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Figure 1: CAPE model for clothed humans. Given a SMPL body shape and pose (a), CAPE adds clothing by randomly sampling from a learned model

(b, c), can generate different clothing types — shorts in (b, c) vs. long-pants in (d). The generated clothed humans can generalize to diverse body shapes

(e) and body poses (f). Best viewed zoomed-in on screen.

Abstract

Three-dimensional human body models are widely used

in the analysis of human pose and motion. Existing mod-

els, however, are learned from minimally-clothed 3D scans

and thus do not generalize to the complexity of dressed peo-

ple in common images and videos. Additionally, current

models lack the expressive power needed to represent the

complex non-linear geometry of pose-dependent clothing

shapes. To address this, we learn a generative 3D mesh

model of clothed people from 3D scans with varying pose

and clothing. Specifically, we train a conditional Mesh-

VAE-GAN to learn the clothing deformation from the SMPL

body model, making clothing an additional term in SMPL.

Our model is conditioned on both pose and clothing type,

giving the ability to draw samples of clothing to dress differ-

ent body shapes in a variety of styles and poses. To preserve

wrinkle detail, our Mesh-VAE-GAN extends patchwise dis-

criminators to 3D meshes. Our model, named CAPE, rep-

resents global shape and fine local structure, effectively ex-

tending the SMPL body model to clothing. To our knowl-

edge, this is the first generative model that directly dresses

3D human body meshes and generalizes to different poses.

The model, code and data are available for research pur-

poses at https://cape.is.tue.mpg.de.

1. Introduction

Existing generative human models [6, 22, 33, 38] suc-

cessfully capture the statistics of human shape and pose de-

formation, but still miss an important component: clothing.

This leads to several problems in various applications. For

example, when body models are used to generate synthetic

training data [20, 42, 43, 49], the minimal body geome-

try results in a significant domain gap between synthetic

and real images of humans. Deep learning methods re-

construct human shape from images, based on minimally

dressed human models [5, 23, 26, 27, 30, 36, 38, 39]. Al-

though the body pose matches the image observation, the

minimal body geometry does not match clothed humans in

∗Work was done when S. Tang was at MPI-IS and University of Tübingen.
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most cases. These problems motivate the need for a para-

metric clothed human model.

Our goal is to create a generative model of clothed hu-

man bodies that is low-dimensional, easy to pose, differ-

entiable, can represent different clothing types on different

body shapes and poses, and produces geometrically plau-

sible results. To achieve this, we extend SMPL [33] and

factorize clothing shape from the undressed body, treating

clothing as an additive displacement in the canonical pose

(see Fig. 2). The learned clothing layer is compatible with

the SMPL body model by design, enabling easy re-posing

and animation. The mapping from a given body shape and

pose to clothing shape is one-to-many. However, existing

regression-based clothing models [16, 52] produce deter-

ministic results that fail to capture the stochastic nature of

clothing deformations. In contrast, we formulate clothing

modeling as a probabilistic generation task: for a single

pose and body shape, multiple clothing deformations can be

sampled. Our model, called CAPE for “Clothed Auto Per-

son Encoding”, is conditioned on clothing types and body

poses, so that it captures different types of clothing, and can

generate pose-dependent deformations, which are important

for realistically modeling clothing.

We illustrate the key elements of our model in Fig. 1.

Given a SMPL body shape, pose and clothing type, CAPE

can generate different structures of clothing by sampling a

learned latent space. The resulting clothing layer plausibly

adapts to different body shapes and poses.

Technical approach. We represent clothing as a dis-

placement layer using a graph that inherits the topol-

ogy of SMPL. Each node in this graph represents the 3-

dimensional offset vector from its corresponding vertex

on the underlying body. To learn a generative model for

such graphs, we build a graph convolutional neural network

(Sec. 4), under the framework of a VAE-GAN [7, 29], us-

ing graph convolutions [11] and mesh sampling [41] as the

backbone layers. This addresses the problem with exist-

ing generative models designed for 3D meshes of human

bodies [32, 50] or faces [41] that tend to produce over-

smoothed results; such smoothing is problematic for cloth-

ing where local details such as wrinkles matter. Specifically,

the GAN [15] module in our system encourages visually

plausible wrinkles. We model the GAN using a patch-wise

discriminator for mesh-like graphs, and show that it effec-

tively improves the quality of the generated fine structures.

