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e Study visual attention by detecting a salient object in an input image.
* People naturally pay more attention to salient objects.
— A person, a face, a car, an animal, a road sign, etc.

 Formulate salient object detection as image segmentation problem.

— Separate the salient object from the image background.
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e Applications for visual attention

— Automatic image cropping, adaptive image display, image/video
compression, advertising design, etc.

* Existing visual attention approaches

— Bottom-up computational framework



e Difficulty

— Although existing approaches work well in finding a few fixation
locations, they are not able to accurately detect where visual
attention should be.
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e Contributions
— The first large image database available for quantitative evaluation
— High-level concept of salient object for visual attention computation

— CRF learning framework with a set of novel local, regional, and global
features to defme a generlc sallent oblect
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« Different people have different ideas about what a salient
object in an image is.
— Voting strategy by multiple users.
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« Salient object representation
— A binary mask
A ={a,} , for each pixel z, a, € {1,0}
* Image source
— 130,099 high quality images from a variety of sources

— 60,000+ images with a salient object or a distinctive foreground object

— 20,840 images for labeling
 Two-stage labeling process

— Ask the user to draw a rectangle which encloses the most salient
object in the image.

— Reduce labeling inconsistency with voting.



* The first stage
— 3 users label all 20,840 images.
— Saliency probability map
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m=1
M: the number of users

A" = {a;'}: the binary mask labeled by the mth user

— Image set A

— Labeling consistency
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The second stage

— Randomly selected 5000 highly consistent images from the image set A
(i_e_’ Co.g > {_]8)

— 9 users label the salient object rectangle.

— Image set B

After the two-stage labeling process, the salient object
is defined based on the majority agreement of users and
represented as a saliency probability map.



Image Database
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 Formulated as binary labeling problem

e Conditional Random Field (CRF) framework

— The probability of the label 4 ={a:} given the image 7 is modeled as a
conditional distribution:
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P(AIT) = e B4
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Conditional Random Field (CRF) framework

— Get an optimal linear combination of features by estimating the linear
weights under the Maximized Likelihood (ML) criteria:

_>=+< n|rn EATEY !
A= argn%leDgP(A I X)), X = {
— Advantages over Markov Random Field (MRF)

* Arbitrary low-level or high-level features can be used.

* Provide an elegant framework to combine multiple features with
effective learning.



 Multi-scale contrast

— Contrast is the most commonly used local feature because the
contrast operator simulates the human visual receptive fields.

— Alinear combination of contrasts in the Gaussian image pyramid:

L
flw, D)=, D, II'(z)-I'G")|?

=1 z'eN(zx)




Salient Object Features

e Center-surround histogram

— Salient objects usually have a larger extent than local contrast and can
be distinguished from its surrounding context.

— Measure how distinct the salient object is with respect to its
surrounding area, using the distance between color histograms.
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e Center-surround histogram

— Sum of spatially weighted distances:



e Center-surround histogram
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e Color spatial distribution

— The wider a color is distributed in the image, the less possible a salient
object contains this color.

— Spatial variance of color, horizontal and vertical:
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e Color spatial distribution

— The spatial variance of color at image corners or boundaries may also
be small because the image is cropped from the whole scene.

— Center-weighted, spatial-variance color feature:

fs(z, 1) o< Y " ple|I) (1= V(c))(1 - D(c))



e Color spatial distribution
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» Effectiveness of features and CRF learning

1. multi-scale contrast, 2. center-surround histogram, 3. color spatial distribution, 4. combination
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» Effectiveness of features and CRF learning




Comparison with other approaches

— Recall rate is not much of a useful measure in visual attention.

B Precision M Recall [1F-measure
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Evaluation

 Comparison with other approaches

— Recall rate is not much of a useful measure in visual attention.

1 2 3 1 2 3

(¢) BDE, image set A (d) BDE, image set B

BDE: boundary displacement error
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 Comparison with other approaches

— The real challenge: high precision on small salient objects

* Object/image ratio in the range [0, 0.25]
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 Discussion and Conclusion



Present a supervised approach for salient object detection
formulated as an image segmentation problem using a set of
local, regional, and global salient object features.

Salient object detection has wider applications.
— Content-based image retrieval

— Automatic collecting and labeling of image data

Future work
— Non-rectangular shapes of salient objects
— Non-linear combination of features
— More sophisticated visual features

— Multiple salient object detection



Discussion and Conclusion

 Multiple salient object detection
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e Failure cases and challenges

— Hierarchical salient object detection
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Thank You!
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