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Abstract—We have developed a learning algorithm that counts
the number of cells in a large field of view image automatically,
and can be used to investigate colony growth in time lapse
sequences. The images are acquired using a novel, small, and cost
effective diffraction device that can be placed in an incubator
during acquisition. This device, termed a CyMap, contains a
resonant cavity LED and CMOS camera with no additional
optical components or lenses.

The counting method is based on structured output learning,
and involves segmentation and computation using a random
forest. We show that the algorithm can accurately count thou-
sands of cells in a time suitable for immediate analysis of time
lapse sequences. Performance is measured using ground truth
annotation from registered images acquired under a different
modality.

Index Terms—Cell counting, machine learning, optical diffrac-
tion, time lapse imaging

I. INTRODUCTION

The CyMap is a novel, cost effective imaging modality

suitable for observing a large area of live cells in time lapse

imaging [1]. CyMap imaging can be used in studies that

analyse the growth of colonies after cellular insults (e.g.

following ionizing radiation or cytotoxic agents) and their

consequences on colony growth. Our goal therefore is to build

a software tool that can count the number of cells in each of

several colonies within a large area imaged by the CyMap

device. As CyMap imaging is non-invasive, the cells remain

viable and in optimal conditions within the incubator. Analysis

may be then carried out for the entire time lapse acquisition,

allowing the growth or otherwise of a given colony to be

followed in time.

Advantages of imaging with a CyMap device include a field

of view of 35 mm2 as well as a low cost and simplicity

that allow many such devices to be used in parallel. However,
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since the data collected are in the form of diffraction patterns,

these need to be ’decoded’ to derive information about indi-

vidual cells. Such ’decoding’ represents a very challenging,

yet interesting image processing task, which can be attacked

using supervised machine-learning techniques. Details of this

process are presented in this paper. We discuss the task of

training our algorithm through the collection of ground truth

cell colony data. We show results of the trained algorithm,

applied to new data. While the results are still preliminary,

the obtained accuracies already show promise for using the

CyMap as an alternative to conventional cell counting.

We propose our method as an alternative to two commonly

used methods to analyse cell survival in colonies. The first

method uses an automated scanning microscope, stain-free

phase contrast imaging and an incubator housing to keep

the live cells in ideal conditions. That method acquires large

high resolution mosaic images showing intra-cellular changes.

These systems are inevitably large and costly and rely on

the accuracy of auto-focusing algorithms and the precision

of motorized stages to maintain image quality [2], [3]. The

second method, using clonogenic assays is much simpler: cells

are grown in dishes and after an empirically determined time,

the cell colonies are fixed and stained with a high contrast

chromophore rendering the colonies visible to the eye. The

resulting ’spots’ are counted using a colony counter pen or

microscope [4]. This second method does not allow time lapse

data to be collected and the data are usually restricted to large

cell colony numbers with no accurate information about the

number of cells available.

II. MATERIALS AND METHODS

A. CyMap imaging

The CyMap acquires images of the cell colonies over time,

as they divide and grow. The imager area is large enough to

study 100 or more colonies of 50 or more cells per experiment.

Unlike automated microscopes that make use of phase contrast

microscopy with multiple field of views stitched together, the

CyMap makes use of diffracted light to create an image. The

images acquired by the CyMap are those of diffraction patterns

of the cells rather than conventional trans-illuminated mi-

croscopy images. Each acquired image of 1280×1024 pixels
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Fig. 1. Components of the CyMap. The imager is placed in contact with
the bottom of the coverslip and illuminated from a point source LED. The
LED-imager distance is typically 54 mm.

covers an area on the cell dish of 6.66×5.32 mm. When cells

are sparsely seeded, their diffraction patterns occupy ∼10×10

pixels and individual cells are easy to identify. As the colonies

grow and the diffraction patterns of neighbouring cells overlap,

it becomes increasingly hard to see the boundaries between

cells and to count the number of cells per colony.

The CyMap uses a resonant cavity LED, operating at ∼2

mA and emitting at 650 nm and a CMOS imager. As there

are no image forming optical components used, the system is

afocal. An aperture close to the LED restricts the illumination

cone so that it just covers the imager. The lower platform

holds a cell dish, with the imager faceplate in contact with

the bottom of the dish. As seen in Fig. 1, the geometry is

such that a diffraction pattern due to the light passing through

and around the cells is captured by the imager.

For the purpose of experiments, HeLa cells were grown in

30 mm diameter glass cell dishes with a coverslip (170 µm

thick) bottom, at a density of 2000 cells per dish. This cell

density equates to approximately 100 cells per imager field.

The HeLa cells were grown in Dulbecco’s Modified Eagle’s

Medium media, supplemented with 100 units/mL of penicillin

streptomycin and 10% fetal bovine serum (FBS). The cells

were seeded and incubated at 37◦C with 5% CO2 to allow

cell attachment and growth.

