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Abstract

This paper addresses the problem of restoring images

subjected to unknown and spatially varying blur caused by

defocus or linear (say, horizontal) motion. The estimation

of the global (non-uniform) image blur is cast as a multi-

label energy minimization problem. The energy is the sum

of unary terms corresponding to learned local blur estima-

tors, and binary ones corresponding to blur smoothness.

Its global minimum is found using Ishikawa’s method by

exploiting the natural order of discretized blur values for

linear motions and defocus. Once the blur has been esti-

mated, the image is restored using a robust (non-uniform)

deblurring algorithm based on sparse regularization with

global image statistics. The proposed algorithm outputs

both a segmentation of the image into uniform-blur lay-

ers and an estimate of the corresponding sharp image. We

present qualitative results on real images, and use synthetic

data to quantitatively compare our approach to the publicly

available implementation of Chakrabarti et al. [5].

1. Introduction

Many photos are corrupted by camera shake, moving ob-

jects, and out-of-focus areas. This is as true for personal

snapshots as for professional pictures in newspapers, fash-

ion magazines, or scientific articles. Short exposures and

small apertures can be used to limit motion blur and in-

crease depth of field, but this may result in noisy images,

especially under low light conditions. It is therefore de-

sirable to model the blurring process, and use the image

content itself to estimate the corresponding parameters and

restore a sharp image. This problem is known as blind de-

blurring (or blind deconvolution), and it is the topic of this

presentation.1

We limit our attention to defocus and linear (say, hori-

∗WILLOW project-team, Département d’Informatique de l’Ecole Nor-

male Supérieure, ENS/INRIA/CNRS UMR 8548.
1In contrast, non-blind deblurring refers to the simpler (but still quite

challenging) problem of recovering the sharp image when the blur param-

eters are known.

Figure 1. Two images demonstrating defocus and motion blur,

with an out-of-focus swan in the foreground (left), and a moving

bus before a static background (right) respectively.

zontal) motion blur. Although this setting excludes general

camera shake (that can often be modeled as a pure rota-

tion [35]) or curvilinear object motions, it is of considerable

interest in many practical applications, including sports and

macro photography. It is also quite challenging, since, as

demonstrated by Figure 1, out-of-focus regions and rela-

tive object motions cause spatially-varying levels of blur.

To account for these effects, we propose to decompose the

deblurring process into two steps: (1) estimating the non-

uniform blur kernel by combining learned local blur evi-

dence with global smoothness constraints, then (2) recover-

ing the sharp image using a robust deconvolution algorithm

based on sparse regularization with global image statistics.

1.1. Related Work

There have been many attempts in the past to solve the

image deblurring problem. Amongst these, it is commonly

assumed that the blur kernel is spatially uniform [4, 7, 15,

18, 26, 37, 38], which allows it to be estimated from global

image evidence. Levin et al. [27] argue that it is desirable

to first estimate the blur kernel before using it to deblur the

image. Fergus et al. [13] propose a Bayesian framework

for the kernel estimation task using a variational optimiza-

tion method. Statistical gradient priors [33], sharp edge

assumptions [22, 36], and non-convex regularization [24]

have also been imposed on the latent sharp image for blur

estimation. Although these approaches may give impressive

results, they assume that the blur kernel is uniform which,

as demonstrated by Figure 1, is not realistic in many set-

tings involving out-of-focus regions or blur due to moving

objects.
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The uniform kernel assumption has recently been re-

laxed in several blind deblurring methods that assume in-

stead that blur is mostly due to camera rotation, which is

realistic for camera shake in long exposures [6, 8, 16, 17,

21, 35]. In this case, the blurry image can be seen as an

integral over time of images related to each other by homo-

graphies [34, 35]. An effective framework has also been

proposed in [17] to approximate the spatially-varying blur

kernels by combining a set of localized uniform blur ker-

nels. Such works handle a specific type of non-uniform

blur, where a global camera motion constraint can be im-

posed over the kernels, which simplifies the problem of ker-

nel estimation. In contrast, our method is applicable to more

general non-uniform blurs, where such constraints are not

applicable.

