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Abstract. Cell detection in microscopy images is an important step
in the automation of cell based-experiments. We propose a machine
learning-based cell detection method applicable to different modalities.
The method consists of three steps: first, a set of candidate cell-like
regions is identified. Then, each candidate region is evaluated using a
statistical model of the cell appearance. Finally, dynamic programming
picks a set of non-overlapping regions that match the model. The cell
model requires few images with simple dot annotation for training and
can be learned within a structured SVM framework. In the reported ex-
periments, state-of-the-art cell detection accuracy is achieved for H&E-
stained histology, fluorescence, and phase-contrast images.

1 Introduction

Automatic cell detection is a subject of interest in a wide range of cell-based
studies, as it is the basis of many automatic methods for cell counting, segmen-
tation and tracking. The broad diversity of cell lines and microscopy imaging
techniques require that cell detection algorithms adapt well to different scenar-
ios. The difficulty of the problem also increases when the cell density of the
sample is high, as in this case the cell size can vary and cell clumping is usual.
Moreover, in some applications different cell types or other similar structures
can be present in the same image, and in this case the algorithm is required to
detect only the cells of interest, posing a barrier hard to overcome with classical
image processing techniques.

In this paper we propose a learning-based method that is general enough
to perform well across different microscopy modalities. Rather than invoking
computationally-intensive segmentation frameworks [1,9], or classifying all image
patches in a sliding-window manner [15], it uses a highly-efficient MSER region
detector [8] to find a broad number of candidate regions to be scored with a
learning-based measure. The non-overlaping subset of those regions with high
similarity to the class of interest can then be selected via dynamic programming,
while the learning can be done within the structured output framework [12].

The new method is evaluated on three data sets (Figure 1), which are an-
notated with dots; a dot is placed inside each cell. Given only this minimalistic
annotation, the method is able to learn a model that achieves state-of-the-art
detection accuracy, in our evaluation, despite all the variation between the data
sets.
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(a) Histopathology (b) Fluorescence HEK (c) Phase-contrast HeLa

Fig. 1. Example images from the data sets used for cell detection. (a) Histopathology
image of breast cancer tissue, which is stained to highlight lymphocyte nuclei (100×100
pix.; cell size 6–8 pix.) (b) Fluorescence microscopy image of human embryonic kidney
cells (190 × 190 pix.; cell size 10–20 pix.) (c) Phase-contrast image of cervical cancer
cells of the HeLa cell line (400× 400 pix.; cell size 10–40 pix.)

2 Learning Non-overlapping Extremal Regions

The model operates by first producing a set of candidate extremal regions, and
then picking a subset of those regions based on a learned classifier score and
subject to a non-overlap constraint. We discuss the components of the method,
namely the detection of candidate regions, the inference, and the structured
learning, next.
Extremal regions of the grey-value image I are defined as connected com-
ponents of a thresholded image I>t = {I > t} for some t. In other words, a
region is extremal if the image intensity everywhere inside of it is higher than
the image intensity at its boundary. Our approach thus builds on the fact that
in many microscopy modalities, cells show up as bright or dark blobs in one of
the intensity channels, and therefore can be closely approximated by extremal
regions of this intensity channel. An important property of extremal regions is
their nestedness, i.e. the fact that for the same image I two extremal regions R
and S can be either nested or non-overlapping (R ⊂ S or R ⊃ S or R ∩ S = ∅.
See Figure 2).

The number of extremal regions can be combinatorial, so in practice we con-
sider only regions that are maximally stable in the sense of [8], i.e. the speed of
their area variation w.r.t. changing threshold t is a local minimum and is below
a separate stability threshold. We thus use a popular and efficient maximally
stable extremal region detector (MSER) [8] to find a representative subset of
all extremal regions. To boost the recall for cell detection, we set the stability
threshold to a very high value, so that the MSER-detector produces a man-
ageable but very large (thousands) number of candidate regions. Our inference
procedure then determines which of those candidates correspond to cells.
Inference under the non-overlap constraint. Let R1, R2, . . . RN be the
candidate set of N extremal regions detected in an image. Let us assume that
each region Ri is assigned a value Vi, which is produced by a classifier and



Learning to Detect Cells Using Non-overlapping Extremal Regions 3

(a) (b)

Fig. 2. (a) Example of the intensity profile of an image region containing cells. The
MSER algorithm detects extremal regions that are stable in area growth while varying
an intensity threshold. Typically, many extremal regions are nested within and between
cells (especially when there is cell clumping) forming a tree structure. For example, (b)
the boundaries of several MSERs that appear in the close-up of a cell image are shown,
which can be represented by the tree structure. The parent-child relationships in the
tree correspond to the nestedness of the regions. The tree structure is utilized by the
inference algorithm.

indicates the appropriateness score of this region to the class of cells we want
to detect. Our method then picks a subset of extremal regions so that the sum
of scores of the picked regions is maximized, while the picked regions do not
overlap (the non-overlap constraint).

