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 1997 IJCAIILearning to Coordinate Controllers -Reinforcement Learning on a Control Basis�Manfred Huber and Roderic A. GrupenDepartment of Computer ScienceUniversity of MassachusettsAmherst, MA 01003AbstractAutonomous robot systems operating in an un-certain environment have to be reactive andadaptive in order to cope with changing en-vironment conditions and task requirements.To achieve this, the hybrid control architec-ture presented in this paper uses reinforcementlearning on top of a Discrete Event DynamicSystem (DEDS) framework to learn to super-vise a set of basis controllers in order to achievea given task. The use of an abstract systemmodel in the automatically derived supervisorreduces the complexity of the learning problem.In addition, safety constraints may be imposeda priori, such that the system learns on-line ina single trial without the need for an outsideteacher. To demonstrate the applicability ofthe approach, the architecture is used to learna turning gait on a four legged robot platform.1 IntroductionAutonomous robot systems operating in an uncertainenvironment have to be able to cope with new situa-tions and task requirements. Important properties ofthe control architecture of such systems are thus that itis reactive, allows for 
exible responses to novel situa-tions, and that it adapts to longer lasting changes in theenvironment or the task requirements.Although model-based control techniques have beenused successfully in a wide variety of tasks, they are verysensitive to imprecisions in the model and are often notrobust with respect to unexpected situations. To betteraddress the reactivity requirements of autonomous sys-tems, behavior-based architectures [Brooks, 1986] weredeveloped. In this paradigm, system behavior is con-structed on-line from combinations of elemental, reac-tive behaviors. The often ad hoc character of these�This work was supported in part by NSF IRI-9503687

behaviors, however, can lead to an extremely complexorganization of behavioral elements. In addition, theresulting policy can be brittle with respect to rela-tively minor perturbations including those introducedby other behaviors or by changes in control context.The control basis approach used here attempts to cir-cumvent this problem by employing carefully designeddeclarative control primitives to construct overall sys-tem behavior, and therefore allows predictions aboutthe outcome of behavioral sequences. This approachhas been used successfully in manipulation and locomo-tion tasks [Grupen et al., 1995; Huber et al., 1996].While such bottom-up approaches address the issueof reactivity, the used composition is in most cases givenby the designer and very speci�c to the task at hand.In order to render such a system adaptive and allow itto adjust its overall behavior to changing task require-ments, learning techniques have to be employed. In theextreme case, this learning has to occur without the di-rect in
uence of an outside teacher in order to obtain au-tonomous behavior. Reinforcement learning techniquesare well suited to such behavior composition tasks sincethey can learn sequences of behavior from simple rein-forcement signals. In most applications, however, thesetechniques have been applied at a very low level, thusleading to a very high complexity of the learning task.This complexity rendered these approaches inadequatefor on-line learning in complex systems.To address these complexity problems as well as toprovide a base reactivity to the system, some work hasbeen done to combine this learning framework with therobustness of behavior based control approaches [Maesand Brooks, 1990; Mahadevan and Connell, 1992]. Hereeither the problem is decomposed a priori and only sub-problems are learned, or previously designed behaviorsare used as elemental actions within a reinforcementlearning task. While this dramatically reduces the com-plexity of the state and action spaces for the learningproblem, the character of the behaviors often restrictstheir applicability to a very limited domain, potentially



requiring the design of new components whenever thetask changes. In addition, most of these approaches donot address safety considerations by allowing the explo-ration to take random actions, thus permitting the oc-currence of catastrophic failures. In autonomous sys-tems, however, this is not permissible since the systemcan not recover. It is thus necessary that such systemscan learn in a single trial without the need for outsidesupervision. One way to address this is by using a para-metric controller which is inherently safe as a basis forthe learning task [Singh et al., 1994]. The learning com-ponent learns thereby only a setting of the parameterswhile the controller assures a baseline performance. Theuse of a single controller, however, increases designer ef-fort and limits the scope of the system.The approach presented here addresses the complex-ity and safety issues by means of a hybrid contin-uous/discrete control architecture. Behavior is con-structed on-line from a set of stable and convergent con-trol elements. The stable character of these base con-trollers is then used in a Discrete Event Dynamic Sys-tem (DEDS) framework [Sobh et al., 1994] to construct asupervisor which provides the structure for the reinforce-ment learning component. This dramatically reduces thecomplexity of the learning problem by reducing the stateand action spaces, and supports techniques designed tolimit exploration to safe and relevant areas of the behav-ior space. Moreover, the system inherits the reactivityand stability of the underlying control basis.In the following, Section 2 brie
y introduces the con-trol basis approach before Section 3 describes the dis-crete event architecture used to automatically synthesizeadmissible control policies, and the reinforcement learn-ing technique for acquiring a policy for a given task.Section 4, �nally, shows an example for the overall ar-chitecture in the walking domain where a turning gait islearned on-line in a single trial.2 The Control Basis ApproachThe control basis approach constructs behavior on-line by combining feedback control elements drawn froma set of carefully designed basis controllers. Individualcontrol elements are thereby largely task and device inde-pendent and represent solutions to generic robot controlproblems, allowing a small set of these elements to spana large range of tasks on a wide variety of platforms.In this framework, control is derived on-line by associ-ating input resources � (sensors or sensor abstractions),and output resources � (actuators) with feedback controllaws �i drawn from the control basis. The resulting con-trollers �i �� can then be activated concurrently accord-ing to a task dependent composition policy under the

