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Abstract

While machine learning has been instrumental to the on-

going progress in most areas of computer vision, it has not

been applied to the problem of stereo matching with simi-

lar frequency or success. We present a supervised learning

approach for predicting the correctness of stereo matches

based on a random forest and a set of features that cap-

ture various forms of information about each pixel.We show

highly competitive results in predicting the correctness of

matches and in confidence estimation, which allows us to

rank pixels according to the reliability of their assigned dis-

parities. Moreover, we show how these confidence values

can be used to improve the accuracy of disparity maps by

integrating them with an MRF-based stereo algorithm. This

is an important distinction from current literature that has

mainly focused on sparsification by removing potentially er-

roneous disparities to generate quasi-dense disparity maps.

1. Introduction

Stereo matching is an inverse problem and, as such, it is

notoriously prone to errors, mostly due to occlusion, lack of

texture and repeated structures. Since the common causes

of the errors are well known, one would expect that learn-

ing methods could have been used to detect them. Helpful

cues are available in the neighborhood of a pixel as well

as in information generated during the matching process.

Surprisingly, very few publications have attempted to tackle

stereo matching from a learning perspective [4, 12, 13] and

they have not gained much traction. Very recently, Haeusler

et al. [7] presented an approach for learning a confidence

measure from several features, some of which are similar to

those proposed by us, since both approaches rely on [9] for

feature selection. Haeusler et al. also use a random forest

for classification, but, unlike this paper, they do not pro-

pose ways of leveraging the estimated confidence to gener-

ate dense disparity maps of higher accuracy.

What separates our approach from recent literature on

confidence estimation [20, 6, 9, 21, 7], regardless of the

use of learning, is that the main objective of these methods

is sparsification. They can indeed generate disparity maps

with progressively fewer errors by removing matches start-

ing from the least reliable ones. What has not been shown,

however, is how this capability can be used to correct the

initially wrong matches. We present such an approach in

this paper.

Given a training set of stereo pairs with ground truth dis-

parity, the goal of this paper is to answer the following ques-

tions without making scene-specific assumptions:

Is it possible to predict whether a stereo correspondence

is right or wrong based on features extracted from the stereo

pair for that pixel and a trained classifier?

Is it possible to use these predictions to improve the dis-

parity map?

Our results show that the answer is affirmative in both

cases. Figure 1 shows the inputs to our algorithm: an im-

age and a Winner-Take-All (WTA) disparity map, as well as

its outputs: a correctness prediction map and an improved

disparity map after Markov Random Field (MRF) optimiza-

tion. The matching cost volume is an additional input not

shown here.

To answer the first question, we formulate a binary clas-

Figure 1. Top row: Input image and WTA disparity map using

NCC for Wood2 [22]. Bottom row: prediction map, in which

bright intensities correspond to WTA matches that are likely to

be correct, and final disparity after MRF optimization.
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sification problem and tackle it using a random forest (RF)

classifier [3]. We argue that this problem is more fundamen-

tal than confidence estimation without the ability to decide

on correctness [9, 20] or selection of a hypothesis among

a set generated by a mixture of experts [13, 16]. Ranking

stereo matches according to confidence accurately is valu-

able but does not imply the capability to determine which

of the matches are correct, since the error rate may fluctu-

ate from image to image making the selection of a threshold

hard without knowledge of the priors. As shown in Section

5, we are able to predict the correctness of matches on dis-

parity maps with very different error rates at nearly optimal

rates. Haeusler et al. [7] have been able to show very good

results on a similar task on the KITTI benchmark [5].

Before summarizing the contributions of our method, let

us remark that we made every effort to keep it generic. Cus-

tomizing our approach to a specific domain would allow us

to introduce task-specific features, likely resulting in even

higher accuracy. For example, if the task was driver assis-

tance [5], accuracy would benefit from features such as im-

age coordinates that provide information on which parts of

the scene are likely to be road, buildings or sky. We leave

this extension for future work. Our current contributions

are:

• an algorithm that achieves high accuracy in predicting

the correctness of stereo matching given training data,

• a diverse set of features that enable classification,

• a technique for detecting ground control points and for

inserting them as soft constraints into an MRF-based

optimizer, leading to improved disparity maps.