Dataset. We introduce a dataset of 4D captured people per-

forming a variety of pose sequences, in different types of

clothing (Sec. 5). Our dataset consists of over 80K frames

of 8 male and 3 female subjects captured using a 4D scan-

ner. We use this dataset to train our network, resulting in a

parametric generative model of the clothing layer.

Versatility. CAPE is designed to be “plug-and-play” for

many applications that already use SMPL. Dressing SMPL

with CAPE yields 3D meshes of people in clothing, which

can be used for several applications such as generating

training data, parametrizing body pose in a deep network,

having a clothing “prior”, or as part of a generative analysis-

by-synthesis approach [20, 43, 49]. We demonstrate this on

the task of image fitting by extending SMPLify [9] with our

model. We show that using CAPE together with SMPLify

can improve the quality of reconstructed human bodies in

clothing.

In summary, our key contributions are: (1) We propose

a probabilistic formulation of clothing modeling. (2) Un-

der this formulation, we learn a conditional Mesh-VAE-

GAN that captures both global shape and local detail of a

mesh, with controlled conditioning based on human pose

and clothing types. (3) The learned model can generate

pose-dependent deformations of clothing, and generalizes

to a variety of garments. (4) We augment the SMPL 3D

human body model with our clothing model, and show

an application of the enhanced “clothed-SMPL”. (5) We

contribute a dataset of 4D scans of clothed humans per-

forming a variety of motion sequences. Our dataset, code,

and trained model are available for research purposes at

https://cape.is.tue.mpg.de.

2. Related Work

The capture, reconstruction and modeling of clothing has

been widely studied. Table 1 shows recent methods catego-

rized into two major classes: (1) reconstruction and capture

methods, and (2) parametric models, detailed as follows.

Reconstructing 3D humans. Reconstruction of 3D hu-

mans from 2D images and videos is a classical computer

vision problem. Most approaches [9, 17, 23, 26, 27, 30,

36, 38, 46] output 3D body meshes from images, but not

clothing. This ignores image evidence that may be use-

ful. To reconstruct clothed bodies, methods use volumet-

ric [34, 44, 48, 54] or bi-planar depth representations [12]

to model the body and garments as a whole. We refer to

these as Group 1 in Table 1. While these methods deal with

arbitrary clothing topology and preserve a high level of de-

tail, the reconstructed clothed body is not parametric, which

means the pose, shape, and clothing of the reconstruction

can not be controlled or animated.

Another group of methods are based on SMPL [1, 2, 3, 4,

8, 55]. They represent clothing as an offset layer from the

underlying body as proposed in ClothCap [40]. We refer

to these approaches as Group 2 in Table 1. These meth-

ods can change the pose and shape of the reconstruction

using the deformation model of SMPL. This assumes cloth-

ing deforms like an undressed human body; i.e. that cloth-

ing shape and wrinkles do not change as a function of pose.

We also use a body-to-cloth offset representation to learn
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Table 1: Selection of related methods. Two main 3D clothing method classes exist: (1) Image-based reconstruction and capture methods, and (2) Clothing

models that predict deformation as a function of pose. Within each class, methods differ according to the criteria in the columns.

Method Class Methods
Parametric Pose-dep. Full-body Clothing Captured Code Probabilistic

Model Clothing Clothing Wrinkles Data∗ Public Sampling

Image Group 1 † No No Yes Yes Yes Yes No

Reconstruction Group 2 ‡ Yes No Yes Yes Yes Yes No

Capture ClothCap [40] Yes No Yes Yes Yes No No

DeepWrinkles [28] Yes Yes No Yes Yes No No

Yang et al. [52] Yes Yes Yes No Yes No No

Clothing Wang et al. [51] Yes No No No No Yes Yes

Models DRAPE [16] Yes Yes Yes Yes No No No

Sanesteban et al. [45] Yes Yes Yes Yes No No No

GarNet [18] Yes Yes Yes Yes No No No

Ours Yes Yes Yes Yes Yes Yes Yes

* As opposed to simulated / synthetic data.
† Group 1: BodyNet [48], DeepHuman [54], SiCloPe [34], PIFu [44], MouldingHumans [12]. ‡ Group 2: Octopus [1], MGN [8], Tex2Shape [4].

our model, but critically, we learn a neural function map-

ping from pose to multi-modal clothing offset deformations.