To formalize this task, we define a set of binary indicator variables y =
{y1, y2, . . . yN} so that yi = 1 implies the region Ri being picked. Let Y be a set
of those region subsets that do not have region overlap, that is, Y = {y | ∀ i, j :
(i 6= j) ∧ (yi = 1) ∧ (yj = 1) ⇒ Ri ∩Rj = ∅}. Then, the optimization task faced
by the model is:

F (y) = max
y∈Y

N
∑

i=1

yi Vi . (1)

For an arbitrary set of regions, maximizing (1) over y ∈ Y is NP-hard (equiv-
alent to submodular maximization). Fortunately, the nestedness property of ex-
tremal regions permits fast and exact maximization of (1). The idea is to organize
the extremal regions into trees according to the nestedness property, so that each
tree corresponds to a set of overlapping extremal regions (Figure 2b). The exact
solution of (1) can then be obtained via dynamic programming on those trees [11]
after an appropriate variable substitution (see implementation details).
Learning formulation. As discussed above, our method relies on machine
learning to score each region for the detection task. A suitable scoring can be
learned in a principled fashion from the dot-annotated training data as follows.
Assume a set of M training images I1, I2, . . . IM , where each training image
Ij has a set of N j MSER regions Rj

1
, Rj

2
, . . . Rj

Nj . For each of these regions Rj
i

a feature vector f
j
i is computed (the feature vector choice is described in the
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implementation details). Finally, assume that the images are annotated, so that
nj
i denotes the number of user-placed dots (annotations) inside the region Rj

i .
To obtain the score for each region, we use a linear classifier so that the

value V j
i for the region Rj

i is computed as a scalar product (w · f ji ) with the
weight vector w. The goal of learning is then to find a weight vector so that the
inference procedure tends to pick regions with nj

i = 1, and also to ensure that
for each dot a region is picked that contains it. In this way, the produced set of
regions tends to be in a one-to-one correspondence with the user-placed dots.
Learning via binary classification. The simplest way to learn w, and one
that already produces competitive results in our comparisons, is to learn a binary
classifier. For this, all regions in the training images are considered, and those
with nj

i = 1 are assigned to the positive class while all others are assigned to the
negative class. Training any linear classifier, e.g. via a support vector machine
algorithm, then produces a desired w.
Structured learning. Learning via binary classification does not take into
account the non-overlap constraint. A more principled approach is to use a
structured SVM [12] that directly optimizes the performance of the inference
procedure on the training set. Consider the configuration yj ∈ Yj defining the
set of non-overlapping regions for the image Ij . It is natural to define an er-
ror measure (the loss) associated with yj as the deviation from the one-to-one
correspondence between the user-placed dots and the picked regions:

L(yj) =

Nj

∑

i=1

yji |n
j
i − 1|+ U j(yj) (2)

U j(yj) denotes the number of user-placed dots that are not covered by any
region Rj

i with yji = 1 (i.e. have no correspondence).

To perform the learning, the “ground truth” configuration ȳj = {ȳj
1
, ȳj

2
, . . . ȳj

Nj} ∈
Y is defined for each training image by assigning a unique extremal region to
each dot (see implementation details). The structured SVM method [12] then
finds the optimal weight vector w by minimizing the following convex objective:

L(w) =
1

2
||w||2 +

C

M

M
∑

j=1

max
yj∈Yj





Nj

∑

i=1

(w · f ji ) y
j
i −

Nj

∑

i=1

(w · f ji ) ȳ
j
i + L(yj)



 (3)

where the first term is a regularization on w, C is a scalar regularization param-
eter, and the maximum inside the sum represents a convex (in w) upper bound
on the loss (2), that the inference (1) incurs on the jth training image [12].

