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ABSTRACT Recent years have seen many advances based on Deep Convolutional Neural Networks

(DCNNs) in the tasks of face recognition, most of which are developed to pursue high recognition accuracy.

In this paper, we propose a novel Fast FAce Recognizer (Fast-FAR), learning to improve the speed of

DCNN-based face recognition model without sacrificing recognition accuracy. Our fundamental insight

is that the computation increases exponentially with the depth of a network, the easily identifiable face

images can be accurately recognized by the cheep features (pixel values at shallow layers), while the

challenging samples that exhibit low quality, large pose variations or occlusions need to be processed

by the expensive deep layers. The major contribution of this paper is the Reinforcement Learning Agent

(RLA), which is proposed to learn a decision policy determined by a reward function. The policy adaptively

decides whether the recognition should be performed at an early layer with a high recognition confidence,

or proceeding to the subsequent layers, thus significantly reducing feed-forward cost for the easy faces.

According to the extensive experiments on the popular face recognition benchmarks, Fast-FAR reduces the

inference time by 14.22%, 20.61%, and 7.84% on the dataset LFW, AgeDB-30 and CFP-FP, respectively.

INDEX TERMS Fast Face Recognition, Reinforcement Learning, Deep Convolutional Neural Networks

I. INTRODUCTION1

Face recognition has made great progress in recent years,2

owing to the advancement of Deep Convolutional Neural3

Networks (DCNNs). With the works DeepID [1] and4

DeepFace [2] firstly used to automatically learn features5

on the large scale face datasets, DCNN-based methods have6

dominated the field of face recognition. Some of the works7

like DeepID2+ [3] and DeepID3 [4] focus on developing8

advanced network structures to boost face recognition9

performance. Recent works [5, 6, 7, 8, 9, 10, 11, 12, 22]10

mainly explore the design of loss functions to enhance the11

representation ability for the learned features. FaceNet [13]12

uses the triplet loss to supervise the embedding learning,13

obtaining the state-of-the-art face recognition performance.14

Later, Wen et al. [6] propose a center loss to compact15

the intra-class clusters to the center of each identity. L-16

Softmax [5] adds angular constraint to each identity to17

learn discriminative features. SphereFace [8] assumes that18

the linear transformation matrix in the last fully-connected19

layer can be used as a representation of the class centres20

in an angular space, and proposes the Angular Softmax21

(A-Softmax) loss to impose discriminative constraint on a22

hypersphere manifold. CosFace [9] reformulates the softmax23

as a cosine loss, and introduces a cosine margin to further24

maximize the decision margin in the angular space. In the25

very recent work [10], Deng et al. have proposed the Additive26

Angular Margin Loss (ArcFace). They calculate the angle27

between the feature and the target weight (center for each28

class), and then add an angular margin penalty to the target29

angel on the angular space. ArcFace achieves the best state-30

of-the-art face recognition performance to date with more31

stable training of the network.32

It seems most of the previous works are devoted to the33

improvement of face recognition accuracy, only few of them34

are proposed to reduce the recognition time. In the work35

[25], Guo et al. propose a meta learning approach for face36
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recognition by building the domain-shift batches through a37