Hence, our work differs from these methods in that we learn

a parametric model of how clothing deforms with pose.

Parametric models for 3D bodies and clothes. Statisti-

cal 3D human body models learned from 3D body scans,

[6, 22, 33, 38] capture body shape and pose and are an

important building block for multiple applications. Most

of the time, however, people are dressed and these models

do not represent clothing. In addition, clothes deform as

we move, producing changing wrinkles at multiple spatial

scales. While clothing models learned from real data ex-

ist, few generalize to new poses. For example, Neophytou

and Hilton [35] learn a layered garment model on top of

SCAPE [6] from dynamic sequences, but generalization to

novel poses is not demonstrated. Yang et al. [52] train a neu-

ral network to regress a PCA-based representation of cloth-

ing, but show generalization on the same sequence or on the

same subject. Lähner et al. [28] learn a garment-specific

pose-deformation model by regressing low-frequency PCA

components and high frequency normal maps. While the

visual quality is good, the model is garment-specific and

does not provide a solution for full-body clothing. Simi-

larly, Alldieck et al. [4] use displacement maps with a UV-

parametrization to represent surface geometry, but the result

is only static. Wang et al. [51] allow manipulation of cloth-

ing with sketches in a static pose. The Adam model [22] can

be considered clothed but the shape is very smooth and not

pose-dependent. Clothing models have been learned from

physics simulation of clothing [16, 18, 37, 45], but visual

fidelity is limited by the quality of the simulations. Further-

more, the above methods are regressors that produce single

point estimates. In contrast, our model is generative, which

allows us to sample clothing.

A conceptually different approach infers the parameters

of a physical clothing model from 3D scan sequences [47].

This generalizes to novel poses, but the inference problem

is difficult and, unlike our model, the resulting physics sim-

ulator is not differentiable with respect to the parameters.

Generative models on 3D meshes. Our model predicts

clothing displacements on the graph defined by the SMPL

mesh using graph convolutions [10]. There is an extensive

recent literature on methods and applications of graph con-

volutions [11, 25, 32, 41, 50]. Most relevant here, Ranjan

et al. [41] learn a convolutional autoencoder using graph

convolutions [11] with mesh down- and up-sampling layers

[13]. Although it works well for faces, the mesh sampling

layer makes it difficult to capture the local details, which

are key in clothing. In our work, we capture local details by

extending the PatchGAN [21] architecture to 3D meshes.

3. Additive Clothed Human Model

To model clothed human bodies, we factorize them into

two parts: the minimally-clothed body, and a clothing layer

represented as displacements from the body. This enables

us to naturally extend SMPL to a class of clothing types by

treating clothing as an additional additive shape term. Since

SMPL is in wide use, our goal is to extend it in a way that

is consistent with current uses, making it effectively a “drop

in” replacement for SMPL.

3.1. Dressing SMPL

SMPL [33] is a generative model of human bodies that

factors the surface of the body into shape (β) and pose (θ)

parameters. As shown in Fig. 2 (a), (b), the architecture of

SMPL starts with a triangulated template mesh, T̄ , in rest

pose, defined by N = 6890 vertices. Given shape and pose

parameters (β, θ), 3D offsets are added to the template, cor-

responding to shape-dependent deformations (BS(β)) and

pose dependent deformations (BP (θ)). The resulting mesh

is then posed using the skinning function W . Formally:

T (β, θ) = T̄ +BS(β) +BP (θ) (1)

M(β, θ) = W (T (β, θ), J(β), θ,W) (2)
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(a) T̄ (b) T (β)= T̄+BS (β) (c) T (β,θ)=T (β)+BP (θ) (d) Tclo =T (β,θ)+Sclo(z,θ,c) (e) W (Tclo,J(β),θ,W)

