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Abstract We study visual attention by detecting a salient

object in an input image. We formulate salient object detec-

tion as an image segmentation problem, where we separate

the salient object from the image background. We propose

a set of novel features including multi-scale contrast, center-

surround histogram, and color spatial distribution to describe

a salient object locally, regionally, and globally. A Condi-

tional Random Field is learned to effectively combine these

features for salient object detection. We also constructed a

large image database containing tens of thousands of care-

fully labeled images by multiple users. To our knowledge, it

is the first large image database for quantitative evaluation of

visual attention algorithms. We validate our approach on this

image database, which is public available with this paper.

1. Introduction

“Everyone knows what attention is...”

—William James, 1890

The human brain and visual system pay more attention

to some parts of an image. Visual attention has been studied

by researchers in physiology, psychology, neural systems,

and computer vision for a long time. There are many

applications for visual attention, for example, automatic

image cropping [23], adaptive image display on small de-

vices [4], image/video compression, advertising design [7],

and image collection browsing. Recent studies [18, 22, 26]

demonstrated that visual attention helps object recognition,

tracking, and detection as well.

Most existing visual attention approaches are based on

the bottom-up computational framework [3, 6, 8, 9, 10, 11,

19, 25] because visual attention is in general unconsciously

driven by low-level stimulus in the scene such as intensity,

contrast, and motion. These approaches consist of the fol-

lowing three steps. The first step is feature extraction, in

which multiple low-level visual features, such as intensity,

color, orientation, texture and motion are extracted from the

image at multiple scales. The second step is saliency com-

putation. The saliency is computed by a center-surround

operation [10], self-information [3], or graph-based random
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Figure 1. Salient map. From top to bottom: input image, salient map

computed by Itti’s algorithm (http://www.saliencytoolbox.net), and

salient map computed by our approach.

walk [6] using multiple features. After normalization and

linear/non-linear combination, a master map [24] or a salient

map [11] is computed to represent the saliency of each im-

age pixel. Last, a few key locations on the saliency map are

identified by winner-take-all, or inhibition-of-return, or other

non-linear operations. While these approaches have worked

well in finding a few fixation locations in both synthetic and

natural images, they have not been able to accurately detect

where visual attention should be.

For instance, the middle row in Figure 1 shows three

salient maps computed using Itti’s algorithm [10]. Notice

that the saliency concentrates on several small local regions

with high contrast structures, e.g., the background grid in (a),

the shadow in (b), and the foreground boundary in (c). Al-

though the leaf in (a) commands much attention, the saliency

for the leaf is low. Therefore, these salient maps computed

from low-level features are not a good indication for where a

user’s attention is while perusing these images.

In this paper, we incorporate the high level concept of

salient object into the process of visual attention computation.

In Figure 1, the leaf, car, and woman attract the most visual

attention in each respective image. We call them salient ob-

jects, or foreground objects that we are familiar with. As can
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Figure 2. Sample images in our salient object image database.

be observed in Figure 2, people naturally pay more attention

to salient objects in images such as a person, a face, a car, an

animal, or a road sign. Therefore, we formulate salient object

detection as a binary labeling problem that separates a salient

object from the background. Like face detection, we learn

to detect a familiar object; unlike face detection, we detect a

familiar yet unknown object in an image.

We present a supervised approach to learn to detect a

salient object in an image. First, we construct a large im-

age database with 20,000+ well labeled images for training

and evaluation. To our knowledge, it is the first time a large

image database is available for quantitative evaluation. The

user labeled information is used to supervise the salient ob-

ject detection. It can be viewed as top-down information in

the training phase. Second, to overcome the challenge that we

do not know what a specific object or object category is, we

propose a set of novel local, regional, and global features to

define a generic salient object. These features are optimally

combined through Condition Random Field (CRF) learning.

Moreover, the segmentation is also incorporated into the CRF

to detect a salient object with unknown size and shape. The

last row in Figure 1 shows the salient maps computed by our

approach.

2. Image Database

People may have different ideas about what a salient ob-

ject in an image is. To address the problem of “what is the

most likely salient object in a given image”, we take a voting

strategy by labeling a “ground truth” salient object in the im-

age by multiple users. And in this paper, we focus on the case

of a single salient object in an image.

