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A b s t r a c t 
Th is paper deals w i t h learning in reactive 
mu l t i - agen t systems. T h e central p rob lem ad
dressed is how several agents can col lect ively 
learn to coord inate thei r act ions such tha t they 
solve a given env i ronmenta l task together. In 
approaching th is p rob lem, two i m p o r t a n t con
st ra ints have to be taken in to considerat ion: 
the i ncompa t i b i l i t y const ra in t , t ha t is, the fact 
tha t different act ions may be m u t u a l l y exclu
sive; and the local i n f o rma t i on const ra in t , t ha t 
is, the fact t ha t each agent t yp ica l l y knows on ly 
a f rac t ion of i ts env i ronment . 
The contents of the paper is as fo l lows. F i rs t , 
the topic of learning in m u l t i - a g e n t systems is 
mot i va ted (section 1). T h e n , two a lgor i thms 
called A C E and A G E (s tand ing for " A C t i o n 
E s t i m a t i o n " and " A c t i o n Group E s t i m a t i o n " , 
respectively) for the reinforcement learn ing of 
appropr ia te sequences of act ion sets in m u l t i 
agent systems are described (section 2). Next , 
exper imenta l results i l l us t ra t i ng the learning 
abi l i t ies of these a lgor i thms are presented (sec
t ion 3). F ina l l y , the a lgor i thms are discussed 
and an ou t look on fu ture research is provided 
(section 4). 

1 In t roduc t i on 
M u l t i - A g e n t Sys tems. In computer science and a r t i 
f ic ial intel l igence the concept of m u l t i - a g e n t systems has 
influenced the i n i t i a l developments in areas l ike cogni t ive 
mode l l ing [Selfridge, 1959; Minsky , 1979], b lackboard 
systems [E rman and Lesser, 1975], ob jec t -o r ien ted pro-
g r a m m i n g languages [Hew i t t , 1977], and fo rma l models 
of concurrency [Pet r i , 1962; Brauer et ai, 1987]. Nowa
days m u l t i - a g e n t systems establ ish a ma jo r research sub
ject in d i s t r i bu ted ar t i f i c ia l intel l igence; see [Bond and 
Gasser, 1988; Brauer and Hernandez, 1991; Gasser and 
Huhns, 1989; Huhns, 1987]. T h e interest in mu l t i - agen t 
systems is largely founded on the insight t ha t many r e a l -
wor ld problems are best model led using a set of agents 
instead of a single agent. In par t i cu la r , mu l t i - agen t m o d 
el l ing makes i t possible ( i ) to cope w i t h na tu ra l con
stra ints l ike the l i m i t a t i o n of the processing power of a 
single agent or the physical d i s t r i bu t i on of the da ta to 
be processed and (it) to p ro f i t f r o m inherent propert ies 
of d is t r ibu ted systems l ike robustness, fau l t tolerance, 
para l le l ism and scalabi l i ty . 

General ly , a m u l t i - a g e n t system is composed of a n u m 
ber of agents t ha t are able to interact w i t h each other 

and the env i ronment and t ha t differ f r om each other in 
their ski l ls and thei r knowledge about the envi ronment. 
(Usual ly an i nd i v idua l agent is assumed to consist of sen
sor component , a mo to r component , a knowledge base, 
and a learning component . ) There is a great variety 
in the mu l t i - agen t systems studied in d is t r ibu ted a r t i 
f ic ial intel l igence [Huhns, 1987, foreword] . Th is paper 
deals w i t h reactive mu l t i - agen t systems, where 'reac
t i ve" means tha t the behavior and the envi ronment of 
the system are s t rongly coupled (there is a continuous 
in teract ion between the system and i ts env i ronment ) . 