We show results on the extended Middlebury benchmark

[22] that contains 27 image pairs with ground truth, includ-

ing comparisons with numerous baselines.

2. Related Work

For a survey of stereo methods we refer readers to [23]

and its companion website. Here we focus on research that

aims at inferring the correctness of correspondences using

learning, or at detecting ground control points (GCPs).

Early work on applying machine learning to stereo in-

cludes that of Lew et al. [14] who presented an approach

for selecting a set of features that form an effective descrip-

tor for stereo matching. Cruz et al. [4] addressed the prob-

lem of determining whether a match in edge-based stereo

was correct or not. Classification relies on four features

extracted by filtering the images and uses a perceptron to

determine which feature mappings from the left to the right

image are indications of correct matching. This approach,

however, does not address challenges in textureless regions,

since it is only applied to edge pixels, and also does not

model mismatches due to repeated structures.

Kong and Tao [12] used non-parametric techniques to

learn the probability of a potential match to belong in three

categories: correct, wrong due to foreground over-extension

or wrong for other reasons. They used features extracted

from image appearance and matching cost estimates, while

final disparity assignments to fronto-parallel superpixels

were made via simulated annealing on an MRF. The integra-

tion of the correctness probabilities into the MRF improved

accuracy on the Middlebury benchmark, but the accuracy

of the stand-alone classifier was not reported in the paper.

This approach was extended [13] to select among 36 ex-

perts in the form of different normalized cross-correlation

(NCC) matching windows using similar features and opti-

mization technique. Motten et al. [17] presented a classifier

using decision trees implemented on FPGA for selecting

among multiple disparity hypotheses generated by trinoc-

ular stereo. Sabater et al. [21] introduced an a contrario

approach for validating the correctness of stereo matches.

A user-specified acceptable number of false matches deter-

mines the density of the final disparity map.

We would be remiss if we did not include the work of

Mac Aodha et al. [16] on optical flow, which shares some

characteristics with ours, such as an emphasis on being ap-

plicable to general scenes and operating on individual pix-

els. A multi-class classifier that selects among four state

of the art methods is used to learn the posterior of each ex-

pert being correct. The estimated posteriors are then used as

confidence measures. Other recent research on confidence

estimation, from which we draw inspiration and borrow fea-

tures, includes the work of Reynolds et al. [20] on time-of-

flight data and of Hu and Mordohai [9] on stereo. Haeusler

and Klette [6] also considered several confidence measures,

as well as the product of all measures, demonstrating good

performance in sparsification. Pfeiffer et al. [19] integrated

three confidence measures into a mid-level representation

for 3D reconstruction and showed that Bayesian reasoning

outperforms sparsification by thresholding.

Contrasted with methods for selecting among a set of ex-

perts, such as those of Kong and Tao for stereo [13] and Mac

Aodha et al. for optical flow [16], our research addresses

the more fundamental problem of verifying whether a pre-

diction from a single expert is correct. In that sense, it is

similar to the work of Haeusler et al. [7] who also make

predictions about the correctness of the outputs of the semi-

global matching algorithm.

Methods for selecting GCPs typically rely on heuristics

that are strongly correlated with correctness, but make hard

decisions based on multiple thresholds. Bobick and Intile

[2] imposed several constraints on GCPs: lower cost than

all competing matches in both images, low matching cost,

sufficient image texture and presence of nearby GCPs to

suppress outliers. Kim et al. [10] use left-right consis-

tency (LRC) and comparison of the matching cost against



a threshold for selecting GCPs. Wang and Yang [25] pick

GCPs by running three different Winner-Take-All (WTA)

stereo algorithms and require that the disparities be consis-

tent among all the matchers in each image, as well as left-

right consistent. Sun et al. [24] used LRC and the ratio of

the best to the second best matching cost in a disparity prop-

agation framework. Our approach integrates numerous cri-

teria in a principled way via supervised learning and learns

how to make decisions based on labeled data rather than in-

tuition. One of the byproducts of this approach is the much

higher density of GCPs without loss of accuracy, which is

at 99.7% on our data.