1.2. Proposed Approach

We propose a method for joint image segmentation and

deblurring under defocus and linear (say, horizontal) mo-

tion blur. Our approach is related to previous methods, such

as [5, 9, 25, 28], but with significant differences and ad-

vantages. Liu et al. [28] detect blurry regions, but do not

estimate the exact kernels that affect them. The algorithms

proposed in [1, 8] rely on multiple blurry images or video

frames to reduce the ambiguity of motion blur estimation

and segmentation. Chakrabarti et al. [5] show interesting

results for separating the blur and sharp regions in an im-

age, but do not address deblurring itself, which is equally

challenging. Dai and Wu [9] and Levin [25] rely on differ-

ent local spectral or gradient cues, as well as natural image

statistics for motion blur estimation. It is not clear whether

these methods easily extend to defocus blur. In summary,

previous approaches to our deblurring problem either (i) fall

short in the estimation or the deblurring step, (ii) require

multiple images, or (iii) consider a limited set of blur types

(e.g., uniform, constant velocity motion, camera rotation).

We aim to overcome these limitations, and cast the esti-

mation of the global (non-uniform) image blur as a multi-

label energy minimization problem (Section 2). The energy

is the sum of unary terms corresponding to learned local

blur kernel estimators (Section 2.1), and binary ones corre-

sponding to blur smoothness. Its global minimum is found

using Ishikawa’s method by exploiting the natural order of

discretized blur values for linear motions and defocus. Once

the blur has been estimated, the image is restored using a

robust (non-uniform) deblurring algorithm based on sparse

regularization with global image statistics (Section 3). The

proposed algorithm outputs both a segmentation of the im-

age into uniform-blur layers and an estimate of the corre-

sponding sharp image. We present qualitative results on

real images, and use synthetic data to quantitatively com-

pare our approach to the publicly available implementation

of Chakrabarti et al. [5] (Section 4).

2. Estimating the Image Blur

We show in this section that estimating the non-uniform

blur of an image can be cast as a segmentation problem,

where uniform regions correspond to homogeneous blur

strength. Local (but noisy) blur estimators are learned using

logistic regression. A robust global estimate of the image

blur is then obtained by combining the corresponding local

estimates with smoothness constraints in a multi-label en-

ergy minimization framework, where labels correspond to

integer (rounded) blur strengths. Since integer labels admit

a natural order, it is then possible to find the global mini-

mum of the energy using appropriate smoothness terms and

Ishikawa’s method [10, 19].

2.1. Learning Local Blur Estimators

For simplicity, we model horizontal blur as a moving av-

erage, and defocus by a Gaussian filter. Both kernels can

be parameterized by an integer “strength” σ corresponding

to the filter size. Although it is a priori possible to learn a

predictor for σ using regression, the energy minimization

scheme presented in Section 2.2 requires a prediction score

for each value of σ in a fixed interval. This suggests cast-

ing instead the prediction of σ as a multi-class classification

problem, as explained below. Our predictors are local—that

is, we estimate σ for each pixel. Training data is obtained

by (globally) blurring a set of natural sharp images for each

value of σ.

Extracting local features. We represent the local grey

level pattern around each pixel in a blurry image by a fea-

ture vector x of dimension L + 1 obtained by pooling the

responses of a fixed bank of L multi-scale filters. Con-

cretely, we record the average of the absolute value of each

filter’s response in some neighborhood of the pixel (mean

pooling). The resulting feature vectors are then rescaled to

have unit norm.2 The filters used in our framework are a

combination of 64 Gabor filters and of atoms of a dictio-

nary learned on blurry and sharp natural images since these

have been shown to prove useful in many image restoration

tasks [11]. The dictionary is learned such that some of its

atoms represent blurry patches. This is achieved by first

learning a small dictionary [11] from blurry image patches

alone. We then learn the complete dictionary, where the ini-

tial atoms are fixed to those learned from blurry patches,

with sharp image patches. Figure 2 (left) shows an illus-

tration of dictionary-based filters learned for the horizontal

motion blur case. Note that the atoms shown here in the top

few rows correspond to blurry patches.