B. CyMap image analysis

Our goal is to extract useful statistical information about

cell colonies from a CyMap image. In particular, in this

paper, we focus on the extraction of cell counts from the raw

CyMap images. This is achieved in several steps (Fig. 2). We

first identify which pixels of a CyMap image correspond to

live cells (segmentation stage). Based on the output of the

segmentation stage, we then infer the density of the cells in

different regions of the image (counting stage). Finally, we add

simple morphological post-processing that separates individual

colonies. The number of cells in each individual colony can

then be estimated based on the inferred density map.

The segmentation and the density estimation (counting)

stages are based on supervised machine-learning techniques,

namely supervised classification and a supervised learning-to-

count approach [5]. An accurate annotation is required for both

supervised training for these machine learning algorithms as

well as quantitative evaluation of the resulting system. We

used a microscope to image the cell colonies at a higher

magnification, annotated the cell locations and then registered

the image sets with the CyMap images. This additional mi-

croscopy allowed us to provide ’ground truth’ data for the

number of cells within each colony on the CyMap images.

This process is detailed in the next subsection.

C. Image Acquisition for Training Data

To obtain the annotated data, cell dishes were prepared,

and cells allowed to grow in the incubator for up to 6 days.

At various time-points during those 6 days, the dishes were

imaged with the CyMap. These images were acquired at 8-bit

intensity resolution with an exposure time of 5 ms. A total of

9 CyMap images were acquired.

After each CyMap image was acquired, Hoechst 33342

(a fluorescent DNA intercalating dye) at 0.2 mmol/L was

added to the cells and the cells incubated for an additional

15 minutes. Image sets were acquired using a 10× 0.3 NA

objective (790×602 µm fields, 1344×1024 pixels, 345±25

nm excitation and >425 nm emission filters, with a 400 nm

dichromatic reflector). To equal the field of view of each

CyMap image, 90 epi-fluorescence and 90 phase contrast

images were acquired.

The approximate centers of cell nuclei were then manually

annotated with reference to the epi-fluorescence images, al-

though the phase contrast images were also used to distinguish

between binucleated and overlying cells. The annotations were

then registered with the corresponding CyMap images on a per

colony basis. The transform for each colony was determined

using up to 10 corresponding points between the CyMap and

the epi-fluorescence images. A least-squares solution solved

the transform for translation, rotation, and scaling. An example

of such annotations is shown in Fig. 3. Approximately 900

colonies were annotated from the set of 9 CyMap images.

These annotations were used as training and testing data for

the learning algorithm.

D. Live cell segmentation

We apply two standard texture banks (the Leung-Malik [6]

and Schmid [7]) for the purpose of segmentation. The Leung-

Malik filter bank contains rotated sub-sets of its own filters. We

replace the filter responses of these groups with a pixelwise

maximum and a minimum over the responses to the entire

group (a very similar approach to [8]). As a result, the initial

filtration stage becomes rotationally independent.

Given the filtered input, we treat the response at each

pixel as a high-dimensional vector. During training, we use

a random forest classifier [9] based on those features (we

used 20 shallow trees having about 256 nodes each). Training

is performed in two stages: the data are first subsampled

uniformly and then sampled from the hard negatives resulting

from the second stage. Each tree was trained on 50,000

positive and 100,000 negative examples.

The training labels are determined by the annotations (ex-

ample shown in Fig. 3(d)). To obtain, the training data for



3

(a) – input CyMap image (b) – classification result (c) – density map (d) – cell count

Fig. 2. The counting pipeline for fragments of different CyMap images: given the input CyMap (a), we first classify each pixel as occupied by live cells or
not (b), and then infer the density map (c). Finally, we perform a morphological analysis and infer the colony boundaries ((d) black), for which the estimated
counts (rounded to integers) are shown below the respective colonies (algorithm estimated / ground truth values).

segmentation, we applied a Gaussian filter (σ = 4 pixels)

to the annotated data and threshold the result with respect

to two thresholds (0.005 and 0.001). The result is used to

determine pixels from (1) the positive class (highest value),

(2) the unknown class (excluded from the training set) and (3)

the negative class (lowest values).

The qualitative results for image segmentation resulting

from applying the trained classifier to the unseen data are given

in Fig. 2. Using the same definition of positive and negative

classes as above, we found that the error of the classifier

on the held-out data is 7.7%, while the recall and precision

are 96% and 90% respectively. One method to improve the

segmentation accuracy is the use of random field models, in

particular based on graph cuts [10].

E. Cell counting

While segmentation of live cells already provides significant

information about the cell population statistics, we aim to

provide more detailed information about the imaged cells.

Ideally, one would want to detect and segment individual cells.