Figure 2: Additive clothed human model. Our contribution is highlighted with yellow background. Following SMPL, our model (a) starts from a template

mesh, and linearly adds offsets contributed by (b) individual body shape β, and (c) pose θ; note the deformation on the hips and feet caused by the ballet

pose. (d) We further add a clothing layer parametrized by pose θ, clothing type c and a clothing shape variable z. (e) The vertices are then posed using the

skinning equation of SMPL.

where the blend skinning function W (·) rotates the rest pose

vertices T around the 3D joints J (computed from β), lin-

early smoothes them with the blend weights W , and returns

the posed vertices M . The pose θ ∈ R
3×(23+1) is repre-

sented by a vector of relative 3D rotations of the 23 joints

and the global rotation in axis-angle representation.

SMPL adds linear deformation layers to an initial body

shape. Following this, we define clothing as an extra offset

layer from the body and add it on top of the SMPL mesh,

Fig. 2 (d). In this work, we parametrize the clothing layer

by the body pose θ, clothing type c and a low-dimensional

latent variable z that encodes clothing shape and structure.

Let Sclo(z, θ, c) be the clothing displacement layer. We

extend Eq. (1) to a clothed body template in the rest pose:

Tclo(β, θ, c, z) = T (β, θ) + Sclo(z, θ, c). (3)

Note that the clothing displacements, Sclo(z, θ, c), are pose-

dependent. The final clothed template is then posed with

the SMPL skinning function, Eq. (2):

M(β, θ, c, z) = W (Tclo(β, θ, c, z), J(β), θ,W). (4)

This differs from simply applying blend skinning with fixed

displacements, as done in e.g. [1, 8]. Here, we train the

model such that pose-dependent clothing displacements in

the template pose are correct once posed by blend skinning.

3.2. Clothing representation

Vertex displacements are not a physical model for cloth-

ing and cannot represent all types of garments, but this ap-

proach achieves a balance between expressiveness and sim-

plicity, and has been widely used in deformation model-

ing [16], 3D clothing capture [40] and recent work that re-

constructs clothed humans from images [1, 8, 55].

The displacement layer is a graph Gd = (Vd, Ed) that in-

herits the SMPL topology: the edges Ed = ESMPL. Vd ∈
R

3×N is the set of vertices, and the feature on each ver-

tex is the 3-dimensional offset vector, (dx, dy, dz), from its

corresponding vertex on the underlying body mesh.

We train our model on 3D scans of people in clothing.

From data pairs (Vclothed,Vminimal) we compute displace-

ments, where Vclothed stands for the vertices of a clothed hu-

man mesh, and Vminimal the vertices of a minimally-clothed

mesh. Therefore, we first scan subjects in both clothed and

minimally-clothed conditions, then use the SMPL model

with free deformation [1, 53] to register the scans. As a

result, we obtain SMPL meshes capturing the geometry of

the scans, the corresponding pose parameters, and vertices

of the unposed meshes1. For each (Vclothed,Vminimal) pair, the

displacements are then calculated as Vd = Vclothed−Vminimal,

where the subtraction is performed per-vertex along the fea-

ture dimension. Ideally, Vd has non-zero values only on

body parts covered with clothes.

In summary, CAPE extends the SMPL body model to

clothed bodies. Compared to volumetric representations of

clothed people [34, 44, 48, 54], our combination of the body

model and the garment layer is superior in the ease of re-

posing and garment retargeting: the former uses the same

blend skinning as the body model, while the latter is a sim-

ple addition of the displacements to a minimally-clothed

body shape. In contrast to similar models that also dress

SMPL with offsets [1, 8], our garment layer is parametrized,

low-dimensional, and pose-dependent.

4. CAPE

Our clothing term Sclo(z, θ, c) in Eq. (3) is a function of

z, a code in a learned low-dimensional latent space that en-

codes the shape and structure of clothing, body pose θ, and

clothing type c. The function outputs the clothing displace-

ment graph Gd as described in Sec. 3.2. We parametrize

this function using a graph convolutional neural network

(Graph-CNN) as a VAE-GAN framework [15, 24, 29].

4.1. Network architecture

As shown in Fig. 3, our model consists of a generator

G with an encoder-decoder architecture and a discriminator

D. We also use auxiliary networks C1, C2 to handle the

conditioning. The network is differentiable and is trained

end-to-end.