2Our filters are designed to give zero values on uniform patches since

the overall grey level is irrelevant for blur estimation. To avoid noisy re-

sponses to near-uniform patches, we add one bin to our feature vectors

(hence their L + 1 dimensionality) before rescaling, and set the corre-

sponding value to 1 for uniform patches, and to 0 for others.
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Figure 2. An illustration of filters used for generating the features.

Left: a dictionary learned on blurry (horizontal motion blur in this

case) and sharp natural images. Right: Gabor filter bank.

Learning algorithm. As mentioned earlier, we must be

able to compute for each feature vector x and each inte-

ger value k, associated with some interval Ik of σ values,

a score (cost function) reflecting how (un)likely the actual

value of σ associated with x is to fall in that interval. We

have chosen to use logistic regression to learn an estimator

of the conditional probability P(σ ∈ Ik|x) for each inter-

val Ik. A suitable cost function can then be obtained by

applying any decreasing function to this probability.

In practice, we divide the useful range [0, Σ] of blur val-

ues into K intervals Ik = [σk−1, σk] for k = 1, . . . , K ,

and model P(σ > σk) as fk(x) = 1/[1 + exp(−wT
k x)],

where wk is a vector of parameters to be learned. Given a

set of training feature vectors xi with associated values σi

(i = 1, . . . , N ), these parameters are learned independently

for each k by using regularized logistic regression and min-

imizing with respect to wk the expression

1

N

N∑

i=1

log[1 + exp(−yiw
T
k xi)] + λ ||wk||

2
2 , (1)

where yi is equal to 1 if σi > σk and −1 otherwise, and

λ ||wk||
2
2 is an L2 regularization term. This convex problem

is easily solved using existing optimization toolboxes such

as liblinear [12].

An estimate for the conditional probability P(σ ∈ Ik|x)
is now easily obtained as fk(x)− fk−1(x),3 and the corre-

sponding cost function can be taken to be

U(x, k) = exp(−γ(fk(x) − fk−1(x))), (2)

where γ is some positive parameter.

2.2. A Multi-Label Segmentation Problem

The segmentation problem has often been cast as a label-

ing problem, and this is the setting we use in our approach.

3The observant reader may have noticed that since the k estimators

are learned independently, the function fk − fk−1 is not guaranteed to

be positive. We handle this problem in practice by shifting and rescaling

the fk values for each sample x so as to obtain the proper ordering and a

correct vector of probability values for the K classes.

Given a fixed number P of integer labels, we split the blur

parameter space into P bins and predict a bin for each pixel.

The bins can be built in several ways: for example, we can

use bins of equal size, but they can also be built in an adap-

tive manner using image information. The results presented

in Section 4 are obtained with uniform binning.

Once the bins are fixed, the problem becomes an ordered

multi-class segmentation problem, which can be solved by

minimizing with respect to y in {1..P}N the energy func-

tion:

N∑

i=1

U(xi, yi) + λ
∑

i�=j,j∈N(i)

B(xi, xj , yi, yj , i, j), (3)

where the vectors xi are, as before, features extracted from

pixel i, yi is its label. The function U is the unary cost of as-

signing label yi to the feature xi, as derived in the previous

section, and B is a pairwise smoothness term that ensures

that nearby pixels have consistent blur values. In practice,

we use

B(xi, xj , yi, yj, i, j) = exp(−(µbbij + µccij))|yi − yj |,
(4)

where bij is the probability of an edge being present be-

tween pixels i and j [30], and cij is a color contrast term [3]

between these.

Our binary term is a convex function of the difference

between the labels yi and yj . Although the minimization of

an energy function such as that in Equation (3) is in gen-

eral an NP-hard problem [2], it can be shown that it reduces

to a min-cut/max-flow problem for ordered labels, such as

ours [10, 19], and so its global optimum can be found by an

efficient polynomial algorithm.

After obtaining the optimal kernel labels yi for each pixel

i, the local blur for the pixel will be represented by the mo-

tion or defocus kernel with corresponding value σi.