domain-level sampling strategy and apply back-propagated38

gradients/metagradients on synthesized source/target domains39

by optimizing multi-domain distributions. Later, Chang et40

al. [24] apply data uncertainty learning to face recognition,41

performing feature (mean) and uncertainty (variance) learn-42

ing simultaneously. Deng et al. propose an improved version43

for Arcface [10], which encourages one dominant sub-class44

that contains the majority of clean faces and non-dominant45

sub-classes that include hard or noisy faces. In the work46

[22], Tu et al. develop a Multi-Degradation Face Restoration47

model which can address face frontalization and restoration48

simultaneously for face recognition.49

To improve the recognition efficiency, Wu et al. [14]50

argue that the labels for current training face images from51

the internet are ambiguous and inaccurate, and propose a52

Light CNN to learn a compact embedding on the large-53

scale training data with the noisy labels, towards faster and54

more accurate face recognition. Specifically, they introduce55

a special case of maxout, i.e, the Max-Feature-Map (MFM)56

operation, into each convolutional layer of a DCNN. The57

MFM works as a separator to purify the informative signals58

from the noisy data, as well as a filter to perform feature59

selection. Experimental results have show that the light CNN60

can utilize large-scale noisy data to learn a Light model that61

is efficient in computational resources and storage spaces.62

However in the work [15], De et al. propose to accelerate face63

recognition by the distillation technology, which transfers64

the similarity information of a teacher network to a small65

model (student network) by adaptively varying the margin66

between positive and negative pairs. According to their67

reported results, the method achieves a faster processing68

rate (>10) and a lower memory occupation (1/6) on the dlib-69

resnet-v1 face recognition model. However, the obtained face70

recognition performance drops to some extent compared with71

the complex teacher model.72

Due to the high demand on real-time recognition, and73

the computation limitation of many mobile devices such74

as laptop and cell phones, the efficiency of DCNN-based75

face recognition approaches still needs to be improved. In76

this paper, we propose a generic framework, i.e., Fast FAce77

Recognizer (Fast-FAR), aiming to reduce the recognition78

time for an arbitrary DCNN-based face recognition model.79

Typically, the recognition difficulty varies across face images,80

face images with small pose variations and good visual81

quality can be easily recognized by early layers of a network.82

A deeper layer contains more parameters compared with83

a shallow layer, therefore it occupies more computational84

resources. If the subsequent layers can be saved for the85

easy face images, the recognition time can be significantly86

reduced. Based on this observation, we propose to adaptively87

learn a decision for the recognition layer via reinforcement88

learning. Specifically, our Face-FAR contains a main network89

to learn discriminative representations for face images, and90

two sub-networks, i.e., the Embedding sub-Network (E-Net)91

to compress the feature of different dimensions to a vector92

with fixed length in the unified feature representing space,93

the Decision sub-Network (D-Net) to determine whether the94

recognition should be performed at current layer or proceed95

to the next layer. The Reinforcement Learning Agent (RLA)96

is used to examine the state of each layer at each step and97

decide on the action (stop or proceed) by a reward function.98

We apply our fast-FAR model to the wildly used CNN99

backbone ResNet-50 to perform face recognition on various100

face recognition benchmarks. Extensive experiments have101

shown that fast-FAR saves computational burdens at least102

7.8% for all the benchmarks during inference, while still103

achieving state-of-the-art face recognition performance.104

II. FAST FACE RECOGNITION105

In this section, we explain our method in details. We first106

give an overview for the proposed model and then describe107

reinforcement learning on deep layer selection.108

A. MODEL OVERVIEW109

Our Fast-FAR contains a main network and two sub-110

networks, i.e., the Embedding sub-Network (E-Net) and the111

Decision sub-Network (D-Net). The main network ResNet-112

50 (B) is used to learn discriminative features for face113