1We follow SMPL and use the T-pose as the zero-pose. For the mathemat-

ical details of registration and unposing, we refer the reader to [53].
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Figure 3: Overview of our method. (a) Computing displacements from scan data (Sec. 3.2) by subtracting the minimal body shape from clothed body mesh

in the unposed space. (b) Schematic of our network architecture.

For simplicity, we use the following notation in this sec-

tion. x: the vertices Vd of the input displacement graph; x̂:

vertices of the reconstructed graph; θ and c: the pose and

clothing type condition vector; z: the latent code.

Graph generator. We build the graph generator following a

VAE-GAN framework. During training, an encoder Enc(·)
takes in the displacement x, extract its features through mul-

tiple graph convolutional layers, and maps it to the low-

dimensional latent code z. A decoder is trained to recon-

struct the input graph x̂ = Dec(z) from z. Both the en-

coder and decoder are feed-forward neural networks built

with mesh convolutional layers. Linear layers are used at

the end of the encoder and the beginning of the decoder.

The architecture is shown in the supplemental materials.

Stacking graph convolution layers causes a loss of local

features [31] in the deeper layers. This is undesirable for

clothing generation because fine details, corresponding to

wrinkles, are likely to disappear. Therefore, we improve

the standard graph convolution layers with residual connec-

tions, which enable the use of low-level features from the

layer input if necessary.

At test time, the encoder is not needed. Instead, z is sam-

pled from the Gaussian prior distribution, and the decoder

serves as the graph generator: G(z) = Dec(z). We detail

different use cases below.

Patchwise discriminator. To further enhance fine details

in the reconstructions, we introduce a patchwise discrim-

inator D for graphs, which has shown success in the im-

age domain [21, 56]. Instead of looking at the entire gen-

erated graph, the discriminator only classifies whether a

graph patch is real or fake based on its local structure. In-

tuitively this encourages the discriminator to only focus on

fine details, and the global shape is taken care of by the

reconstruction loss. We implement the graph patchwise-

discriminator using four graph convolution-downsampling

blocks [41]. We add a discriminative real / fake loss for

each of the output vertices. This enables the discriminator

to capture a patch of neighboring nodes in the reconstructed

graph and classify them as real / fake (see Fig. 3).

Conditional model. We condition the network with body

pose θ and clothing type c. The SMPL pose parameters are

in axis-angle representation, and are difficult for the neu-

ral network to learn [27, 30]. Therefore, following previous

work [27, 30], we transform the pose parameters into ro-

tational matrices using the Rodrigues equation. The cloth-

ing types are discrete by nature, and we represent them us-

ing one-hot labels. Both conditions are first passed through

a small fully-connected embedding network, C1(θ), C2(c),
respectively, so as to balance the dimensionality of learned

graph features and of the condition features. We also exper-

iment with different ways of conditioning the mesh gener-

ator: concatenation in the latent space; appending the con-

dition features to the graph features at all nodes in the gen-

erator; and the combination of the two. We find that the

combined strategy works better in terms of network capa-

bility and the effect of conditioning.

4.2. Losses and learning

For reconstruction, we use an L1 loss over the vertices of

the mesh x, because it encourages less smoothing compared

to L2, given by

Lrecon = Ex∼p(x),z∼q(z|x) [∥G(z, θ, c)− x∥1] . (5)

Furthermore, we apply a loss on the mesh edges to en-

courage the generation of wrinkles instead of smooth sur-

faces. Let e be an edge in the set of edges, E , of the ground

truth graph, and ê the corresponding edge in the gener-

ated graph. We penalize the mismatch of all corresponding

edges by

Ledge = E
e∈E, ê∈Ê [∥e− ê∥2] . (6)

We also apply a KL divergence loss between the distri-

bution of latent codes and the Gaussian prior

LKL = Ex∼p(x) [KL(q(z|x) ∥ N (0, I))] . (7)

Moreover, the generator and the discriminator are trained

using an adversarial loss

LGAN = Ex∼p(x) [log(D(x, θ, c))] +

Ez∼q(z|x) [log(1−D(G(z, θ, c)))] ,
(8)
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where G tries to minimize this loss against the D that aims

to maximize it.