\subject to" (\�") constraint. This constraint restrictsthe control actions of subordinate controllers such thatthey do not counteract the objectives of higher prioritycontrollers. The resulting concurrent control policy in-herits the stability and convergence properties of the ele-mental control elements. A complete control policy takesthen the form of a sequence of concurrent controller ac-tivations of the form shown in Figure 1. Di�erent tasksin this framework are achieved by changing compositionpolicies over the same set of controllers rather than bydesigning new control elements.
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Figure 1: Control CompositionThis approach has already been used successfully ona variety of tasks in the manipulation and locomotiondomain [Grupen et al., 1995; Huber et al., 1996]. Inall these cases, however, composition policies were handcrafted, thus requiring the system designer to anticipatethe exact behavior of the controllers. To achieve moreautonomous behavior of a robot system, however, thesystem has to be able to adapt to novel situations andtask contingencies without the need for outside supervi-sion. In order to achieve this, the architecture presentedin this paper learns the optimal composition policy in ane�cient way using the reinforcement learning paradigm.3 Composition ArchitectureReinforcement learning [Barto et al., 1993] o�ers a
exible way to acquire control strategies automaticallyand thus to adapt to new contingencies and task require-ments. Most reinforcement learning systems, however,operate at a very low level by directly in
uencing ac-tuator commands, easily leading to an explosion in thecomplexity of the learning task. This renders such ap-proaches impractical for on-line learning in complex sys-tems. To avoid this problem and to be able to preventcatastrophic failures, the architecture presented here at-tempts to learn a composition policy for the underlyingcontrollers. To do so it uses the goal directed characterof the control modules described in Section 2 to build an



abstract description of the system under the in
uenceof the basis controllers. Running controllers to conver-gence, the possible behavior of the system is modeledas a DEDS on a symbolic predicate space characterizedby the individual goals of the control modules. Thisabstract system model is then used as the basis for anexploration-based learning system to acquire an optimalcontrol strategy for the given task. The DEDS formal-ism encodes safety constraints in the model and thuslimits the exploration to the space of admissible controlpolicies. The overall architecture is shown in Figure 2.
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Figure 2: The Control ArchitectureIn this approach, all continuous sensor input and ac-tuator output is handled by the elements of the controlbasis. Activation and convergence of these controllers isthen interpreted as the events used in the abstract DEDSmodel of the system behavior. After imposing safety anddomain constraints, the DEDS supervisor represents theset of all admissible control policies. Throughout ex-ploration or in a separate system identi�cation phase,additional transition probabilities for this model can beacquired, thus improving the quality of the largely taskindependent model. This model allows knowledge ofsystem behavior to be generalized across tasks and sup-ports additional o�-line learning on the estimated systemmodel [Sutton, 1990]. In addition to acquiring intrin-sic structure in the form of transition probabilities, thishybrid architecture also solves the resource allocationproblem by learning to assign resources to controllersoptimally given the current reinforcement structure.3.1 DEDS SupervisorThe feedback control primitives employed as elemen-tal actions in this approach act as stable attractors and