Salient object representation. Formally, we represent the

salient object as a binary mask A = {ax} in a given image

I . For each pixel x, ax ∈ {1, 0} is a binary label to indicate

whether or not the pixel x belongs to the salient object. For

labeling and evaluation, we ask the user to draw a rectangle to

specify a salient object. Our detection algorithm also outputs

Figure 3. Labeled images from 3 users. Top: two consistent labeling

examples. Bottom: three inconsistent labeling examples.

a rectangle.

Image source. We have collected a very large image database

with 130,099 high quality images from a variety of sources,

mostly from image forums and image search engines. Then

we manually selected 60,000+ images each of which contains

a salient object or a distinctive foreground object. We further

selected 20,840 images for labeling. In the selection process,

we excluded any image containing a very large salient object

so that the performance of detection can be more accurately

evaluated.

Labeling consistency. For each image to be labeled, we

ask the user to draw a rectangle which encloses the most

salient object in the image according to his/her own under-

standing. The rectangles labeled by different users usually

are not the same. To reduce the labeling inconsistency, we

vote a “ground truth” labeling from the rectangles drawn by

multiple users.

In the first stage, we asked three users to label all 20,840

images individually. On average, each user took 10-20 sec-

onds to draw a rectangle on an image. The whole process

took about three weeks. Then, for each labeled image, we

compute a saliency probability map G = {gx|gx ∈ [0, 1]} of

the salient object using the three user labeled rectangles:

gx =
1

M

M
∑

m=1

am
x , (1)

where M is the number of users and Am ={am
x } is the binary

mask labeled by the mth user. Figure 3 shows two highly con-

sistent examples and three inconsistent examples. The incon-

sistent labeling is due to multiple disjoint foreground objects

for the first two examples at the bottom row. The last example

at the bottom row shows that an object has hierarchical parts

that are of interest. We call this image set A. In this paper,

we focus on consistent labeling of a single salient object for

each image.

To measure the labeling consistency, we compute statistics

Ct for each image:

Ct =

∑

x∈{gx>t} gx
∑

x gx

. (2)

Ct is the percentage of pixels whose saliency probabilities

are above a given threshold t. For example, C0.5 is the per-
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Figure 4. Labeling consistency. (a) (b) C0.9 (agreed by all 3 users)

and C0.5 on image set A. (c) (d) C0.9 (agreed by at least 8 of 9

users) and C0.5 on image set B.

centage of the pixels agreed on by at least half of the users.

C0.9 ≈ 1 means that the image is consistently labeled by all

the users. Figures 4(a) and 4(b) show the histograms of C0.9

and C0.5 on the image set A. As we can see, the labeled re-

sults are quite consistent, e.g., 92% of the labeling results are

consistent between at least two users (Figure 4 (b)) and 63%
of the labeling results are highly consistent among all three

users (Figure 4 (a)).

In the second stage, we randomly selected 5000 highly

consistent images (i.e., C0.9 > 0.8) from the image set A.

Then, we asked nine different users to label the salient object

rectangle. Figures 4(c) and 4(d) show the histograms of C0.9

and C0.5 on these images. Compared with the image set A,

this set of images has less ambiguity of what the salient object

is. We call these images as image set B.

After the above two-stage labeling process, the salient ob-

ject in our image database is defined based on the “majority

agreement” of multiple users and represented as a saliency

probability map.

Evaluation. With the saliency probability map G, for any

detected salient object mask A, we define region-based and

boundary-based measurements.

We use the precision, recall, and F-measure for region-

based measurement. Precision/Recall is the ratio of cor-

rectly detected salient region to the detected/“ground truth”

salient region: Precision =
∑

x gxax/
∑

x ax, Recall =
∑

x gxax/
∑

x gx. F-measure is the weighted harmonic mean

of precision and recall, with a non-negative α: Fα =
(1+α)×Precision×Recall

α×Precision+Recall
. We set α = 0.5 following [17]. The

F-measure is an overall performance measurement.

For the boundary-based measurement, we use boundary

displacement error (BDE) [5], which measures the average

displacement error of corresponding boundaries of two rect-

angles. The displacement is averaged over the different users.