3. Method Overview

In this section, we briefly describe the steps of our al-

gorithm. Initially, eight features are extracted for all pixels

with assigned disparity values in all images of the training

set (Section 4). In the training phase, a random forest (RF)

classifier is trained on individual pixels to predict whether

their assigned disparities are correct. In the testing phase,

the same features are extracted for all pixels of a test image

and the classifier generates a prediction for their correct-

ness. The effectiveness of the classifier is evaluated in Sec-

tion 5 where we measure the accuracy of the predictions,

as well as the ability of our method to rank pixels correctly

in order of decreasing reliability. A comparison against the

strongest individual features shows that the RF easily out-

performs them and approaches optimal performance.

The predictions of the RF can be used to select ground

control points (GCPs) which are of very high accuracy and

high density (Section 6) compared to baseline GCP selec-

tion methods. Finally, the GCPs are integrated as soft con-

straints into an MRF optimizer to improve the input Winner-

Take-All (WTA) disparity maps. Our results in Section 7

clearly demonstrate that it is possible to improve the accu-

racy of binocular stereo by learning from features extracted

from images, disparity maps and matching cost volumes.

4. Features and Learning

In this section, we present the rationale behind the fea-

tures and learning algorithm we selected. This set of fea-

tures is by no means exhaustive, but it aims at extracting

useful information from various sources including the cost

curve for each pixel and the pixel’s neighbors in the dis-

parity map. The label for each pixel indicates whether the

disparity with the minimum cost that would have been as-

signed to it by a WTA stereo algorithm, is correct or not.

The usual definition of correctness (disparity error less than

or equal to one [23]) is used.

Before describing the features, we introduce some nota-

tion. Given a pair of rectified images, we compute the cost

volume c(xL, xR, y) that contains a cost value for each pos-

sible match from a pixel in the left image (xL, y) to a pixel

in the right image (xR, y). Disparity is defined convention-

ally as d = xL − xR and we assume that the minimum

and maximum values it can take, dmin and dmax, are exter-

nally provided. For convenience, we define the disparity of

a pixel in the right image to be equal to d, dR = xL − xR.

Values in the cost volume for matches beyond the disparity

range are flagged as invalid and ignored in all computations.

If a similarity, instead of a cost function, is used to assess

matches, we negate its output to convert it to cost. The cost

curve of a pixel is the set of cost values for all allowable dis-

parities for the pixel. We use c1 and c2 for the minimum and

second minimum values of the cost curve, without requiring

c2 to be a local minimum. The disparity value correspond-

ing to c1 is denoted by d1.

We used the following eight features for the experiments

in this paper. Four of them were considered individually as

confidence measures in [9].

Cost. This is the minimum matching cost over all dispari-

ties for a given pixel and captures the fact that low cost often

corresponds to high likelihood of correct matching.

Distance from Border (DB). This feature measures the

distance in pixels from the nearest image border. It is based

on the assumption that pixels near the borders are likely to

be outside the field of view of the other camera and that

causes mismatches. We experimented with four separate

features measuring the distance from the left, right, top and

bottom borders, but no improvement was observed.

Maximum Margin (MMN). This feature measures the

difference between the two smallest cost values, c1 and c2,

of a pixel [9]. The rationale here is that a large difference

may indicate an unambiguous disparity assignment.

Attainable Maximum Likelihood (AML). This feature

is based on the conversion of the cost curve to a probabil-

ity density function over disparity. It has been shown that

subtracting the minimum cost c1(xL, y) from all cost values

leads to higher discriminative power [9]. AML is defined as

follows.

fAML(xL, y) =
1

∑
xR

e
−

(c(xL,xR,y)−c1(xL,y))2

2σ2
AML

(1)

Left-Right Consistency (LRC). A good indicator of the

correctness of a match from the left to the right image is

whether it is confirmed in the opposite direction. LRC, here,

is a binary feature set to 0 when the absolute value of the dif-

ference between the disparity d at pixel (xL, y) in the left

image and the disparity at pixel (xL − d, y) in the right im-

age is less than or equal to 1. LRC is 1 when the difference

is greater than 1.