This may, however, be beyond the capability of the machine

learning system or require excessive processing time. Instead,

we settled on the slightly less ambitious goal of estimating

the local density of cells throughout the images. This density

map allows us to identify numbers of cells on a per colony

basis. We base our density estimation on the learning-to-count

framework recently proposed in [5].

The learning-to-count framework [5] is based on supervised

learning and assumes that each pixel p in each training image

i is encoded with a certain real-valued feature vector xi
p from

a high-dimensional feature space RN . The framework then

learns a linear mapping from the feature space RN to the

density values, so that the density of cells at each pixel in the

image is determined by a dot product of the feature vector xi
p

with a learnt vector w (which defines such linear mapping):

Fi(p|w) = wTxi
p , (1)

where Fi(p|w) is the density value estimated for the pixel p

in image i.

Given annotated training data, the method [5] defines a

’pseudo-ground truth’ density image F i
0

as a simple sum of

user-placed dots with a Gaussian kernel. It then estimates the

w in a regularized empirical risk minimization framework:

w = argminw

(

wTw + λ

N
∑

i=1

D
(

F 0

i (·), Fi(·|w)
)

)

, (2)

where the first term is the regularization term on w, while

D is a distance between the ground truth and the estimated

density. The key contribution of [5] is the introduction of

a specific distance function between the densities (MESA-

distance) that is particularly suited for counting tasks. Such

distance considers the set B of all rectangular subwindows B.

For each subwindow B, the absolute difference between the
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Fig. 3. The original CyMap image of the entire field and multiple colonies
shown in (a), with an expanded portion of the image in the smaller box. Phase
Contrast (b) and epi-fluorescence (c) images are used to create the annotated
CyMap image shown in (d).

counts that the two densities predict for this subwindow B

is considered. The distance is then defined as the maximum

mismatch between the predicted counts over all subwindows:

DMESA(F1, F2) = max
B∈B
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At train time, the approach in [5] finds the optimal w

via convex minimization of the objective (2). At test time,

it is sufficient to compute the features for each pixel in the

processed image and then to map them to local densities via

a dot-product with the learned w.

In our current implementation, the features are different

from those used in [5]. In particular, let A(p) be the output map

of a random forest classifier for a CyMap image. We then take

a sequence of blur kernels K1,K2, . . .KM and define Aj(p)
as a convolution of A(p) with the blur kernel (we currently use

the 8 Gaussian blur kernels with σ = 0, 1, 2, 4, 6, 8, 32, 64).

We then encode a pixel p with a sparse vector xp of length

32×M that is a concatenation of M 32-dimensional chunks

yjp encoding the value of p in each of the Aj(p) maps. In

particular, we quantize the range between 0 and 1 into 32

levels (bins), and make yjp zero everywhere except the two

values corresponding to the boundaries of the bin that pixel

p falls into. The values for the two non-zero entries sum to 1
and are set according to the distance from Aj(p) to the bin

boundaries, e.g. 0.5 and 0.5 if Aj(p) is exactly in the middle of

the bin, etc. In other words, yjp defines a sparse linear encoding

for the value of Aj(p).
The idea of this feature mapping is to allow the linear

mapping to distinguish between pixels corresponding to live

cells and those in the rest of the image. The live cell pixels

can be distinguished based on the non-zero entries within

sub-vector chunks corresponding to small blur kernels. A

distinction between the pixels in the middle of very large

colonies and those on the edge of the large colonies or within

smaller colonies is also made. The latter distinction can be

made based on the non-zero entries within sub-vector chunks

corresponding to large blur kernels.

In general, we experimented with the framework of [5] and

modified it slightly. In particular, we replaced the MESA-

distance in (2) with its square (this modification has a rel-

atively small impact on the accuracy) as the squared loss

function is more suitable for the case when the ‘ground

truth’ does not contain major errors. We also imposed the

non-negativity constraint w > 0, which greatly decreased

the convergence time of the cutting-plane based minimization

algorithm, while also increasing the counting accuracy.

F. Colony separation and count estimation

Given the density estimate produced by the previous stage,

we use simple morphological processing to identify individual

colonies. In particular, we threshold the densities and then

dilate the resulting mask with a 7 × 7 square kernel. The

connected components of the resulting mask are then treated

as individual colonies by summing the estimated density over

connected regions. During the evaluation of the system, the

predicted cell counts per colony can be compared with ground

truth counts (defined as the number of annotation dots inside

each connected region).

III. RESULTS AND DISCUSSION

We evaluated the counting accuracy of the proposed system.

Our dataset contained 9 annotated images corresponding to

different stages of progress of cell growth and containing

between 674 and 3385 cells. The experiments were performed

in a leave-one-out fashion, i.e. all training (both at the segmen-

tation and at the counting steps) was done on 8 images and

tested on the remaining one and this was repeated 9 times. The

learning meta-parameter λ was set to 1e− 3, with the results

being insensitive to its value. When training the counting stage,

a small benefit was achieved by sampling a large number of

the overlapping windows (e.g. of size 192×192) from each

training image and using them for training, rather than to train

the approach on the 8 full images. We report the results for

this learning scenario.

