

Learning to Detect Phishing Emails Ian Fette Norman Sadeh Anthony Tomasic (School of CS, CMU)

Presented by: Ashique Mahmood Dept of Computer & Information Sciences

University of Delaware

- *Learning* (= Machine Learning)
- Classifier, training data, testing data, model etc.
- False positive, False negative
- Phishing attacks

Trying to direct web users to spoofed websites that steal information such as credit card, Identity info, SSN, passwords etc.

Most popular way to "phish" is E-mail.

Key Terms (contd.)

Phishing attacks

An Example:

"

We Recently Upgraded Our Security System with a Newly Established SSL Sever In which Guarantees your maximum Security Protection when Accessing Your Webmail account Online.

Click here to Upgrade

Regards, University of Delaware Security Department

(March 17, 2010)

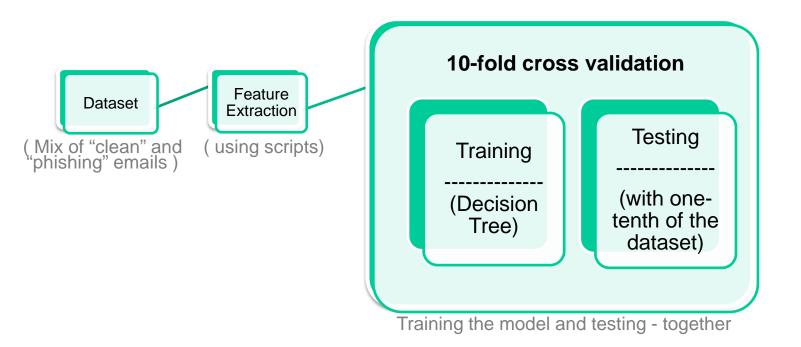
Phishing attacks

Welcome to eBay		
Ready to bid and buy? Register here Join the millions of people who are already a part of the eBay family. Don't worry, we have room for one more. Register as an eBay Member and enjoy privileges including: • Bid, buy and find bargains from all over the world • Shop with confidence with PayPal Buyer Protection • Connect with the eBay community and more!	Back for m manage yo User ID Password	o your account fore fun? Sign in now to buy, bid and sell, or to our account. d1taylor i forget my user ID I forget my pessword ne signed in for today. Don't check this box at a public or shared computer.

Toolbars

Integrated to browsers, prompt user with warning. Can have up to 85% of success.

- Disadvantage:
 - Less contextual information
 - Users may dismiss or misinterpret warning
 - Loss of productivity


- Why phishing detection is different from spam detection?
- Spam Detection -
 - focuses on the structure/subject of the email.
 - looks at the vocabulary of the email, suspicious words.
 - Blacklisted senders.
- Phishing emails look like legitimate.

- Phishing emails and websites are *identical* to legitimate ones; hence difficult to detect.
- **Spam filters** are not good for phishing detection.
- Toolbar based detection not effective and sufficient.
- So, we need more sophisticated filters for phishing detection, prohibiting phishing emails reaching to inbox.

```
Overall approach (PILFER)
```


10-fold Cross-validation :

The dataset is divided into 10 distinct parts. Each part is *Tested* using the other 9 parts as *training* data.

- Two publicly available datasets:
 - The Ham Corpora (SpamAssassin project)
 6950 non-phishing, non-spam "ham" emails
 - Phishingcorpus approx. 860 "phishing" emails.

- Binary features:
 - Is it an IP-Based URL?

Ex: http://192.168.0.1/ebay.cgi?fix_account

• Age of linked-to domain names

WHOIS query, to detect for how long the domain was active

Non-matching URLs

paypal.com

"here" links to non-modal domain

Non-modal : not the most frequently linked domain

Features(cont'd)

- Binary features:
 - HTML emails?

MIME type text/html indicates possible phishing attack

Contains javascript?

does the string "javascript" appears in the email?

Spam-filter output

Output from stand-alone spam-filters is also a feature, which indicates "ham" or "spam".

(SpamAssassin is used for PILFER)

Features(cont'd)

- Continuous features:
 - No. of links

No. of links in HTML part, defined as <a> tag

No. of domains

Count of how many distinct domains are present in the email, starting with http:// or https://

No. of dots in URL

Maximum no. of dots contained in any of the links.

http://www.my-bank.update.data.com http://www.google.com/url?q=http://www.badsite.com

- SpamAssassin
 - Widely used, freely-available spam filter
 - Highly accurate in classifying spams
- SpamAssassin also tested, both
 - Trained
 - Untrained
- SpamAssassin compared with PILFER.

PILFER

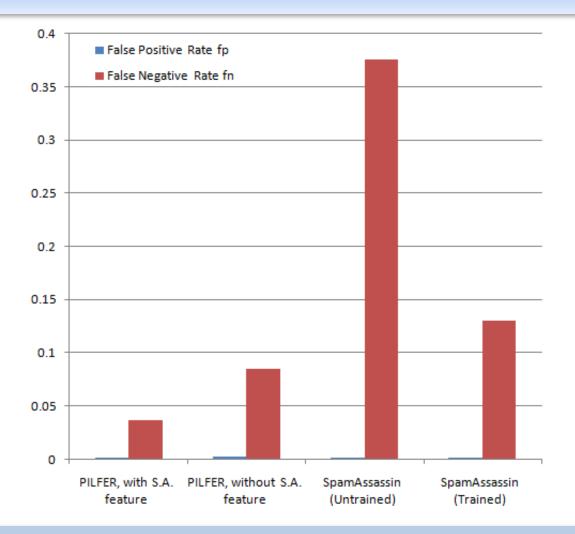

- Overall accuracy of 99.5%
- False positive rate, fp= 0.0013 (approx.)
- False negative rate, fn= 0.035 (approx.)

Table 1: Accuracy	of classifier compared	with baseline spam filter
-------------------	------------------------	---------------------------

Classifier	False Positive Rate fp	False Negative Rate fn
PILFER, with S.A. feature	0.0013	0.036
PILFER, without S.A. feature	0.0022	0.085
SpamAssassin (Untrained)	0.0014	0.376
SpamAssassin (Trained)	0.0012	0.130

Table 2: Percentage of emails matching the binary features

Feature	Non-Phishing Matched	Phishing Matched	
Has IP link	0.06%	45.04%	
Has "fresh" link	0.98%	12.49%	
Has "nonmatching" URL	0.14%	50.64%	
Has non-modal here link	0.82%	18.20%	
Is HTML email	5.55%	93.47%	
Contains JavaScript	2.30%	10.15%	
SpamAssassin Output	0.12%	87.05%	

Table 3: Mean, standard deviation of the continuous features, per-class

Feature	$\mu_{ m phishing}$	$\sigma_{ m phishing}$	$\mu_{ m non-phishing}$	$\sigma_{ m non-phishing}$
Number of links	3.87	4.97	2.36	12.00
Number of domains	1.49	1.42	0.43	3.32
Number of dots	3.78	1.94	0.19	0.87

- PILFER is exhibits almost accurate results, because it exploits few unique features that spam detectors don't use.
- Phishing detection along with spam detection provides best results.
- Future direction:
 - Phishing techniques evolve over time very quickly, so continuous research expected.

That's all, folks!

Questions ???

Thank you.

False positive rate,

 $fp = \frac{ham_{phish}}{ham_{phish} + ham_{ham}}$

False negative rate,

$$fn = \frac{phish_{ham}}{phish_{ham} + phish_{phish}}$$