The objective (3) can be optimized with a standard cutting-plane algo-
rithm [12] provided that it is possible to perform the loss-augmented inference,
which corresponds to finding maxima inside the second term of (3) for a fixed
w. Thus, one needs to solve:

max
yj∈Yj





Nj

∑

i=1

(w · f ji ) y
j
i −

Nj

∑

i=1

(w · f ji ) ȳ
j
i +

Nj

∑

i=1

yji |n
j
i − 1|+ U j(yj)



 (4)
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We then note that under the non-overlap constraint, the number of un-matched

dots U j(yj) can be rewritten as Dj −
∑Nj

i=1
yjin

j
i , where Dj is the total number

of dots in the jth training image. After substituting U(yj) and omitting the
terms independent of yj , an equivalent optimization problem is obtained:

max
yj∈Yj

Nj

∑

i=1

(

(w · f ji ) + |nj
i − 1| − nj

i

)

yji (5)

which has exactly the same form as (1) with Vi = (w · f ji ) + |nj
i − 1| − nj

i =

(w · f ji ) − [nj
i ≥ 0]. Thus, we can perform loss-augmented inference exactly via

dynamic programming on trees, and get an optimal w through the cutting-plane
procedure [12].
Implementation details. We use the MSER implementation from [14]. The
feature vector for each region in a grayscale image is 92-dimensional, and consists
of several concatenated histograms: (a) a 10-dimensional histogram of intensities
within the region (separate histograms are computed for color images), (b) two
6-dimensional histograms of differences in intensities between the region border
and a dilation of it for two different dilation radii (these histograms capture
the spatial context of the region), (c) a shape descriptor represented by a 60-
dimensional histogram of the distribution of the boundary of the region on a
size-normalized polar coordinate system, and, finally, (d) the area A of the region
represented by a 10-dimensional binary vector with the entry ⌈logA⌉ set to 1.

To generate the ground truth configuration for the structured learning, we
first score all regions using the weight vector wbin learned through a binary SVM.
Then, for each dot, we include into the ground truth configuration the region
that contains only this dot and has the highest score.

The dynamic programming within the inference (1) can be implemented via
the following variable substitution: each y is mapped to a new set of binary
variables z = {z1, z2, . . . , zN}, so that zi = 1 iff the y-variable for either the ith
node or any of its ancestors in the MSER-tree is 1. The tree-structured graphical
model on z-variables is defined for each region tree. For the root node i, the cost
for zi = 1 is set to Vi. For every edge in the tree connecting nodes i (parent) and
j (child), the cost for zi = 0 and zj = 1 is set to Vj , while the cost for zi = 1 and
zj = 0 is set to −∞. The latter restricts inference to only those z-configurations
that correspond to y ∈ Y. All other costs within pairwise and unary terms are
set to 0. A standard max-product algorithm is run in each tree and the optimal
z-variables are mapped back to y-variables.

The learning is done via the SVMstruct code [5,13]. In general, detecting cells
on a 400-by-400 pixel HeLa image takes 30 seconds on an i7 CPU (dominated
by our unoptimized MATLAB code for feature computation).

3 Experiments

Evaluating the model. Although the algorithm produces a set of regions, our
aim is to optimize the detection accuracy (and not the segmentation) w.r.t. the
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(a) Histopathology (b) Fluorescence HEK (c) Phase-contrast HeLa

Fig. 3. Example results on each of the data sets. The boundaries of the detected MSER
regions are shown in dashed green/red over the test images with yellow dots indicating
the ground truth annotations. Note, the features are computed over a support region
that is larger than the MSER region.

ground truth provided in the form of dots. Therefore, we evaluate the output of
our method based on the position of the region centroids. A centroid is considered
a true positive (TP) if it is within a radius ρ of the ground truth dot. In our
experiments, ρ is set to the radius of the smallest cell in the data set. Thus,
only centroids that lie inside cells are considered correct. Centroids further than
ρ from ground truth dots are considered false positives (FP). Finally, missed
ground truth dots are counted as false negatives (FN). The results are reported
in terms of Precision=TP/(TP + FP) and Recall=TP/(TP + FN).