The overall objective is a weighted sum of these loss

terms given by

L = Lrecon + γedgeLedge + γklLKL + γganLGAN. (9)

Training details are provided in the supplemental materials.

5. CAPE Dataset

We build a dataset of 3D clothing by capturing temporal

sequences of 3D human body scans with a high-resolution

body scanner (3dMD LLC, Atlanta, GA). Approximately

80K 3D scan frames are captured at 60 FPS, and a mesh

with SMPL model topology is registered to each scan to

obtain surface correspondences. We also scanned the sub-

jects in a minimally-clothed condition to obtain an accurate

estimate of their body shape under clothing. We extract the

clothing as displacements from the minimally-clothed body

as described in Sec. 3.2. Noisy frames and failed registra-

tions are removed through manual inspection.

The dataset consists of 8 male subjects and 3 female sub-

jects, performing a wide range of motions. The subjects

gave informed written consent to participate and to release

the data for research purposes. “Clothing type” in this work

refers to the 4 types of full-body outfits, namely shortlong:

short-sleeve upper body clothing and long lower body cloth-

ing; and similarly shortshort, longshort, longlong. These

outfits comprise 8 types of common garments. We refer to

the supplementary material for the list of garments, further

details, and examples from the dataset.

Compared to existing datasets of 3D clothed humans, our

dataset provides captured data and alignments of SMPL to

the scans, separates the clothing from body, and provides

accurate, captured ground truth body shape under clothing.

For each subject and outfit, our dataset contains large pose

variations, which induces a wide variety of wrinkle patterns.

Since our dataset of 3D meshes has a consistent topology,

it can be used for the quantitative evaluation of different

Graph-CNN architectures. The dataset is available for re-

search purposes at https://cape.is.tue.mpg.de.

6. Experiments

We first show the representation capability of our model

and then demonstrate the model’s ability to generate new

examples by probabilistic sampling. We then show an ap-

plication to human pose and shape estimation.

6.1. Representation power

3D mesh auto-encoding errors. We use the reconstruc-

tion accuracy to measure the capability of our VAE-based

model for geometry encoding and preserving. We compare

with a recent convolutional mesh autoencoder, CoMA [41],

and a linear (PCA) model. We compare to both the original

CoMA with a 4× downsampling (denoted as “CoMA-4”),

and without downsampling (denoted “CoMA-1”) to study

the effect of downsampling on over-smoothing. We use the

same latent space dimension nz = 18 (number of princi-

pal components in the case of PCA) and hyper-parameter

settings, where applicable, for all models.

Table 2 shows the per-vertex Euclidean error when using

our network to reconstruct the clothing displacement graphs

from a held-out test set in our CAPE dataset. The model is

trained and evaluated on male and female data separately.

Body parts such as head, fingers, toes, hands and feet are

excluded from the accuracy computation, as they are not

covered with clothing.

Our model outperforms the baselines in the auto-

encoding task; additionally, the reconstructed shape from

our model is probabilistic and pose-dependent. Note that,

CoMA here is a deterministic auto-encoder with a focus on

reconstruction. Although the reconstruction performance of

PCA is on par with our method on male data, PCA can not

be used directly in the inference phase with a pose parame-

ter as input. Furthermore, PCA assumes a Gaussian distri-

bution of the data, which does not hold for complex clothing

deformations. Our method addresses both of these issues.

Fig. 4 shows a qualitative comparison of the methods.

PCA keeps wrinkles and boundaries, but the rising hem on

the left side disappears. CoMA-1 and CoMA-4 are able

to capture global correlation, but the wrinkles tend to be

smoothed. By incorporating all the key components, our

model manages to model both local structures and global

correlations more accurately than the other methods.

Ablation study. We remove key components from our

model while keeping all the others, and evaluate the model

performance; see Table 2. We observe that the discrimi-

nator, residual block and edge loss all play important roles

in the model performance. Comparing the performance of

CoMA-4 and CoMA-1, we find that the mesh the downsam-

pling layer causes a loss of fidelity. However, even without

any spatial downsampling, CoMA-1 still underperforms our

model. This shows the benefits of adding the discriminator,

residual block, and edge loss in our model.