Left-Right Difference (LRD). This confidence measure

[9] favors a large margin between the two smallest minima

of the cost for pixel (xL, y) in the left image and also con-

sistency of the minimum costs across the two images.

fLRD(xL, y) =
c2(xL, y)− c1(xL, y)

|c1(xL, y)−minx′{c(x′, xL − d, y)}|
(2)

The intuition is that truly corresponding pixels should result

in similar cost values and thus a small denominator. LRD

can be small for two reasons: if the margin is small, or if the

margin c2 − c1 is large, but the pixel has been mismatched

causing the denominator to be large.

Distance from Discontinuity (DD). Pixels near depth

discontinuities are likely to be mismatched. Since we do

not know the true discontinuities, we use the WTA dispar-

ity estimates as a proxy and declare as discontinuous any

pixel whose disparity is not equal to all of its four neigh-

bors. DD then is equal to the horizontal distance from each

pixel to the nearest discontinuity.

Difference with Median Disparity (MED). Pixels with

disparity values that are consistent with their neighborhood

are more likely to be correct. We capture this by computing

the median disparity in a 5 × 5 window centered at each

pixel and taking the absolute value of the difference be-

tween the median and the pixel’s own disparity. This dif-

ference is truncated at 2 in our current implementation.

We experimented with some other features, but they did

not appear to contribute towards higher prediction accuracy.

We were not able to extract useful information from image

appearance using gradient or color variance-based features.

We speculate that the reason is that large gradients are asso-

ciated with discontinuities that have large mismatch proba-

bility, but also with highly textured pixels that can be reli-

ably matched. We also tried a feature that indicates whether

a pixel is occluded according to current disparity estimates,

but it also appears to offer little additional benefit. Other

features from [9] are either weak predictors or strongly cor-

related with the ones above. Haeusler et al. [7] have used

eight features, two of which are similar to AML and LRC,

as well as the variance of the disparity map which bears

some similarity to DD. They used horizontal intensity gra-

dients features, but they had low importance scores.

Random Forest. Our feature design was not done with

any learning algorithm in mind, an approach that allowed

us to experiment with different options. We have selected

a random forest [3] among alternatives, such as linear and

nonlinear Support Vector Machines which performed worse

in our tests. We believe that the non-parametric nature of

the random forest and its resilience to noisy labels make

it a good fit for our data. Boosting, which we did not at-

tempt, may have also been successful. We trained the ran-

dom forest in regression mode, using binary labels indicat-

(a) WTA disparity (b) RF Prediction

Figure 2. Input WTA disparity maps and RF predictions for Wood1

and Lampshade1. Notice the low predictions (dark pixels) for oc-

cluded regions and other errors.

ing whether the disparity assigned to a pixel is correct, in

order to obtain a soft prediction Y for the correctness of

each pixel. The predictions can be viewed as confidence

measures. They can be used to rank disparity assignments,

or they can be thresholded to classify them. Since we cannot

expect to know whether a pixel is occluded during testing,

we included the occluded pixels in the training set without

distinguishing them from non-occluded pixels. The ground

truth labels for the occluded pixels were treated identically

to those of the non-occluded ones.

5. Experimental Validation of Correctness Pre-

diction and Confidence Estimation

In this section, we present results that show the ability

of our approach to classify and rank matches without mod-

ifying them. The output of WTA stereo is used as-is in this

section. We use the extended Middlebury benchmark (2005

and 2006 datasets) [22] that includes 27 stereo pairs. All ex-

periments were performed on cost volumes computed using

normalized cross-correlation (NCC) in 5 × 5 windows and

negating the NCC values to obtain costs for disparity values

from 0 to 85. The choice of matching function and window

size is not optimized in any sense, but produces reasonable

results. σAML in (1) was set to 0.2. We trained random

forests comprising 50 trees in regression mode using the

Matlab TreeBagger package. Three-fold cross-validation

was used throughout by training a random forest on 18

stereo pairs and testing on the 9 remaining pairs. Figure

2 contains two noisy examples to show the ability of the RF

to assign low prediction scores to unreliable pixels.

