kind of dovetailing construction described in [Rogers, 1987]. In particular, repetitions are
allowed, hence some standard enumerations are infinite binary sequences. Let us demonstrate:

(30) Lemma: Let total player f be given. Then there is an infinite binary sequence s with the
following properties:

(a) s starts with a sequence of form 1m0,

(b) the standard enumeration of Wm is s; and

(c) for all n ≥ m+ 1, s(n) = 1− f(s[n]).

Proof: Let total player f be given. Via a simple inductive definition it is easy to verify the existence
of a total recursive h : N → N such that for all k ∈ N ,
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(a) the standard enumeration s of Wh(k) starts with a sequence of form 1k0;

(b) for all n ≥ k + 1, s(n) = 1− f(s[n]).

By the Recursion Theorem there is m ∈ N such that the standard enumerations of Wm and Wh(m)

are the same. Hence, the standard enumeration s of Wm starts with a sequence of form 1m0, and
for all n ≥ m+ 1, s(n) = 1− f(s[n]).

Now let total player f be given. Let s be the binary sequence guaranteed by Lemma (30).
Define blind player bf as follows. For all σ ∈ BISEQ, bf (σ) = s(length(σ)). The following fact is
clear.

(31) Lemma:

(a) Let total player f be given. Then f does not learn bf .

(b) Let F be any collection of total players. Then {bf | f ∈ F} is a learnable collection of
blind players.

The foregoing lemmas in hand, we can finally prove Proposition (27).

Proof of Proposition (27): Let C = {bf | f learns Z}. By Lemmas (29)a and (31)b, each of Z,
C is a learnable collection of blind players. Let player f learn Z. We must show that f does not
learn C. By Lemma (29)b, f is total. So by Lemma (31)a, f does not learn bf . However, bf ∈ C
since f learns Z.

Of course, it follows immediately that:

(32) Corollary: Neither the class of blind players nor the class of forgiving players is learnable.

5.4 Improving the blind competence of players

We return to the topic of Section 3.1, and consider improving the competence of players. Corollary
(16) shows that no total player can be supplanted by another that learns a more inclusive set. If
attention is limited to learning blind players, however, improvement is always possible. The matter
is described in the following definition and proposition.

(33) Definition: Given player f , let b-scope(f) be the class of blind players that f learns.

(34) Proposition: For every player g there is a player f with b-scope(g) ⊂ b-scope(f).
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Proof: Let player f be given. Then by Corollary (32) there is blind b 6∈ b-scope(f). Since b is
blind, there is total recursive b∗ : N → N such that for all σ ∈ BISEQ, b(σ) = b∗(length(σ)).
Define player g as follows. For all σ ∈ BISEQ, g(σ) = b∗(length(σ)) if for all k < length(σ),
σ(k) = b∗(k+1); otherwise, g(σ) = f(σ). Relying on b’s blindness, it is easy to see that b-scope(g) =
b-scope(f) ∪ {b} ⊃ b-scope(f).

Hence, competence for learning blind players can always be improved. However, this cannot be
achieved uniformly recursively.

(35) Proposition: There is no total recursive h : N → N with b-scope(ϕi) ⊂ b-scope(ϕh(i))
for all i ∈ N .

Proof: By the Recursion Theorem, if there were such an h, then for some m ∈ N , ϕm = ϕh(m).
But then b-scope(ϕm) = b-scope(ϕh(m)), contradiction.

The foregoing proposition shows there to be no algorithm A that accepts the program of an
arbitrary player, and returns a program with enhanced ability to learn blind players. The nonex-
istence of such an A, however, results from the requirement that it improve the competence not
only of total players, but of strictly partial ones as well. If we are satisfied to increase the b-scope

just of total players, then such improvement can be obtained algorithmically. This is revealed by
the following contrast to Proposition (35).

(36) Proposition: There is a total recursive h : N → N such that for all i ∈ N with ϕi total,
b-scope(ϕi) ⊂ b-scope(ϕh(i)).