L e a r n i n g . There is a common agreement tha t there 
are two i m p o r t a n t reasons for s tudy ing learning in m u l t i -
agent systems: to be able to endow ar t i f ic ia l m u l t i -
agent systems (e.g., systems of in teract ing autonomous 
robots) w i t h the ab i l i t y to au tomat i ca l l y improve their 
behavior; and to get a better understanding of the learn
ing processes in na tu ra l mu l t i - agen t systems (e.g., hu
m a n groups or societies). In a mu l t i - agen t system two 
forms of learning can be dist inguished [Shaw and W h i n -
s ton, 1989]. F i rs t , centralized or isolated learning, i.e. 
learning tha t is done by a single agent on i ts own (e.g. 
by creat ing new knowledge structures or by pract ic ing 
mo to r act iv i t ies) . A n d second, distributed or collective 
learning, i.e. learning tha t is done by the agents as a 
group (e.g. by exchanging knowledge or by observing 
other agents). Th i s paper focusses on collective learn
ing , and the central question addressed is: "How can 
eacn agent learn which act ion i t shal l per fo rm under 
which circumstances?" In answering th is quest ion, two 
i m p o r t a n t constraints have to be taken in to consider
a t ion [WeiB, 1993a, 1993b]. F i rs t , the incompatibility 
constraint, i.e. the fact t ha t different actions may be 
incompat ib le in the sense t ha t the execut ion of one ac
t ion leads to env i ronmenta l changes tha t impa i r or even 
prevent the execut ion of the others. A n d second, the 
local information constraint, i.e. the fact t ha t an agent 
typ ica l l y has only local i n f o rma t i on about the ac tua len -
v i ronmen ta l state, and th is i n fo rma t i on may differ f rom 
the one another agent has; th is s i tua t ion is i l lust rated by 
figure 1. 

T w o a lgor i thms called the ACE algorithm and the 
AGE algorithm for reinforcement learning in reactive 
mu l t i - agen t systems are described ( A C E and A G E are 
acronyms for " A C t i o n E s t i m a t i o n " and "Ac t i on Group 
E s t i m a t i o n " , respect ively). These a lgor i thms base on 
the ac t ion-or ien ted version [WeiB, 1992] of the bucket 
br igade learn ing mode l for classifier systems [Ho l land, 
1986]. Accord ing to bo th a lgor i thms the agents collec
t ive ly learn to est imate the goal relevance of their actions 
and , based on the i r est imates, to coordinate their actions 
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F i g u r e 2: A blocks wor ld task. 

As i t is described in section 2, learn ing proceeds by the 
repeated execut ion of the basic work ing cycle. A trial is 
defined as any sequence of at most four cycles t ha t t rans
forms the s tar t i n to the goal conf igurat ion (successful 
t r i a l ) , as wel l as any sequence of exact ly four cycles t ha t 
t ransforms the s tar t i n to a non-goa l conf igurat ion. At 
the end of each t r i a l the s tar t conf igurat ion is restored, 
and i t is again presented to the agents. Add i t i ona l l y , 
at the end of each successful t r i a l a non-zero external 
reward Rext is p rov ided. 

Task A n a l y s i s . As a consequence of the local infor
ma t i on constra int , an agent may be unable to d is t inguish 
between env i ronmenta l states in wh ich i ts act ions are 
useful and relevant to goal a t t a i nmen t and env i ronmen
ta l states in which i ts act ions are useless. (Th is s i tua t ion 
is sometimes called the Sussman anomaly.) Consider 
the env i ronmenta l states T, U and V shown in f igure 3. 
Based on the usual blocks wor ld no ta t i on , these three 
states are complete ly described by 

As it is easy to see, the act ion p u t ( A 1 B) of the agent 
A\ is useful in state T bu t no t useful in state V. How
ever, because A1's local i n f o rma t i on T\ and V1 about 
the states T and V ; respectively, are ident ica l , the agent 
A\ is unable to d is t inguish between these two states. 
(O f course, an agent does not always fa i l to d is t in 
guish between "useful and useless s tates" ; see e.g. the 
states 7 and U. A1's local i n f o rma t i on is given by 

An analysis of the search space of the task depicted 
in figure 2 shows tha t there are on ly 3 successful t r i 
als of length 3, and 13 successful t r ia ls of length 4. 
The p robab i l i t y tha t a randomly generated sequence 
of appl icable sets of compat ib le actions t ransforms the 
s tar t in to the goal conf igurat ion is 2.6 percent, i f the 
sequence has the length 3, and 3.3 percent, if the se
quence has the length 4. W i t h tha t , the probabi l 
i ty t ha t a random t r ia l solves the task to be learnt 
is less than 6 percent. ( A n example of a successful 
t r i a l of length 3 is given by 

Note tha t a se-
guent ia l "one-ac t ion -per -cyc le " approach would require 
f ive cycles in order to imp lement th is sequence.) 