Three data sets for cell detection have been used to validate the method
(Figure 1). Firstly, the ICPR 2010 Histopathology Images contest [4], which
consists of 20 images of stained breast cancer tissue. It is required to detect
lymphocyte nuclei, while discriminating them from breast cancer nuclei having
very similar appearance. The second data set comes from [1] and contains 12
fluorescence microscopy images of human embryonic kidney (HEK) cells, where
the detection task is challenging due to the significant intensity variation between
cells across the image, fading boundaries, and frequent cell clumping. The third
data set contains 22 phase-contrast images of cervical cancer cell colonies of the
HeLa cell line, which presents a high variability in cell shapes and sizes.

Three variations of our method are evaluated: (I) direct classification (DC),
which evaluates all MSERs with a w vector learned via a binary classifier and
chooses the region with the highest score in every set of overlapping regions
with positive scores, (II) binary SVM + inference (B+I), which does the full
inference (1) based on the weight vector learned through binary classification,
and (III) structured SVM + inference (S+I), which uses inference with the weight
vector learned by the structured SVM (3). The histopathology and the HeLa
datasets were split into halves for training and testing, whereas the HEK data
was evaluated in a leave-one-out fashion in order to test on the entire set and
be able to fully compare results with [1].

Figure 4 shows the precision-recall curves for the three variations of our
method. The curves were obtained by varying a constant τ added to the score
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Fig. 4. Precision (vertical) vs Recall (horizontal) curves for the three datasets for the
three variations of our approach and [1] (denoted as B+Y, where available). Significant
improvements brought by the non-overlap constraint (B+I) and the structured SVM
(S+I) can be observed.

Table 1. Results for the data set of the ICPR 2010 Pattern Recognition in Histopatho-
logical Images contest [4]. Seven measures are reported: precision, recall and F1-score
(when available), where higher numbers are better, and the four measures used in the
evaluation of the ICPR contest, where lower numbers are better. The contest criteria
consisted of the mean and standard deviation of two measurements: the Euclidean dis-
tance between detected dots and ground truth dots (d), and the absolute difference
between the number of cells found and the ground truth number of cells (n).

Method Prec. Rec. F1-score µd ± σd µn ± σn

Our method 86.99 90.03 88.48 1.68 ± 2.55 2.90 ± 2.13
LIPSyM [6] 70.21 70.08 69.84 3.14 ± 0.93 4.30 ± 3.09

Bernadis et al. [1] - - - 3.13 ± 3.08 12.7 ± 8.70
Kuse et al. [7] 65.23 69.99 67.29 3.04 ± 3.40 14.01 ± 4.40
Cheng et al. [2] - - - 8.10 ± 6.98 6.98 ± 12.5
Graf et al. [3] - - - 7.60 ± 6.30 24.5 ± 16.2

Panagiotakis et al. [10] - - - 2.87 ± 3.80 14.23 ± 6.30

of each region. It can be seen that enforcing the non-overlap constraint increases
the accuracy of the method considerably, especially when w is learned within
the structured SVM framework.

Comparison with state of the art. Table 1 compares our experimental re-
sults (S+I method) on the histopathology data set to the methods presented
in the ICPR 2010 contest, and to [6] and [1], published since then. The overall
comparison is favourable to our method, with a considerable improvement on
precision and recall over all other methods.

Figure 4 includes the results of the method [1] on the HEK and HeLA data
sets, kindly provided by its authors. Overall, on the HeLa data set our method
was uniformly better (Figure 4(c)) (despite [1] requiring masking out the homo-
geneous areas of the images to remove the phantom detections), and achieves
higher precision but lower recall on the HEK data set.
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4 Summary

We have presented a method for cell detection in microscopy images that is able
to achieve state-of-the-art performance across different scenarios. It is tolerant
to changes in image intensities, cell densities and cell sizes, whilst being specific
to the structures of interest. The in-built non-overlap constraint, which is taken
into account during learning, allows the method to perform well even in the
presence of cell clumping.
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2010, LNCS, vol. 6388, pp. 226–234. Springer Berlin / Heidelberg (2010)

5. Joachims, T., Finley, T., Yu, C.N.: Cutting-plane training of structural SVMs.
Mach. Learn. 77, 27–59 (2009)

6. Kuse, M., Khan, M., Rajpoot, N., Kalasannavar, V., Wang, Y.F.: Local isotropic
phase symmetry measure for detection of beta cells and lymphocytes. J. Pathol.
Inform. 2(2), 2 (2011)

7. Kuse, M., Sharma, T., Gupta, S.: A classification scheme for lymphocyte segmenta-
tion in H&E stained histology images. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.)
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