Table 2: Per-vertex auto-encoding error in millimeters. Upper section:

comparison with baselines; lower section: ablation study.

Male Female

Methods Error mean median Error mean median

PCA 5.65 ± 4.81 4.30 4.82 ± 3.82 3.78

CoMA-1 6.23 ± 5.45 4.66 4.69 ± 3.85 3.61

CoMA-4 6.87 ± 5.62 5.29 4.86 ± 3.96 3.75

Ours 5.54 ± 5.09 4.03 4.21 ± 3.76 3.08

Ablated Components Error mean median Error mean median

Discriminator 5.65 ± 5.18 4.11 4.31 ± 3.78 3.18

Res-block 5.60 ± 5.21 4.05 4.27 ± 3.76 3.15

Edge loss 5.93 ± 5.40 4.32 4.32 ± 3.78 3.19
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Ground 

Truth
PCA COMA-4 COMA-1 w/o Discr.

w/o edge 

loss

CAPE 

full model

Figure 4: Example of reconstruction by the baselines, ablated version of

our model, and our full model. Pay attention to the hem and wrinkles on

upper back. Our model is able to recover both long-range correlations and

local details. Best viewed zoomed-in on screen.

6.2. Conditional generation of clothing

As a generative model, CAPE can be sampled and gen-

erates new data. The model has three parameters: z, c, θ

(see Eq. (3)). By sampling one of them while keeping the

other two fixed, we show how the conditioning affects the

generated clothing shape.

Sampling. Fig. 5 presents the sampled clothing dressed on

unseen bodies, in a variety of poses that are not used in

training. For each subject, we fix the pose θ and clothing

type c, and sample z several times to generate varied cloth-

ing shapes. The sampling trick in [14] is used. Here we

only show untextured rendering to highlight the variation

in the generated geometry. As CAPE inherits the SMPL

topology, the generated clothed body meshes are compati-

ble with all existing SMPL texture maps. See supplemental

materials for a comparison between a CAPE sample and a

SMPL sample rendered with the same texture.

As shown in the figure, our model manages to capture

long-range correlations within a mesh, such as the elevated

hem for a subject with raised arms, and the lateral wrinkle

on the back with raised arms. The model also synthesizes

local details such as wrinkles in the armpit area, and bound-

aries at cuffs and collars.

Pose-dependent clothing deformation. Another practical

use case of CAPE is to animate an existing clothed body.

This corresponds to fixing the clothing shape variable z and

clothing type c, and reposing the body by changing θ. The

challenge here is to have a clothing shape that is consistent

across poses, yet deforms plausibly. We demonstrate the

pose-dependent effect on a test pose in Fig. 6. The differ-

ence of the clothing layer between the two poses is calcu-

lated in the canonical pose, and shown with color coding.

The result shows that the clothing type is consistent while

local deformation changes along with pose. We refer to the

supplemental video for a comparison with traditional rig-

and-skinning methods that use fixed clothing offsets.

User study of generated examples. To test the realism of

the generated results from our method, we performed a user

study on Amazon Mechanical Turk (AMT). We dress vir-

tual avatars in 3D and render them into front-view images.

Following the protocol from [21], raters are presented with

a series of “real vs fake” trials. On each trial, the rater is

presented with a “real” mesh render (randomly picked from

our dataset), and a “fake” render (generated by our model),

shown side-by-side. The raters are asked to pick the one that

they think is real. Each pair of renderings is evaluated by 10

raters. More strictly than [21], we present both real and fake

renderings simultaneously, do not set a time limit for raters

and allow zoom-in for detailed comparison. In this setting,

the best score that a method can obtain is 50%, meaning that

the real and fake examples are indistinguishable.

We evaluate with two test cases. In test case 1, we fix the

clothing type to be “shortlong” (the most common cloth-

ing type in training), and generate 300 clothed body meshes

with various poses for the evaluation. In test case 2, we fix

the pose to be an A-pose (the most frequent pose in train-

ing), and sample 100 examples per clothing type for evalu-

ation. On average, in the direct comparison with real data,

our synthesized data “fools” participants 35.1% ± 15.7%
and 38.7%± 16.5% of the time respectively (i.e. these par-

ticipants labeled our result as “real”).