3. CRF for Salient Object Detection

We formulate the salient object detection problem as a bi-

nary labeling problem by separating the salient object from

the background. In the Conditional Random Field (CRF)

framework [13], the probability of the label A = {ax} given

the observation image I is directly modeled as a conditional

distribution P (A|I) = 1
Z

exp(−E(A|I)), where Z is the par-

tition function. To detect a salient object, we define the en-

ergy E(A|I) as a linear combination of a number of K salient

features Fk(ax, I) and a pairwise feature S(ax, ax′ , I):

E(A|I) =
∑

x

K
∑

k=1

λkFk(ax, I) +
∑

x,x′

S(ax, ax′ , I), (3)

where λk is the weight of the kth feature, and x, x′ are

two adjacent pixels. Compared with Markov Random Field

(MRF), one of advantages of CRF is that the feature func-

tions Fk(ax, I) and S(ax, ax′ , I) can use arbitrary low-level

or high-level features extracted from the whole image. CRF

also provides an elegant framework to combine multiple fea-

tures with effective learning.

Salient object feature. Fk(ax, I) indicates whether or not a

pixel x belongs to the salient object. In next section, we pro-

pose a set of local, regional, and global salient object features

to detect the salient object. Each kind of salient object fea-

ture provides a normalized feature map fk(x, I) ∈ [0, 1] for

every pixel. The salient object feature Fk(ax, I) is defined as

follows:

Fk(ax, I) =

{

fk(x, I) ax = 0
1− fk(x, I) ax = 1

. (4)

Pairwise feature. S(ax, ax′ , I) models the spatial relation-

ship between two adjacent pixels. Following the contrast-

sensitive potential function in interactive image segmenta-

tion [2], we define S(ax, ax′ , I) as:

S(ax, ax′ , I) = |ax − ax′ | · exp(−βdx,x′), (5)

where dx,x′ = ||Ix − Ix′ || is the L2 norm of the color differ-

ence. β is a robust parameter that weights the color contrast,

and can be set as β = (2〈||Ix−Ix′ ||2〉)−1 [1], where 〈·〉 is the

expectation operator. This feature function is a penalty term

when adjacent pixels are assigned with different labels. The

more similar the colors of the two pixels are, the less likely

they are assigned different labels. With this pairwise feature

for segmentation, the homogenous interior region inside the

salient object can also be labeled as salient pixels.

3.1. CRF Learning

To get an optimal linear combination of features, the goal

of CRF learning is to estimate the linear weights
−→
λ =

{λk}
K
k=1 under the Maximized Likelihood (ML) criteria.

Given N training image pairs {In, An}Nn=1, the optimal pa-

rameters maximize the sum of the log-likelihood:

−→
λ ∗ = argmax

−→
λ

∑

n

log P (An|In;
−→
λ ). (6)



The derivative of the log-likelihood with respect to the pa-

rameter λk is the difference between two expectations:

d log P (An|In;
−→
λ )

dλk

=

< Fk(An, In) >
P (An|In;

−→
λ )
− < Fk(An, In) >P (An|Gn) .

(7)

Then, the gradient descent direction is:

∆λk ∝
∑

n

(
∑

x,an
x

(Fk(an
x , In)p(an

x |I
n;
−→
λ )

−Fk(an
x , In)p(an

x |g
n
x ))), (8)

where p(an
x |I

n;
−→
λ ) =

∫

An\an
x

P (An
x |I

n;
−→
λ ) is the marginal

distribution and p(an
x |g

n
x ) is from the labeled ground-truth:

p(an
x |g

n
x ) =

{

1− gn
x ax = 0

gn
x ax = 1

.

Exact computation of marginal distribution p(an
x |I

n;
−→
λ ) is

intractable. However, the pseudo-marginal (belief) computed

by belief propagation can be used as a good approxima-

tion [21, 14]. The tree-reweighted belief propagation[12] can

be run under the current parameters in each step of gradient

descent to compute an approximation of the marginal distri-

bution p(an
x |I

n;
−→
λ ).

4. Salient Object Features

In this section, we introduce local, regional, and global

features that define a salient object. Since scale selection is

one of the fundamental issues in feature extraction, we resize

all images so that the max(width,height) of the image is 400
pixels. In the following, all parameters are set with respect to

this basic image size.

4.1. Multi-scale contrast

Contrast is the most commonly used local feature for at-

tention detection [10, 15, 16] because the contrast operator

simulates the human visual receptive fields. Without know-

ing the size of salient object, contrast is usually computed at

multiple scales. In this paper, we simply define the multi-

scale contrast feature fc(x, I) as a linear combination of con-

trasts in the Gaussian image pyramid:

fc(x, I) =

L
∑

l=1

∑

x′∈N(x)

||I l(x)− I l(x′)||2 (9)

where I l is the lth-level image in the pyramid and the number

of pyramid levels L is 6. N(x) is a 9×9 window. The feature

map fc(·, I) is normalized to a fixed range [0, 1]. An example

is shown in Figure 5. Multi-scale contrast highlights the high

contrast boundaries by giving low scores to the homogenous

regions inside the salient object.