Proof: Suppose we are given i ∈ N with ϕi total. Let bi be the blind player that disagrees with f

starting at ∅. It is easy to see that an index for bi can be generated uniformly-recursively from i.
Of course, bi 6∈ b-scope(ϕi). Given σ ∈ BISEQ, define:

f(σ) =
{
bi(σ) if bi(σ) = σ
ϕi(σ) otherwise

Intuitively, f matches bi’s behavior for as long as the data appear to be generated by bi. As
soon as this strategy produces a mismatch, f reverts to using ϕi. Relying on the fact that bi is
blind, and that b-scope(ϕi) contains only blind players, it can easily be verified that b-scope(f) =
b-scope(ϕi)∪{bi} ⊃ b-scope(ϕi). It is equally clear that a program for f can be generated uniformly
recursively in i.
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5.5 Memory-limitation

There remains part (c) of Definition (22), concerning players whose current choice depends on no
more than the previous n moves (for some fixed n). Since an n memory-limited player is uniquely
determined by its values on the finite set {σ ∈ BISEQ | length(σ) ≤ n}, it is clear that there are
only finitely many n memory-limited players. Let us now ask whether one member of this set learns
all the others. The following proposition provides a negative answer.

(37) Proposition: Let n ∈ N be given. No n memory limited player learns the (finite) set of
all n memory limited players.

Proof: Let player f be n memory limited. Define player g inductively as follows. g(∅) = 1− f(∅).
Suppose that g is defined for all σ ∈ BISEQ with length(σ) ≤ m. Given x ∈ {0, 1} and σ ∈ BISEQ
with length(σ) = m, define g(σ∗x) = 1 − f(g(σ)). Plainly, g is n memory limited since f is. It is
equally clear that for all p ∈ N , R〈g, f〉(p) 6= R〈f, g〉(p), so f does not learn g.

6 Learnability versus identifiability

We now consider the relation between learning to coordinate with another player versus inferring
the program that drives her choices. The latter topic is studied within Formal Learning Theory,
where program-discovery is called “identification.” After presenting the identification paradigm,
we prove some propositions that separate program discovery from learning to coordinate. For
simplicity in what follows, we restrict attention to total players.

6.1 Definition of identifiability

Recall our fixed, computable isomorphism between BISEQ and N . It induces a computable enu-
meration βi, i ∈ N , of BISEQ. Given j ∈ N and total player g we denote by g[j] the finite
sequence 〈β0, g(β0)〉 . . . 〈βj−1, g(βj−1)〉 (so g[0] = ∅). Thus, g[j] provides partial information about
the graph of g, hence about the input-output behavior of any program that implements g. Let
GSEQ = {g[j] | j ∈ N and g is a total player }. So GSEQ includes all potential data about the
input-output behavior of any player.

(38) Definition: Let total player g and computable ψ : GSEQ → N be given. We say that ψ
identifies g just in case there is n ∈ N such that:
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(a) g = ϕn;

(b) for cofinitely many j ∈ N , ψ(g[j]) = n.

We say ψ identifies a collection P of total players just in case ψ identifies every g ∈ P . In
this case, P is said to be identifiable. If no computable ψ : GSEQ → N identifies P , then
P is said to be unidentifiable.

The definition is based on [Gold, 1967]. See [Jain et al., 1999] for its analysis and elaboration within
Formal Learning Theory.

Notice how different identification is from cooperation. In the identification paradigm the
learner is shown the entire graph of the function to be identified, whereas in cooperation only that
part of the graph responding to the learner is made manifest. The requirements for identification
are commensurably higher than for cooperation. In the former, the learner must stabilize to a
program that computes the entire graph of the presented function; for cooperation it suffices to
predict the function’s reaction to the learner’s own behavior. These differences are connected to the
symmetrical character of cooperation compared to the potential asymmetry of identification. Thus,
one learner might identify the graph of another without the converse obtaining, whereas Lemma
(4)b guarantees symmetry in cooperation. The fundamental distinction is that neither player is
passive in the cooperation paradigm (unlike identification); each reacts to the moves of the other.

6.2 Identifiability does not imply learnability

If a class C of players is identifiable, then it is possible for a single learner to discover a program
for an arbitrary f ∈ C by examining the choices f makes in different situations. Armed with
such a program, f ’s successive moves can be predicted, and coordination thereby assured. Such
a strategy cannot be fully implemented in a coordination game, however, since players only see a
proper subset of the behavior of their partners. (This is because the game is never started over
from the beginning.) As a consequence, identifiability does not guarantee learnability. Indeed:

(39) Proposition: There is an identifiable collection of total players that is not learnable.