It is important to distinguish between disparity errors,

which are defined as pixels with incorrect disparities, and

prediction errors, which are errors made by our classifier

by considering a disparity assignment as incorrect, when it

was correct and vice versa.



In Table 1, we report the prediction accuracy of our clas-

sifier on the 27 stereo pairs. We classify disparity assign-

ments of WTA stereo by thresholding the prediction Y of

the random forest at 0.5. Note that our method is effective

for disparity maps with both low and high error rates. See

for example Books and Lampshade2 which have a predic-

tion error of approximately 11%, while the disparity error

of the WTA disparity maps is 22% and 32% respectively.

Low sensitivity to input variability differentiates our work

from confidence estimation methods which may be able to

rank matches accurately, but are unable to determine which

ones are correct without knowledge of the disparity error

rate. The overall prediction error for pixels with correct dis-

parity is 4.5% and for pixels with incorrect disparity it is

22.8%, for a combined prediction error of 8.4%.

Following recent publications on evaluating the confi-

dence of stereo [9], time-of-flight data [20] and optical flow

[16], we evaluated the accuracy of the ranking of disparity

assignments using receiver operating characteristic (ROC)

curves of error rate as a function of disparity map den-

sity. We ranked all matches in decreasing order of pre-

diction and produced disparity maps of increasing density

by selecting pixels according to rank. The area under the

curve (AUC) quantifies the ability of a confidence measure

to predict correct matches. Better confidence measures re-

sult in lower AUC values. The optimal AUC can be ob-

tained by selecting all correct matches first and is equal to

Aopt =
∫ 1

1−ε

dm−(1−ε)
dm

ddm = ε+ (1− ε)ln(1− ε), where

ε is the disparity error rate [9]. The average optimal AUC

over all 27 pairs is 0.0336. The average AUC value for RF

is 0.043, which is very close to the optimal. The AUC is

much higher for the baselines: 0.106 for NCC, 0.085 for

AML, and 0.078 for LRD. Our method is superior to all

Correct Disparity Incorrect Disparity

Image Y < 0.5 Y ≥ 0.5 Y < 0.5 Y ≥ 0.5

Aloe 4,377 106,143 16,113 5,805

Baby1 1,934 119,735 10,074 3,210

Books 7,612 108,181 21,335 8,824

Cloth1 554 130,283 5,993 174

Lampshade1 9,539 82,016 33,005 8,847

Lampshade2 7,456 84,364 32,910 7,501

Wood1 3,052 125,435 11,711 3,843

... ... ... ... ...

TOTAL 130,142 2,756,764 601,110 177,227

ACCURACY 95.49% 77.23%

Table 1. Prediction accuracy of our classifier on WTA disparity

assignments for non-occluded pixels by thresholding the predic-

tion at 0.5. The second and third column correspond to correctly

classified pixels in each class, while the first and fourth to mis-

classifications. We show raw pixel numbers here to highlight the

inhomogeneity of the disparity error rate across images. The last

row shows the prediction accuracy for pixels with correct and in-

correct disparities over all 27 stereo pairs. The overall accuracy of

the classifier is 91.6%.

Figure 3. AUC values obtained by sorting the disparity assign-

ments according to NCC, AML, LRD and the RF prediction (solid

red curve). Disparity maps have been sorted in order of increasing

AUC to aid visualization. Our method achieves the minimum AUC

for every stereo pair.

other methods on every stereo pair, while its average AUC

is roughly one half of that of the baseline methods. Figure

3 shows the AUC obtained by each method for all images.