Figure 5. Multi-scale contrast. From left to right: input image, con-

trast maps at multiple scales, and the feature map from linearly com-

bining the contrasts at multiple scales.

4.2. Center-surround histogram

As shown in Figure 2, the salient object usually has a

larger extent than local contrast and can be distinguished from

its surrounding context. Therefore, we propose a regional

salient feature.

Suppose the salient object is enclosed by a rectangle R.

We construct a surrounding contour RS with the same area

of R, as shown in Figure 6 (a). To measure how distinct

the salient object in the rectangle is with respect to its sur-

roundings, we can measure the distance between R and RS

using various visual cues such as intensity, color, and tex-

ture/texton. In this paper, we use the χ2 distance between

histograms of RGB color: χ2(R, RS) = 1
2

∑ (Ri−Ri

S
)2

Ri+Ri

S

.

We use histograms because they are robust global descrip-

tion of appearance. They are insensitive to small changes in

size, shape, and viewpoint. Another reason is that the his-

togram of a rectangle with any location and size can be very

quickly computed by means of integral histogram introduced

recently [20]. Figure 6 (a) shows that the salient object (the

girl) is most distinct using the χ2 histogram distance. We

have also tried the intensity histogram and oriented gradient

histogram. We found that the former is redundant with the

color histogram and the latter is not a good measurement be-

cause the texture distribution in a semantic object is usually

not coherent.

To handle varying aspect ratios of the object, we use

five templates with different aspect ratios {0.5, 0.75, 1.0,
1.5, 2.0}. We find the most distinct rectangle R∗(x) centered

at each pixel x by varying the size and aspect ratio:

R∗(x) = argmax
R(x)

χ2(R(x), RS(x)). (10)

The size range of the rectangle R(x) is set to [0.1, 0.7] ×
min(w, h), where w, h are image width and height. Then,

the center-surround histogram feature fh(x, I) is defined as a

sum of spatially weighted distances:

fh(x, I) ∝
∑

{x′|x∈R∗(x′)}

wxx′χ2(R∗(x′), R∗
S(x′)), (11)

where R∗(x′) is the rectangle centered at x′ and containing

the pixel x. The weight wxx′ = exp(−0.5σ−2
x′ ||x−x′||2) is a

Gaussian falloff weight with variance σ2
x′ , which is set to one
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Figure 6. Center-surround histogram. (a) center-surround histogram

distances with different locations and sizes. (b) top row are input

images and bottom row are center-surround histogram feature maps.
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Figure 7. The average center-surround histogram distance on the im-

age set A. 1. a randomly selected rectangle. 2. a rectangle centered

at the image center with 55% ratio of area to image. 3-5. rectangles

labeled by three users.

third of the size of R∗(x′). Finally, the feature map fh(·, I)
is also normalized to the range [0, 1].

Figure 6 (b) shows several center-surround feature maps.

The salient objects are well located by the center-surround

histogram feature. Especially, the last image in Figure 6 (b) is

a difficult case for color or contrast based approaches but the

center-surround histogram feature can capture the “object-

level” salient region.

To further verify the effectiveness of this feature, we com-

pare the center-surround histogram distance of a randomly se-

lected rectangle, a rectangle centered at the image center, and

three user-labeled rectangles in the image. Figure 7 shows

the average distances on the image set A. It is no surprise

that salient object has a large center-surround histogram dis-

tance.

4.3. Color spatial-distribution

The center-surround histogram is a regional feature. Is

there a global feature related to the salient object? We ob-

serve from Figure 2 that the wider a color is distributed in the

image, the less possible a salient object contains this color.

The global spatial distribution of a specific color can be used

to describe the saliency of an object.