Proof: Let player ψ be given. We specify a total computable function h : N → {0, 1} with the
following properties.

(40) For all i ∈ N ,

(a) ϕh(i) is a total player;
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(b) for every σ ∈ BISEQ of length less than i, ϕh(i)(σ) = 0;

(c) for every σ ∈ BISEQ of length i, ϕh(i)(σ) = 1;

(d) ϕh(i) does not learn ψ.

To define h, let i be given. Then h constructs a program h(i) such that:

(41) For all σ ∈ BISEQ,

(a) if length(σ) < i then ϕh(i)(σ) = 0;

(b) if length(σ) = i then ϕh(i)(σ) = 1;

(c) if length(σ) ≥ i then for all x ∈ {0, 1}, ϕh(i)(σ∗x) = 1− ψ(ϕh(i)(σ)).

Since ψ is total computable, the existence of an h satisfying (41) is easy to verify. Moreover, it is
clear that any such h meets the conditions in (40). By the Recursion Theorem, there is n ∈ N such
that ϕh(n) = ϕn. We have thus established:

(42) For every player ψ there is a total player fψ with the following properties.

(a) fψ = ϕn, where n is least such that for some σ ∈ BISEQ with length(σ) = n, fψ(σ) = 1.

(b) ψ does not learn fψ.

Let C = {fψ |ψ is a player}. It follows immediately from (42)b that no player learns C. On the
other hand, (42)a renders trivial the identification of C.

One of the reviewers suggests an alternative proof to the foregoing proposition. Learning a
class of blind players can be represented as extrapolating a class of binary functions (in the sense
of predicting the next value cofinitely often). It is observed in [Blum & Blum, 1975, p. 129,
Footnote 1] and [?] that there are identifiable classes of recursive binary functions that cannot be
extrapolated. So there are identifiable classes of (blind) players that cannot be learned.

6.3 Learnability does not imply identifiability

We now demonstrate that being able to coordinate with a class of players does not presuppose the
ability to discover their programs. This is the converse to Proposition (39).

(43) Proposition: There is a learnable collection of total players that is not identifiable.
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Our proof rests on yet another paradigm of identification, now defined. We rely on the usual
notation: given n ∈ N and total h : N → {0, 1}, h[n] denotes the finite initial segment of length n

in h.

(44) Definition: Let total computable h : N → {0, 1} and computable ψ : BISEQ → N be
given. We say that ψ discovers h just in case there is n ∈ N such that:

(a) h = ϕn;

(b) for cofinitely many j ∈ N , ψ(h[j]) = n.

We say that ψ discovers a collection C of total computable h : N → {0, 1} just in case ψ
discovers every h ∈ C.

Thus, discovery is distinguished from identification [Definition (38)] by the domains of the target
functions. In Definition (38), the domain is BISEQ, whereas in Definition (44) the domain is N .

(45) Lemma: [Gold, 1967]: No computable ψ : BISEQ→ N discovers the class of all computable
h : N → {0, 1}.

Proof of Proposition (43): Let computable h : N → {0, 1} be given. We define player χh as
follows.

(46) (a) χh(∅) = h(0).

(b) For all σ ∈ BISEQ with length(σ) > 0 and σ(0) = 1, χh(σ) = 1.

(c) For all σ ∈ BISEQ with length(σ) > 0 and σ(0) = 0, χh(σ) = h(length(σ)).

In other words, χh responds with h if faced with a player who issues 0 at the start; otherwise,
χh responds with 1’s [except maybe at the first move, which is always h(0).] Because h is total
computable, it is clear that (46) succeeds in defining a total (computable) player. Let C = {χh |h :
N → {0, 1} is total computable}. It follows immediately from (46)b that the player which maps
BISEQ uniformly to 1 learns C. So it remains to show that C is not identifiable.

From (46)a,c it is clear how to recover an index of h from one for χh, and also how to generate
the graph of χh from the graph of h. These facts imply that if ψ′ : GSEQ→ N identified C, then ψ′

could be converted into ψ : BISEQ→ N that discovers the class of all computable h : N → {0, 1},
contradicting Lemma (45).
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