6. Detection of Ground Control Points

In this section, we present an approach for selecting

ground control points (GCPs), which will be used in the

next section to improve WTA disparity maps via global op-

timization. Consistent with earlier definitions, a GCP here

is defined as a pixel with a disparity assignment that is as-

sumed to be very reliable and, therefore, can be used to in-

fluence neighboring pixels. We present a principled way of

detecting such points using the RF predictions of the previ-

ous sections. Quantitative results in Section 7 demonstrate

that our approach succeeds in the main challenge when

selecting GCPs: the trade-off between density and accu-

racy. If GCPs are not accurate and contain many pixels

with wrong disparities, these errors will be propagated to

neighboring pixels and can have a strong negative effect on

overall accuracy. See, for example, some of the results pro-

duced by the baseline methods in Fig. 5. On the other hand,

if GCP detection is overly conservative, the small number

of selected GCPs has little effect on overall accuracy, since

they do not appear in uncertain regions of the images.

The goal is to achieve the highest possible density

of GCPs while including a very small fraction of wrong

matches in the set. Since the random forest has proven very

effective in ranking disparity assignments in order of reli-

ability, we chose GCPs by learning a threshold on the RF

prediction that resulted in the highest overall disparity ac-

curacy after MRF optimization. The threshold was learned

using cross-validation. It was set to 0.7 and remained con-

stant throughout all experiments.



We compared the GCPs selected by our approach with

several alternatives, both in terms of density and accuracy of

the GCPs (Table 2) and in terms of accuracy of the resulting,

MRF-optimized disparity maps (Section 7). GCPs in Table

2 were selected by choosing pixels that exceeded a thresh-

old in NCC, LRC, LRD or RF prediction. All thresholds

were determined by cross-validation. The RF predictions

are clearly superior in terms of final disparity map accuracy,

but also in terms of GCP accuracy. In fact, the very small

fraction of errors in the GCPs is what enables our method

to outperform the baselines after MRF optimization.

Our method was successful in addressing a major chal-

lenge in GCP selection: on one hand, stereo pairs, for which

WTA stereo works well, often have their accuracy degraded

by regularization which may over-smooth details, while, on

the other hand, stereo pairs for which WTA stereo performs

poorly require more regularization and small GCP sets to

avoid including errors in them. The RF scores are more

flexible in automatically adapting to the inherent difficulty

of each stereo pair. The density of GCPs is above 92% for

the easy Cloth images and below 50% for harder images,

such as Midd1, Midd2 and Plastic. Baseline methods lack

this flexibility.

Despite the accuracy of detected GCPs, we chose not

to impose them as hard constraints on the MRF. Among

several alternatives, we decided on the following that was

proven to be superior experimentally. When the random for-

est predicted that a given disparity assignment to a pixel was

reliable, we set the cost of all other disparities for the pixel

to a constant value cGCP , leaving the cost for the selected

disparity unchanged. Using cross-validation as above, it

Stereo pair GCP Selection Accuracy Density

Plastic NCC 84.0 50.3

LRC 91.2 48.5

LRD 91.4 16.0

RF 99.2 25.2

Midd1 NCC 87.1 64.5

LRC 90.2 65.8

LRD 88.9 25.9

RF 98.5 47.1

Average NCC 94.0 89.8

LRC 98.0 81.2

LRD 98.2 43.4

RF 99.7 73.4

Table 2. Accuracy and density of GCPs over non-occluded pixels.

Our method (RF) is compared against three baselines: the match-

ing score (NCC), LRC and LRD. GCPs were chosen if NCC>
0.5, LRC= 1, LRD > 100 or RF > 0.7, respectively. All thresh-

olds were learned via cross-validation on the final disparity maps

after global optimization. Shown are results on: Plastic, on which

RF achieves its minimum density, by far; Midd1 on which RF

achieves its lowest accuracy; and averages on all 27 stereo pairs.

was determined that the most effective value for the cost of

disparities that have not been selected was cGCP = 2. This

allowed the MRF to override the GCPs, at a higher cost, and

was more effective than setting these costs to infinity. The

cost of all disparities of non-GCPs remained unchanged in

the [-1, 1] range of negated NCC.