recognition. E-Net E is used to convert an arbitrary feature114

from each layer of B into an embedding space with fixed-115

length, therefore the converted features are comparable in116

the embedding space. D-Net produces two actions (stop or117

proceed) from the converted features by maximizing the118

sum of expected rewards on a given face image, to decide119

whether the input face can be accurately recognized on the120

early layer of the network. Fig. 1 illustrates the architecture121

of Fast-FAR.122

The main network contains 4 blocks (B1, ..., B4) to123

generate high-level discriminative features, the dimensions124

of the outputs from the 4 blocks are 56 × 56, 28 × 28, 14125

× 14, and 7 × 7, respectively. In the next step, the outputs126

of the 4 blocks will be taken as inputs by the D-Net, to127

compare with each other, determinating which one is better128

for recognition. However, the dimensions of the outputs from129

different layers of the main network are different. To make130

them comparable, we design the E-Nets (E1, ..., E3), which131

are connected to the first three blocks of the main network132

(B1, ..., B3), to convert the output features from different133

layers into the same embedding space with a fixed size 7 ×134

7, i.e., the feature space of B4. Actually the dimension of the135

features from different blocks are predefined, the dimension136

of the output features has no direct relationship with the137

number of layers. In this work, we use ResNet-50 as the138

main backbone for feature learning. However, we can use139

other popular networks as the backbones or dividing the main140

backbone into different sub-networks, then the dimension141

of the output features can be different. The architecture of142

E-Net is illustrated in Table 1.143

Hence, we propose the embedding loss Le to draw the144

converted features closer to the feature of the last convolu-145
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TABLE 1: The architecture of E-Net (E1, E2, E3 ). E1 has 4 convolutional layers, E2 has 3 convolutional layers, while E3

has 1 convolutional layer. [ks, fm, s] represents kernel size, feature map number and stride, respectively.

Layer 1 / [ks, fm, s] Layer 2 / [ks, fm, s] Layer 3 / [ks, fm, s] Layer 4 / [ks, fm, s]

E1
[3x3,256,s=2] [3x3,256,s=2] [3x3,256,s=1] [3x3,512,s=2]

[3x3,256,s=1] [3x3,256,s=1] [3x3,256,s=1] [3x3,512,s=1]

E2 -
[3x3,256,s=2] [3x3,256,s=1] [3x3,256,s=2]

[3x3,256,s=1] [3x3,256,s=1] [3x3,256,s=1]

E3 - - -
[3x3,256,s=2]

[3x3,256,s=1]

tional layer. For a main network that has M convolutional146

blocks, Le is defined as147

Le =
1

N

M−1
∑

i=1

N
∑

j=1

(E(fi,j)− fj)
2,

where M − 1 denotes the first M − 1 blocks of the main148

network, N denotes the sample number of one mini-batch,149

E(·) represents feature converting by the E-Net, fi,j is the150

feature produced by the j-th sample in the i-th block, and151

fj is the feature of j-th sample produced by the last layer.152

The loss Le ensures E-Net produce features similar with

that of the last block. However, as no identity information

is imposed on the converted features, they can hardly

discriminate face identities. To this end, we introduce the

discrimination loss Ld to enhance the discrimination ability

for the converted features in the embedding space. Ld is

defined as

Ld =
M
∑

i=1

LArc(fi),

where fi is the converted feature from i-th block of the

main network, and Larc denotes the ArcFace [10] loss

function. Different from traditional softmax loss, ArcFace

loss normalizes the bias to 0 and the length of weights

and embedding features to 1 by l2 norm, simplifying the

original linear mapping of softmax loss to s cos(θj) which

is expressed as

LArc = −
1

N

N
∑

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j 6=yi
escosθj

,

where m is the angle margin, N and n are the batch size and

the class number, respectively, and s is the estimate re-scale

value of embedding features before and after normalization.

ArcFace enhances the intra-class compactness and inter-class

discrepancy by adding an additive angular margin penalty

m on the target (ground truth) angle, which can significantly

improve the discriminative power for the learned features for

face recognition. By employing Larc on the embedding space,

we obtain Le, making all the converted features dropped

into the same identity metric space with small intra-class

distance and large inter-class distance. Therefore, the overall

loss function for the converted features is:

Lc = Le + λLd

where λ is the weight constants of the two loss functions.153

When the combination loss Lc is smaller than 0.001, the154

training can be stopped.155

B. LEARNING TO DROP EXPENSIVE LAYERS156

The D-Nets (D1, ..., D3) takes as input the fixed dimension157

features that converted by E-Nets (E1, ..., E3), and decides158

whether the learning should stop at current layer or proceed159

to the next layer. During training, the feature extraction at160

each block has two options, i.e., stop and use the current161

feature for face recognition, or proceed to the next block for162

feature extraction. It can be viewed as a Markov Decision163

Process (MDP), where an agent can make two actions (stop164

or continue). The final goal is to find an earliest layer that165

can accurately recognize the input face image. We propose to166

train a our Fast-FAR end to end by the Q-learning algorithm167

of deep Reinforcement Learning (RL), which contains a set168

of states S and actions A, and a reward function R. At each169

step at the l-th block, the agent checks the current state Sl170

and takes an action from Al, to decide whether performing171

face recognition using the current block, or proceeding to172

the next block. The reward function R makes the agent learn173

the best decision to select action and balance the recognition174

accuracy (using deeper layers) and speed (stop earlier if175

effective enough).176

In our model, the state Sl is the feature map Fl at l-th

block. The action set A includes one stop action and one

continue action. The reward R function is defined as

R(Sl, Sl+1) =



























1 {k| max
k=1,...,N

WT
k fl + bk} = g & A = stop

−1 {k| max
k=1,...,N

WT
k fl + bk} = g & A = continue

1 {k| max
k=1,...,N

WT
k fl + bk} 6= g & A = continue

−1 {k| max
k=1,...,N

WT
k fl + bk} 6= g & A = stop

For the k-th face image from the class g in one mini-batch, fl177

denotes the corresponding converted feature in the embedding178

space, Wk and bk are the weight and bias in the probability179

layer, respectively. {k| max
k=1,...,N

WT
k f + bk} is the maximal180

conditional probability, and N denotes the number of classes.181

Q-learning algorithm learns an estimated value that ap-
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Feature:��

FIGURE 1: Overview of the proposed method. The backbone is divided into 4 blocks, i.e., B1-B4. The three Decision

sub-Networks D1-D3 are connected to the corresponding main blocks B1-B3, while E1, E2, and E3 are embedded into the

D1, D2, and D3 respectively for feature conversion. The backbone takes images as input and generate feature maps at each

block (B1-B4). The E-Net converts an arbitrary feature from each layer of Bi into an embedding space with fixed-length for

comparison. The D-Net makes a decision whether the learning should stop at current layer or proceed to the next layer.

TABLE 2: Ablation study results by using different loss combinations. “M” represents the main network (ResNet-50), “B1

- B4” represent the 4 blocks of “M”, respectively. The number in each column of “B1 - B4” represents the images that

processed by each block of “M”. “Acc” means the face recognition accuracy, and “Time” represents the recognition time.

Datasets Loss combinations Acc (%) Time (ms) B1 B2 B3 B4

LFW [17]

M 99.55 16.25 0 0 0 12000

M + E-Net + Le 99.50 15.43 15 493 5159 6333

M + E-Net + Ld 99.50 14.80 36 2232 4104 5628

M + E-Net + Le + Ld 99.58 13.94 1006 2540 5398 3056

AgeDB-30 [19]

M 97.33 16.93 0 0 0 12000

M + E-Net + Le 97.55 16.57 8 537 5485 5970

M + E-Net + Ld 96.07 14.87 222 2475 3571 5732

M + E-Net + Le + Ld 97.03 13.44 1325 2469 5417 2789

CFP-FP [20]

M 87.86 18.50 0 0 0 14000

M + E-Net + Le 87.50 18.12 23 368 3933 9676

M + E-Net + Ld 84.57 17.59 40 1954 2686 9320

M + E-Net + Le + Ld 87.60 17.05 869 2121 3021 7989

proaches the real one. In our model, the estimated value is

the max probability value of a set of actions (max
s=0,1

as), and

the real value is the rewards. The learning process iteratively

updates the action-selection policy by:

Q(Sl, Al) = Rl + γmax
A

′

Q(S
′

, A
′

),

where Q(Sl, Al) means the estimated state when taking182

action Al at state Sl, Rl is the overall rewards from the initial183

state, max
A

′

Q(S
′

, A
′

) denotes the maximal action reward184

from state Sl to Sl+1 and γ is the discount factor, The state185

Q(S,A) is learned by D-Net.186
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We train D-Net using the following loss function:

Lp =
1

N

3
∑

i=1

N
∑

j=1

(max
s=0,1

Qs
i,j −R(Sl, Sl+1))

2,

where Qs
i,j denotes the estimated state taking k-th action for187

the j-th sample at i-th block.188

The training process of Q-learning is described by the the189

pseudo-code in algorithm 1.190

Algorithm 1 Training process of Q-learning

Q-learning:

Initialization: Initialize Q(S0, A0) by random values

between 0 and 1.

while not converge do

Repeat (for each step of episode)

Choose an action a from s using the policy of

Q-learning.