E x p e r i m e n t a l Resu l t s . A series of experiments 
was per formed to test the A C E and the A G E a lgo r i t hm. 
F igure 4 shows the performance profiles of the A C E algo
r i t h m , the A G E a lgo r i t hm , and a random walk a lgo r i thm 
(i.e. an a lgo r i t hm which randomly chooses an appl icable 
set of compat ib le actions in each cycle). The parameter 
set t ing under ly ing these performance profiles was as fo l 
lows: 
( randomly chosen), and ( I t has to be 
ment ioned t ha t the learning effects reported below can 
be observed for a broad range of parameters and are 
not l i m i t e d to th is set t ing.) Each da ta po in t in f igure 
4 reflects the average external reward per episode ob
ta ined du r i ng the previous 50 episodes. There are sev
eral i m p o r t a n t observations. F i rs t , the A C E and the 
A G E a lgo r i t hm per formed signi f icant ly bet ter than the 
random walk a l g o r i t h m , and they reached their max
i m u m per formance level after about 250 t r ia ls . Af ter 
t h a t , the performance levels remained a lmost constant; 
th is shows t h a t the A C E / A G E a lgor i thms were able to 
learn stable sequences of act ion sets. Second, the perfor-
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Figure 3: Blocks world states. 

Figure 4: Performance profiles. 

mance level of the AGE algorithm is clearly above the 
performance of the ACE algorithm. This illustrates the 
importance of estimating the goal relevance of an action, 
as it is done by the AGE algorithm, in dependence on 
other (concurrent) actions. The reason for that is that 
an action may be useful in one activity context but use
less in another. However, the improved performance is 
achieved at the cost of higher space and computation 
time: whereas the costs of the ACE algorithm are pro-
portional to the number of possible actions that can be 
carried out by the agents, the costs of the AGE algo-
r i thm are proportional to the number of possible action 
sets. And th i rd, despite their learning abilities both algo-
rithms remain below the possible maximal reward level 
(which is 1000). The reason for that is the local infor
mation constraint and, with that, the inability of the 
agents to distinguish between all different environmen
tal states; as a consequence, the same estimates are used 

for different environmental states and necessarily remain 
inaccurate on some scale. 

4 Concluding Remarks 
This paper took the first steps towards learning to coor
dinate actions in multi-agent systems. Two algorithms 
called the ACE algorithm and the ACE algorithm for the 
delayed reinforcement learning of sequences of action sets 
were introduced and experimental results illustrating the 
learning abilities of these two algorithms were presented. 
Both algorithms are "elementary" in a twofold sense. On 
the one side, they make only weak demands on the cog
nitive abilities of the individual agents. For instance, 
they do not require that the agents are able to reason 
about the other agents' knowledge or intentions and they 
do not require that the agents possess complex decision 
making strategies. As a consequence, the algorithms are 
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even appl icable to systems tha t are composed of rather 
s imple agents. On the other side, bo th a lgor i thms are 
very flexible learning schemes tha t can be extended in 
a number of ways. For instance, they al low to incor
porate high- level p rob lem solv ing and p lann ing mecha
nisms known f rom the f ield of s ingle-agent systems, as 
well as a number of ref inements t h a t have been proposed 
for the bucket br igade learn ing model (e.g., tax payment , 
suppor t and look-ahead mechanisms). 

Our fu ture research w i l l concentrate on these possible 
extensions of the A C E / A G E a lgor i thms. A ma jo r topic 
is the development of a lgor i thms tha t imp lement m u l t i 
agent learning of sequences of compat ib le actions l ike the 
A C E / A G E a lgor i thms do, bu t t h a t better cope w i t h the 
local i n fo rma t i on constra int . 

Another goal of fu tu re research is the development of 
learning a lgor i thms for more complex s t ructured (e.g. h i 
erarchical ly organized) mu l t i - agen t systems [Fox, 1981]. 
Up to now th is topic has been not addressed in the f ield 
of d is t r ibu ted ar t i f i c ia l intel l igence. However, there are 
various related works f r om other discipl ines l ike psychol
ogy (e.g., [Guzzo, 1982; Laugh l i n , 1988]) and economics 
(e.g., [Argyr is and Schon, 1978; G a l b r a i t h , 1973; Hed
berg, 1981; Sikora and Shaw, 1989J) tha t are l ikely to be 
very s t imu la t i ng and useful for achieving th is chal langing 
goal. 
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