thus form basins of attraction in the continuous phys-ical space. The system may therefore be described atan abstract level by means of convergence predicates as-sociated with the underlying controllers. The abstrac-tion from continuous state space to discrete predicatespace represents a dramatic reduction in complexity andthus forms a good basis for the reinforcement learningtask. Since activation and convergence determine theprogress of the plant in this abstract space, the over-all system can be modeled as a hybrid DEDS, open-ing the derivation of a possible supervisor to a largebody of formal techniques [Ramadge andWonham, 1989;Sobh et al., 1994]. In particular, constraints such assafety and the absence of deadlock conditions can beimposed a priori on the control policy.Predicate Space DescriptionIn order to allow for the abstraction step and to pro-vide an e�cient way of deriving an abstract model ofthe possible system behavior, the e�ects and interactionsbetween control primitives have to be described symbol-ically by their possible e�ects on the set of predicates.Characterizations for composite controllers can therebybe generated automatically from descriptions of the in-dividual elements of the control basis, thus limiting thework of the designer to these control elements. As op-posed to most DEDS approaches where the designer hasto provide a complete system model [Stiver et al., 1996;Ko�seck�a and Bogoni, 1994], these simple descriptions al-low for an automatic generation of a predicate spacemodel of all possible system behavior (For details onthe controller characterization and the construction ofthe system model see [Huber and Grupen, 1996]). Thismodel takes the form of a nondeterministic �nite stateautomaton, and forms the basis for the supervisor syn-thesis and reinforcement learning components of the pro-posed architecture.Supervisor SynthesisIn the DEDS framework, control is performed by en-abling and disabling of controllable events in a super-visor. In the case of the architecture presented here,the set of these events corresponds to controller activa-tions while convergence events are not controllable. Toallow for safety of a chosen control policy or to ensurethat no deadlock occurs, the DEDS formalism providesmethods to automatically impose constraints on the su-pervisory automaton. Doing so, the system model canbe pruned a priori to the set of all policies which obey thegiven set of constraints [Ramadge and Wonham, 1989;Huber and Grupen, 1996]. In the same fashion, addi-tional domain knowledge and designer preferences canbe incorporated into the control system, further reduc-ing the complexity for the reinforcement learning com-ponent. Throughout learning and system operation, this



discrete supervisor is then used to limit exploration toadmissible parts of the behavior space, and to activatecontrollers according to the policy selected by the learn-ing system.3.2 Learning ComponentReinforcement learning provides a mechanism foradapting to changing environments and tasks withoutexternal supervision [Mahadevan and Connell, 1992]. Inthis exploration-based paradigm, the system learns acontrol policy which maximizes the amount of reinforce-ment it receives. A major drawback of this scheme, how-ever, is its inherent complexity and the need for explo-ration in order to �nd better policies. In the architecturepresented here, these problems are addressed by learningcontroller activations on top of the predicate space modelde�ned by the DEDS supervisor, thus reducing the sizeof the action and state spaces considered in the learningtask, and enforcing safety constraints throughout explo-ration. In addition, this also facilitates the acquisitionof transition probabilities between predicate states andthus allows run-time experience to improve the predic-tive power of the abstract model.The learning component used here employs Q-learning [Watkins, 1989], a widely used temporal dif-ference method that learns a value function overstate/action pairs in order to represent the quality of agiven action. Estimates of the future discounted payo�of an action,Q(x; a) = E(r + 
maxb2A Q(y; b))are computed, where r is the immediate reinforcementobtained at this time step, and 
 is a discount factor.Using this function the control policy is given as theaction with the highest Q-value in the current state. Toadapt this to the �nite state transition model used as theunderlying state space description for learning, this valuefunction can be represented in a distributed fashion asQ(x; a) =Xy2X(p(x; a; y)Q(x; a; y));where p(x; a; y) is the probability that controller a instate x will lead to state y and Q(x; a; y), representsthe value of the corresponding transition. Throughoutlearning this estimate is then updated according toQt(x; a) = (1� �)Qt�1(x; a) + �(rt + 
maxb2A Qt�1(y; b))where � is the learning rate. At the same time, frequencycounts can be used to determine the transition probabil-ities within the nondeterministic supervisor. Togetherthis allows the overall architecture to adapt e�ciently tochanging task requirements by on-line acquiring correctcontrol policies.