Take action a (a = 0 or 1), observe Q

Q(Sl, Al) = Rl + γmax
A

′

Q(S
′

, A
′

)

Calculate loss function Lp

end if Lp < ǫ, where ǫ is a small value.

III. EXPERIMENTS191

A. IMPLEMENTATION DETAILS AND DATASETS192

a: Implementation193

Throughout the experiments, the size of face images are fixed194

as 128 × 128; the constraint factor λ and discount factor γ195

are fixed as 1 and 0.5, respectively; the batch size is set to196

8; the initial learning rate lr for the main network, E-Net197

and D-Net are set to 0.001, 0.0001 and 0.0001, respectively,198

lr decreases 10 times at every 2 epochs. Our model is199

implemented by Pytorch, using one GTX 1080ti (12G) GPU.200

The model is trained iteratively by the following three steps201

until convergence. 1. Train the main backbone using ArcFace202

[10] loss; 2. Fix the parameters of the main network and203

train E-Net. 3. Fix the parameters of the main network and204

E-Net, train D-Net.205

b: Datasets206

We train our model on the MS1MV2 dataset, which is semi-207

automatically refined from the MS-Celeb-1M [16] dataset.208

The testing dataset includes LFW [17], AgeDB-30 [19],209

abd CFP-FP [20]. LFW contains 13233 images from 5749210

subjects, 6,000 image pairs are randomly selected for face211

verification. AgeDB-30 contains 16,488 images from 568212

subjects. We evaluate on the age-invariant face verification213

protocols, which has 10 folds each with 300 intra-class and214

300 intra-class pairs. CFP-FP consists of 500 subjects, each215

with 10 frontal and 4 profile images. We evaluate on the216

frontal vs. profile protocol, which contains 3,500 positive217

pairs and 3,500 negative pairs.218

B. ABLATION STUDY219

We first evaluate different loss combinations for E-Net to220

reveal their effectiveness in our model. We consider four221

combination variants, the main network without E-Net and222

D-Net ( only the ArcFace loss is used) and three Fast-FAR223

variants, i.e., the main network with E-Net and D-Net, and224

combining with either or both of the embedding loss Le225

and discrimination loss Ld. The four variants are used to226

compare with each other. For better understanding of the227

running speed of each variant, we calculate the inference time228

per image and the image number recognized by each block229

of the main network. The results are reported in Table 2.230

It is clear to see that all Fast-FAR variants require less231

runing time than the baseline M with comparable face232

verification accuracy, the accuracy for M + E-Net + Le233

+ Ld is even slightly higher than that of M on LFW. All234

the testing images are recognized at the last block for M ,235

while quite a number of the input images are recognized in236

advance for Fast-FAR variants, this is the reason why the237

running time for Fast-FAR variants are lower than that of238

the baseline M . For the variant M + E-Net + Le + Ld, the239

percentages of the recognized images by the 4 blocks are240

8.38%, 21.17%, 44.98%, 25.47%; 11.04%, 20.58%, 45.14%,241

23.24%; and 6.21%, 15.15%, 21.58%, 57.06% on the datasets242

LFW, AgeDB-30 and CFP-FP, respectively. It saves about243

14.22%, 20.61%, and 7.84% running time on the three244

datasets, respectively, depending on how many easy face245

images provided by the testing datasets. More easy images246

contained within the dataset, less time is required for Fast-247

FAR. By comparing the settings M + E-Net + Le vs. M ,248

and M + E-Net + Ld vs. M , it is easy to conclude that249

both the embedding loss Le and the discrimination loss Ld250

are effectiveness for the improvement of face recognition.251

However, only using one of these two loss functions, the252

recognition performance may drops slightly compared with253

M ( except the setting M + E-Net + Le on AgeDB-30254

dataset).255

We visualize the feature that output by each block of256

the main network, and compare them with the converted257

ones by E-Net. Specifically, we randomly select three face258