To describe the spatial-distribution of a specific color,

the simplest approach is to compute the spatial variance of

the color. First, all colors in the image are represented by

Gaussian Mixture Models (GMMs) {wc, µc, Σc}Cc=1, where

{wc, µc, Σc} is the weight, the mean color and the covari-

ance matrix of the cth component. Each pixel is assigned to a

color component with the probability:

p(c|Ix) =
wcN (Ix|µc, Σc)

∑

c wcN (Ix|µc, Σc)
. (12)

Then, the horizontal variance Vh(c) of the spatial position for

each color component c is:

Vh(c) =
1

|X |c

∑

x

p(c|Ix) · |xh −Mh(c)|2, (13)

Mh(c) =
1

|X |c

∑

x

p(c|Ix) · xh, (14)

where xh is x-coordinate of the pixel x, and |X |c =
∑

x p(c|Ix). The vertical variance Vv(c) is similarly de-

fined. The spatial variance of a component c is V (c) =
Vh(c) + Vv(c). We normalized {V (c)}c to the range [0, 1]
(V (c) ← (V (c) − minc V (c))/(maxc V (c) − minc V (c))).
Finally, the color spatial-distribution feature fs(x, I) is de-

fined as a weighted sum:

fs(x, I) ∝
∑

c

p(c|Ix) · (1 − V (c)). (15)

The feature map fs(·, I) is also normalized to the range [0, 1].
Figure 8 (b) shows color spatial-distribution feature maps of

several example images. The salient objects are well covered

by this global feature. Note that the spatial variance of the

color at the image corners or boundaries may be also small

because the image is cropped from the whole scene. To re-

duce this artifact, a center-weighted, spatial-variance feature

is defined as:

fs(x, I) ∝
∑

c

p(c|Ix) · (1− V (c)) · (1 −D(c)), (16)

where D(c) =
∑

x p(c|Ix)dx is a weight which assigns less

importance to colors nearby image boundaries and is also nor-

malized to [0, 1], similar to V (c). dx is the distance from

pixel x to the image center. As shown in Figure 8 (c), center-

weighted, color spatial variance shows a better prediction of

the saliency of each color.

To verify the effectiveness of this global feature, we plot

the color spatial-variance versus average saliency probability

curve on the image set A, as shown in Figure 9. Obviously,

the smaller a color variance is, the higher probability the color

belongs to the salient object.

5. Evaluation

We randomly select 2,000 images from image set A and

1,000 images from image set B to construct a training set,
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Figure 8. Color spatial-distribution feature. (a) input images. (b)

color spatial variance feature maps. (c) center-weighted, color spa-

tial variance feature maps.
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Figure 9. Color spatial variance (x-coordinate) v.s. average saliency

probability (y-coordinate) on the image set A. The saliency proba-

bility is computed from the “ground truth” labeling.

which are excluded from the testing phase. To output a rect-

angle for the evaluation, we exhaustively search for a smallest

rectangle containing at least 95% salient pixels in the binary

label map produced by the CRF.

Effectiveness of features and CRF learning. To evaluate

the effectiveness of each salient object feature, we trained

four CRFs: three CRFs with individual features and one CRF

with all three features. Figure 10 shows the precision, recall,

and F-measure of these CRFs on the image sets A and B.

As can be seen, the multi-scale contrast feature has a high

precision but a very low recall. The reason is that the inner

homogenous region of a salient object has low contrast. The

center-surround histogram has the best overall performance

(on F-measure) among all individual features. This regional

feature is able to detect the whole salient object, although

the background region may contain some errors. The color

spatial-distribution has slightly lower precision but has the

highest recall. Later, we will discuss that for attention detec-

tion, recall rate is not as important as precision. It demon-

strates the strength and weakness of the global feature. After

CRF learning, the CRF with all three features produces the

best result, as shown in the last bars in Figure 10. The best

linear weights we learnt are:
−→
λ = {0.24, 0.54, 0.22}.

Figure 11 shows the feature maps and labeling results of

several examples. Each feature has its own strengths and lim-

itations. By combining all features with the pairwise feature,

the CRF successfully locates the most salient object.

Comparison with other approaches. We compare our
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Figure 10. Evaluation of salient object features. 1. multi-scale con-

trast. 2. center-surround histogram. 3. color spatial distribution. 4.

combination of all features.

Figure 11. Examples of salient features. From left to right: input

image, multi-scale contrast, center-surround histogram, color spatial

distribution, and binary salient mask by CRF.

algorithm with two leading approaches. One is the con-

trast and fuzzy growing based method [16], which we call

“FG”. This approach directly outputs a rectangle. An-

other approach is the salient model presented in [10], and

we call it “SM” (We use a matlab implementation from

http://www.saliencytoolbox.net). Because the output of this

approach is a salient map, we convert the salient map to a

rectangle containing 95% of the fixation points, which are

determined by the winner-take-all algorithm [10].