7. Globally Optimized Disparity Maps using

GCPs

The random forest, comprising 50 trees, was trained us-

ing three-fold cross validation as described in Section 5.

The MRF minimizes an energy function with the data and

smoothness terms denoted by Edata and Esmooth, respec-

tively. The former is equal to the negated NCC values mod-

ified according to the previous paragraph. The latter follows

a simple Potts model with edge weights modulated by the

strength of the intensity edges between neighboring pixels.

We used the implementation of Komodakis [11] and par-

tially adopted the settings of Wang and Yang [25] and de-

fined the smoothness energy of the disparity map D as:

Esmooth(D) = λ
∑

p∈IL

∑

q∈N4(p)

ωpq[dp 6= dq], (3)

where p is a pixel in the left image IL with disparity dp,

q is a pixel in p’s neighborhood with disparity dq , λ is a

parameter and the edge weights are defined as:

ωpq = max{e−
∆cpq
γc , 0.0003}, (4)

with ∆cpq the Eulidean distance of the RGB values of p and

q, and γc equal to 3.6. The data term is set as described at

the end of the previous section. These settings are constant

regardless of how the GCPs were chosen.

Figure 4 presents the relative error rates of the final dis-

parity maps after MRF optimization using our method com-

pared to four baselines: a basic MRF optimizer without

GCPs, as well as MRFs with GCPs selected as the pixels

with the highest NCC, LRC or LRD values. Absolute er-

ror rates can be seen in Table 3. The values for cGCP and λ

and the threshold for each method were determined by cross

validation. Our results show significant improvements in

accuracy compared to all baseline methods. Sensitivity to

the parameters was low in general. Changing the RF pre-

diction threshold from 0.7 to 0.6 results in an average error

rate of 7.396% instead of 7.394%. Representative disparity

maps are shown in Fig. 5.

GCP type None NCC LRC LRD RF

Average error 9.84 9.95 10.28 8.69 7.39

Table 3. Error rates of the final disparity maps after MRF optimiza-

tion. Our method (RF) is superior to a basic MRF without GCPs

and MRFs with GCPs determined according to various criteria.



Figure 4. Relative difference of error rates between our method and the baselines after MRF optimization. The first bar for example,

represents (εnone − εRF)/εRF, which is the increase in error rate between an MRF without GCPs and one with GCPs selected according to

RF on Aloe. The difference is a 39% increase. Four bars corresponding to no GCPs and GCPs selected using NCC, LRC and LRD are

shown in red, blue, green and magenta respectively.

On the 2005 Middlebury benchmark (Art, Books, Dolls,

Laundry, Moebius, Reindeer), our method achieved an error

rate of 10.41%. Other results include those of Hirschmüller

and Scharstein [8] who report error rates of 8.13% using

SGM and 10.88% using graph cuts, Weinman et al. [26]

16.05%, Li et al. [15] 14.36%, Alahari et al. [1] 13.34%,

and Pal et al. [18] 18.22%. It should be noted that, unlike

[8] who optimized the choice of cost function, we initialize

our algorithm using NCC in small windows.

8. Conclusions

We have presented a supervised learning approach that

is able to classify and rank stereo matches according to the

likelihood of being correct. Experiments on standard data

with ground truth demonstrate 91.6% classification accu-

racy, as well as ranking accuracy that is much closer to be-

ing optimal than any single confidence measure in isola-

tion. We have also presented a stereo algorithm that builds

upon the aforementioned capabilities and global optimiza-

tion techniques to improve disparity estimation accuracy.

To our knowledge, these are the first results that show that

disparity maps can be improved using confidence. Being

able to achieve the right balance between density and accu-

racy of the GCPs and their use as soft constraints are im-

portant factors in the overall accuracy of our final disparity

maps. Only 9 out of 108 baseline disparity maps (4 meth-

ods on 27 stereo pairs) are more accurate than our MRF-

optimized disparity maps. Moreover, there is only one pub-

lication [8] reporting higher accuracy than ours on a subset

of the benchmark.
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