images from the test set and use the pre-trained model to259

extract the mean features from each of the four blocks for260

visualization. The results are shown in Figure 2. As can be261

seen, the features output from the 4 blocks are presenting at262

different scales (Col. A), even for the same identity. However,263

the scales for the converted features are almost the same,264

meaning E-Net have the capacity to convert the shallow-265

level feature to high-level feature with the same scale, so266

that shallow-block features can be compared with deep-block267

in the same space.268

C. COMPARISON WITH STATE-OF-THE-ARTS269

We further compare face verification performance of our Fast-270

FAR with state-of-the-art face recognition methods. For a fair271

comparison with the very recently released work ArcFace272

[10], we use ResNet-100 as the main network the same273
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Inputs

Block 1

Block 2

Block 3

Block 4

A A AB B B

FIGURE 2: Feature visualization results. Results in column “A” are the original features that exacted from the main network,

i.e., ResNet-50. Results in column “B” are the converted features by E-Net.

TABLE 3: Face verification performance (%) of different

methods on LFW, and AgeDB-30. ‘-’ means the result is

not reported.

Method LFW [17] AgeDB-30 [19]

DeepID [1] 99.47 -

VGG Face [21] 98.95 -

Softmax [21] 99.08 92.33

Center Loss [6] 99.28 -

SphereFace [8] 99.42 91.70

CosFace [9] 99.51 94.56

ArcFace [10] 99.53 95.15

Fast-FAR + ArcFace Loss 99.58 97.03

with ArcFace, and employ ArcFace loss to train Fast-FAR.274

The results are shown in Table 3. Other method’s results275

are copied from the paper [10]. As most of the comparing276

methods have reported their recognition results on LFW and277

AgeDB-30 while few of then reported the results on CFP-278

FP, we only use LFW and AgeDB-30 for the comparison279

of the popular face recognition methods. As can be seen,280

Fast-FAR with with ResNet-100 beats all the comparison281

methods by a significant margin on both LFW and AgeDB-282

30. Specifically, Fast-FAR outperforms the methods DeepID,283

VGG Face, Softmax, Center Loss, SphereFace, CosFace by284

0.11%, 0.63%, 0.5%, 0.3%, 0.16%, 0.07% on LFW dataset,285

and outperforms Softmax, SphereFace and CosFace by 4.7%,286

5.33% and 2.47% on AgeDB-30 dataset. Especially on the287

comparison with ArcFace which has the same experimental288

setting, our Fast-FAR can improve the face verification289

accuracy by 0.05% on LFW dataset, and 1.88% on AgeDB-290

30 respectively, with faster processing speed. The results291

indicate that our Fast-FAR can achieve high-speed face292

recognition without drops recognition accuracy.293

IV. CONCLUSION294

In this paper, we propose a novel and generic model to speed295

up face recognition approaches that use Deep Convolutional296

Neural Networks (DCNN). Based on the observation that297

most of the easy face images can be well classified by the298

shallow layers of a DCNN, we train our FAce Recognizer299

(Fast-FAR) by a manner of reinforcement learning to300

adaptively learn the earliest layer where the give face image301

can be accurately recognized. In the experiment, we evaluate302

our Fast-FAR by comparing with other recognition methods303

on the popular face recognition benchmarks. The results304

have demonstrated that Fast-FAR can significantly reduce305

the recognition time, as well as achieving first-rate face306

recognition performance. Observing from the experimental307

results, the performances of our method on some databases308

are slightly lower than state-of-the-arts. In the future, we309

will focus on the architecture design of the Embedding310

sub-Network and the Decision sub-Network, as well as the311

block partition of the main network, with the goal of further312

improving the recognition performance on all popular face313

recognition benchmarks.314
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