Figure 12 shows the evaluation results of three algorithms

on both image set A and B. On image set A, our approach

reduced 42% and 34% overall error rates on F-measure, and

39% and 31% boundary displacement errors (BDEs), com-

pared with FG and SM. Similarly, 49% and 38% overall error

rates on F-measure, and 48% and 37% BDEs are reduced on

the image set B.

Notice that as show in Figure 10 and 12, the individ-

ual features (center-surround histogram and color spatial-

distribution), FG, and SM all have higher recall rates than

our final approach. In fact, recall rate is not much of a useful

measure in attention detection. For example, a 100% recall

rate can be achieved by simply select the whole image. So

algorithm trying to achieve a high recall rate tends to select

as large an attention region as possible sacrificing the preci-

sion rate. The key objective of attention detection should be

to locate position of a salient object as accurately as possi-

ble, i.e. with high precision. However, for images with a

large salient object, a high precision is also not too difficult to

achieve. Again, for example, for an image with a salient ob-
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Figure 12. Comparison of different algorithms. (a-b) and (c-d) are

region-based (precision, recall, and F-measure) and boundary-based

(BDE - boundary displacement error) evaluations. 1. FG. 2. SM. 3.

our approach.
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Figure 13. Comparison on a small object (object/image ratio ∈

[0, 0.25]) dataset from image set A. 1. a rectangle centered at the

image center and with 0.6 object/image ratio. 2. FG. 3. SM. 4. our

approach.

ject occupying 80% of the image area, just select the whole

image as attention area will give 80% precision with 100%
recall rate. So the real challenge for attention detection is to

achieve high precision on small salient objects. To construct

such a challenge data set, we select a small object subset with

object/image ratio in the range [0, 0.25] from the image set

A. The results on this small object dataset are shown in Fig-

ure 13, where we also show the performance of a rectangle

fixed at the image center with 0.6 object/image ratio. Notice

that both this center rectangle and FG achieve high recall rate

but with very low precision and large BDE. Our method is

significantly better than FG and SM in both precision (97%
and 37% improvement) and BDE (55% and 33% reduction).

Figure 14 shows several examples with ground truth rectan-

gles from one user for a qualitative comparison. We can see

that FG and SM approaches tend to produce a larger attention

rectangle and our approach is much more precise.

Figure 15 shows our detection results on the images in Fig-

ure 2. The whole labeled database and our results are public

available from: http://research.microsoft.com/∼jiansun/.

Figure 14. Comparison of different algorithms. From left to right:

FG, SM, our approach, and ground-truth.

Figure 15. Our detection result on the images in Figure 2.

(a) (b)
Figure 16. Multiple salient object detection. (a) Two birds are de-

tected at the same time. (b) The toy car is detected firstly, and using

the updated feature maps, the boy is detected secondly.

6. Discussion and Conclusion

In this paper, we have presented a supervised approach for

salient object detection, which is formulated as an image seg-



Figure 17. Failure cases. From left to right: FG, SM, our approach,

and ground-truth.

mentation problem using a set of local, regional, and global

salient object features. A CRF was learnt and evaluated on a

large image database containing 20,000+ well-labeled images

by multiple users.

Salient object detection has wider applications. For exam-

ple, a more semantic, object-based image similarity can be

defined with salient object detection for content-based image

retrieval. Manually collecting and labeling training images in

object recognition is very costly. With salient object detec-

tion, it is possible to automatically collect and label a sub-

stantial number of images.

There are several important remaining issues for further

investigation of salient object detection. In future work,

we plan to experiment with non-rectangular shapes for

salient objects, and non-linear combination of features.

More sophisticated visual features will further improve the

performance. In particular, we are extending our single

salient object detection framework to detect multiple salient

objects or no salient object at all. Figure 16 shows two initial

results. In Figure 16 (a), our current CRF approach can

directly output two disjoint connected components so that we

can easily detect them simultaneously. In Figure 16 (b), we

use the inhibition-of-return strategy [10] to detect the salient

objects one-by-one. Finally, Figure 17 shows two failure

cases, which demonstrate one of the challenges in the salient

object detection — hierarchical salient object detection.
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