Fig. 4 shows the counting accuracy evaluated on rectangular

subwindows (of size 256×256, sampled uniformly and with

overlap), thus assessing the accuracy of the learning-to-count



5

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

400

450

Ground truth 256 x 256 window counts

E
st

im
at

ed
 2

56
 x

 2
56

 w
in

do
w

 c
ou

nt
s

0 50 100 150 200 250 300 350 400 450
−40

−20

0

20

40

60

80

100

120

140

160

Ground truth 256 x 256 window counts

R
el

at
iv

e 
co

un
tin

g 
er

ro
r 

(in
%

)

Fig. 4. Counting accuracy for rectangular subwindows. Left – predictions of our system plotted against the ‘ground truth’ counts (the line x=y is
superimposed). Right – the relative absolute error plotted against the ‘ground truth’ counts. The windows having less than 10 cells are excluded from the plot.
Each color represents a test CyMap image (1 to 9).
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Fig. 5. The distribution of errors in the cell number per colony within the
tested data.

framework on our system. It can be observed (Fig. 4–left) that

a reasonably accurate match between the ‘ground truth’ counts

and the estimated counts was obtained. The average absolute

counting error over such subwindows is 9 cells (whereas the

average number of cells in the subwindow is 87). As can be

observed in (Fig. 4–right), in the majority of cases the relative

error is within 30%.

Fig. 6 further assesses the accuracy of counting for in-

dividual colonies detected using simple morphological post-

processing. Here, we also assessed how much the learning-to-

count framework improved the accuracy on top of a simple

baseline, predicting the count accuracy based on the colony

area. There is an obvious monotonic dependency between the

colony area and the number of cells per colony (Fig. 6a). The

counts predicted by our system (Fig. 6b) are calibrated and

the predicted counts for the colonies with a similar same true

count have a smaller relative spread than their area. This is

particularly noticeable for colonies containing less than 40

cells.

The improvement brought by the learning-to-count frame-

work is further highlighted by Fig. 6d, when we consider the

task of identifying large colonies. We consider three cases,

where colonies of interest are defined as having more than

8, 16, or 32 cells respectively. As shown in Fig. 6d, the

identification of these colonies is more precise using our

system than when using an area-based approach. Fig. 5 shows

the distribution of errors in the cell number per colony within

all the tested data. The error of the number of cells per colony

for 75% of the colonies is between −30% and +30%.

Conventional clonogenic assays determine the number of

colonies, each containing cells above a threshold value, typi-

cally 50. The actual cell number is usually not known. With

our method, we seek to provide additional data on much

smaller colonies and thus gain additional insight into the

early phase of colony growth. Fig. 7 shows a breakdown of

colony number when these contain different cell numbers.

The most relevant comparison data are shown in the right

panel of Fig. 7. Although we are dealing with small colony

numbers, it is probable that assay errors will be lower than

conventional assays which involve counting >1000 colonies,

though this remains to be validated and systematic errors

(if any) removed. The colony number discrepancy is due to

inaccuracies in algorithm-counted cell numbers. A complete

validation requires additional testing with a known cell insult

and of course larger numbers of images, best obtained by using

larger numbers of CyMaps or larger area CyMaps.

IV. OUTLOOK

Other microscopy-based assays image cells directly using

phase contrast microscopy: feature complexity is much higher

and cell segmentation is much more complex. We expect errors

with our method to decrease with larger colony numbers,

as conventionally used, and by more appropriate choice of

features. Although the method discussed here has concentrated

on the use of static images for algorithm training, future work

will extend the method by incorporating temporal information.

We also intend to extend this work for use with other cell lines

and experimental conditions.

ACKNOWLEDGEMENT

The authors acknowledge technical support from G. Pierce,

R.G. Newman and J. Prentice, cell culture support from

G. Bowey and J. Thompson at the Gray Institute for Radiation

Oncology and Biology.



6

a) True count vs. Area: b) True count vs. Estimated count: c) Estimated count error vs. True count
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d) Recall-precision plots for identifying colonies based on the number of cells per colony:
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Fig. 6. Counting accuracy for colonies of cells – comparison with the area-based baseline. a) – areas of the colonies plotted against the true counts. b) –
prediction of our system plotted against the true counts (notice a smaller vertical spread than in a) ). Colour of the dots encodes the number of the test CyMap
image (1 to 9), from which a colony is taken. c) – relative error plotted against the true counts. d) – Recall-precision curves for the task of the identification
of the colonies that have at least a certain number of cells. The curves are obtained by varying the threshold on the area (dashed, lower) or the threshold on
the count predicted by our system (solid, higher).
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