6.3. Image fitting

CAPE is fully differentiable with respect to the clothing

shape variable z, body pose θ and clothing type c. There-

fore, it can also be used in optimization frameworks. We

show an application of CAPE on the task of reconstruct-

ing a body mesh from a single image, by entending the

optimization-based method, SMPLify [9]. Assuming c is

known, we dress the minimally-clothed output mesh from

SMPLify using CAPE, project it back to the image using

a differentiable renderer [19] and optimize for β, θ, z, with

respect to the silhouette discrepancy.

We evaluate our image fitting pipeline on renderings

of 120 randomly selected unseen test examples from the

CAPE dataset. To compare, we measure the reconstruc-

tion error of SMPLify and our results against ground truth

meshes using mean square vertex error (MSE). To eliminate

the error introduced by the ambiguity of human scale and

distance to the camera, we optimize the global scaling and

translation of predictions for both methods on each test sam-

ple. A mask is applied to exclude error in the non-clothed

regions such as head, hands and feet. We report the errors

of both methods in Table 3. Our model performs 18% better

than SMPLify due to its ability to capture clothing shape.

More details about the objective function, experimental

setup and qualitative results of the image fitting experiment

Table 3: Vertex MSE of image fitting results measured in meters.

Method SMPLify [9] Ours

Per-vertex MSE 0.0223 0.0189
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Figure 5: Clothing sampled and generated from our CAPE model applied to four unseen body shapes (green colored) with different poses. Each body in

green is followed by five blue examples (generated by sampling the latent vector z) showing different versions of the same outfit type. The four groups are

wearing outfit types “longshort”, “longlong”, “shortlong” and “shortshort”, respectively. Best viewed zoomed-in on screen.

31.0 mm

0.0 mm

(a) (b) (c)

Figure 6: Pose-dependent clothing shape. (a) and (b): two clothing shapes

generated from CAPE, with different pose parameters. (c): color-coded

difference of the offset clothing layers in (a) and (b), in the canonical pose.

are provided in supplementary materials.

Furthermore, once a clothed human is reconstructed

from the image, our model can repose and animate it, as

well as change the subject’s clothes by re-sampling z or

clothing type c. This shows the potential for several ap-

plications. We show examples in the supplemental video.

7. Conclusions, Limitations, Future Work

We have introduced a novel graph-CNN-based genera-

tive shape model that enables us to condition, sample, and

preserve fine shape detail in 3D meshes. We use this to

model clothing deformations from a 3D body mesh and

condition the latent space on body pose and clothing type.

The training data represents 3D displacements from the

SMPL body model for varied clothing and poses. This de-

sign means that our generative model is compatible with

SMPL in that clothing is an additional additive term ap-

plied to the SMPL template mesh. This makes it possi-

ble to sample clothing, dress SMPL with it, and then an-

imate the body with pose-dependent clothing wrinkles. A

clothed version of SMPL has wide applicability in computer

vision. As shown, we can apply it to fitting the body to im-

ages of clothed humans. Another application would use the

model to generate training data of 3D clothed people to train

regression-based pose-estimation methods.

There are a few limitations of our approach that point to

future work. First, CAPE inherits the limitation of the off-

set representation for clothing: (1) Garments such as skirts

and open jackets differ from the body topology and can-

not be trivially represented by offsets. Consequently, when

fitting CAPE to images containing such garments, it could

fail to explain the image evidence; see discussions on the

skirt example in the supplementary material. (2) Mittens

and shoes: they can technically be modeled by the offsets,

but their geometry is sufficiently different from fingers and

toes, making this impractical. A multi-layer model can po-

tentially overcome these limitations. Second, the level of

geometric details that CAPE can achieve is upper-bounded

by the mesh resolution of SMPL. To produce finer wrinkles,

one can resort to higher resolution meshes or bump maps.

Third, while our generated clothing depends on pose, it does

not depend on dynamics. This does not cause severe prob-

lem for most slow motions but does not generalize to faster

motions. Future work will address modeling clothing de-

formation on temporal sequence and dynamics.
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