4 Locomotion ExampleTo demonstrate the applicability of the proposed ar-chitecture, it has been implemented on a four legged,twelve degree of freedom walking robot. The objectivewas to acquire useful policies for turning gaits. It hasalready been shown that hand crafted control gaits forsuch tasks can be derived [Huber et al., 1996]. The ex-ample presented here uses the proposed architecture tolearn solutions autonomously with minimal external su-pervision. To do this, the robot was put in an initialstable con�guration onto an even surface and the learn-ing process was initiated without any further input froman outside teacher.4.1 Control Basis and DEDS SupervisorThe control basis used for these tasks was already usedsuccessfully for dextrous manipulation and locomotiontasks [Grupen et al., 1995; Huber et al., 1996] and con-sists of solutions to three generic robotics problems,�0: Con�guration space motion control,�1: Contact con�guration control, and�2: Kinematic conditioning.Each of these basis control laws can then be bound tosubsets of the system resources (legs 0; 1; 2; 3 and posi-tion and orientation of the center of mass x; y; ') shownin Figure 3. For details on this control basis and theresource bindings see [Huber et al., 1996].
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used to construct composite controllers, allowing a totalof 157 composite controllers or actions in the DEDS andlearning components. In addition, this choice of candi-date controllers limits the predicate space to 5 predicates(p1; p2; p3; p4; p5) corresponding to the convergence of acontroller/input binding pair in the following way:p1  �1 1;2;3� ; p2  �1 0;2;3� ; p3  �1 0;1;3� ;p4  �1 0;1;2� ; p5  �2 0;1;2;3� ;where � is a wildcard and indicates the independence ofthe predicate evaluation from the output resource.After automatically constructing the graph of all pos-sible system behavior in this space, a safety constraintfor quasistatic walking, namely that the platform hasto be always stable, can be imposed on the supervisor.In terms of the predicates this implies that at least onestance has to be stable, or in other words p1_p2_p3_p4has to evaluate true. Furthermore, knowledge about theplatform can be introduced in the form of domain con-straints. For the legged platform employed here, for ex-ample, kinematic limitations do not allow the simultane-ous stability of two opposing support triangles. Addingthis knowledge as :(p1^p3)^:(p2^p4), further reducesthe size of the supervisor to the one shown in Figure 4 ,

Figure 4: DEDS Supervisor for Rotation Taskwhere the numbers in the states represent the values ofthe 5 predicates. It should be noted here, that for thepurpose of illustration, the complete supervisor has beenbuilt a priori in this example. In general, however, this

could be done incrementally in the course of explorationwithout the violation of any constraints.4.2 Learning ResultsThe supervisor derived from the control basis repre-sents all admissible control policies. It does not, however,express any task objectives or an optimal control policy.In order to learn these for the counterclockwise rotationtask, a reinforcement schedule has to be present whichrewards the system whenever it performs the task cor-rectly. The reinforcement used in this example is 1 if thecontrol action led to a counterclockwise rotation, �1 if itled to a clockwise rotation, and 0 otherwise. The robotsystem is then put onto a 
at surface and the learningprocess is started.Several experiments of this form were performed inorder to investigate the performance of the control andlearning components. In all these trials the systemrapidly acquired the correct gait pattern while explo-ration was slowly decreased from 100% to 10%. Thisminimum level of random actions was maintained to in-troduce perturbations and thus to learn a more robustpolicy. Figure 5 depicts a typical learning pro�le for thistask.
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Figure 5: Learning Curve for Counterclockwise TaskThe learning curve shows that a correct turninggait is learned after approximately 500 learning steps.Throughout this entire learning process, which on thereal robot took approximately 15 minutes, the robotplatform never entered an unsafe situations due to thelimitations imposed by the DEDS supervisor.The �nal control policy is shown in Figure 6. Thisgraph shows all possible transitions that can occur whilefollowing the learned policy. The core of this policy isthe cycle indicated by bold transition arrows which cor-responds to a stable turning gait. Transition probabil-ities within this cycle are > 95%, making it a stableattractor for this policy. For this core, the correspond-ing control actions are indicated on the bottom of the�gure. The learned control actions in all other states at-tempt to lead the system onto this stable cycle, makingthe policy more robust with respect to perturbations.
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2φ ϕFigure 6: Learned Control Policy for CounterclockwiseRotation Task5 ConclusionsReactive and adaptive control architectures for au-tonomous systems pose many challenges due to the com-plexity of the task and the limited amount of supervi-sion possible. The architecture presented in this paperemploys a hybrid control architecture with a reinforce-ment learning component in order to address these is-sues. Continuous reactive control is thereby derived froma carefully designed control basis while the compositionpolicy is learned on top of an abstract predicate space ina DEDS framework. This allows the imposition of safetyconstraints and thus permits new tasks to be learned on-line in a single trial and without the need for an externalteacher. In addition, it dramatically reduces the com-plexity of the action and state space, making learningfeasible even for complex tasks and platforms.References[Barto et al., 1993] A.G. Barto, S.J. Bradtke, and S.P.Singh. Learning to act using real-time dynamic pro-gramming. Technical Report 93-02, CMPSCI Dept.,Univ. of Mass., Amherst, MA, 1993.
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