3. Deblurring the Image

We now address the problem of deblurring the blurry im-

age. Given the blur kernel estimated for each pixel in the

previous section, we can construct a non-uniform blur ker-

nel matrix K̂. Motivated by [20], we model the true kernel

as K = K̂ + δK , where δK is a term to compensate for

the errors in kernel estimation. Using this model, the blurry

image f = K̂g + u + µ, where f and g are the blurry and

sharp images in vector form respectively, and K̂g denotes

the spatially-varying blurring process in matrix form. The

term u = δKg is the error, and µ is the noise.

Due to the hyper-Laplacian distribution of natural im-

ages in the gradient domain [23, 26], we impose a non-

convex regularization over the image gradients. By further

assuming that the error term u is sparsely distributed in the
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Figure 3. Result of the proposed blur estimation method on a sample image with defocus blur. From left to right: input image, estimation

with only the unary cost, blur estimation with unary and binary costs, which corresponds to the global minimum of the energy function (3).

image domain, we estimate the sharp image g by optimiz-

ing:

min
g,u

1

2
||K̂g+u−f ||22+λ1(||F1g||

α
α + ||F2g||

α
α)+λ2||u||1,

(5)

where ||Fig||
α
α =

∑
j |(Fig)j |

α (α is set to 0.8 [26]),

F1, F2 are the matrices constructed by horizontal and verti-

cal gradient filters, and λ1 and λ2 are regularization param-

eters.

This non-convex energy function can be efficiently min-

imized by a half-quadratic splitting method [14, 23], which

introduces two auxiliary vectors vi (i = 1, 2) as:

min
g,u,vi

1

2
||K̂g + u− f ||22 +

β

2
(||F1g − v1||

2
2 + ||F2g − v2||

2
2)

+λ1(||v1||
α
α + ||v2||

α
α) + λ2||u||1.

When β → ∞, the solution of the above problem ap-

proaches that of Equation (5). We optimize g,u and vi

iteratively, with increasing β. In each iteration with a fixed

β, we solve for g,u and vi. First, vi can be optimized by

minimizing E(vi) = 1
2 ||vi−Fig||

2
2 + λ1

β
||vi||

α
α, which can

be efficiently done as in [23]. Second, by setting
∂E(g)

∂g
= 0,

the optimal g can be found by solving the linear equations:

(K̂T K + βF1
T F1 + βF2

T F2)g =

K̂T (f − u) + βF1
T v1 + βF2

Tv2, (6)

which can be done by limited-memory quasi-Newton algo-

rithm [31]. The large-scale matrix multiplications in Equa-

tion (6) can be implemented by local operations around pix-

els, e.g., spatially-varying convolution. Third, u can be

optimized by minimizing E(u) = 1
2 ||u − (f − K̂g)||22 +

λ2||u||1, which can be solved by soft-thresholding.

The introduction of error term u can effectively reduce

ringing artifacts caused by possible kernel errors especially

around the segmentation boundaries. In our implementa-

tion, we set λ1 = 10−3, λ2 = 10−3, and the weight β in-

creases from λ1 to 28λ1, with ratio of 2 in eight iterations

during optimization.

4. Experiments
Obtaining a quantitative evaluation of algorithms for

spatially-varying blur is a difficult task. There is no simple

Horizontal Gaussian

Blur only [5] 0.69 NA

With object model [5] 0.81 NA

Our results: multi-class 0.76 0.71
Our results: binary 0.79 0.73

Table 1. Quantitative evaluation of the estimated blur on the syn-

thetic dataset. We compute the mean intersection vs. union score

over all the images in the dataset for all the methods here. The

results of [5] are shown for both its steps, using blur cues only

(which is comparable to our method), and with blur and object

cues. We also tested our multi-label framework, which handles

images with multiple blur levels, in a binary setting, where there

are exactly two labels – one to describe the sharp regions, and an-

other for the blurry areas.

way of obtaining a ground truth to evaluate the blur estima-

tion or the deblurring results. We believe that some quan-

titative results, even imperfect, will help compare meth-

ods and guide future research on the subject. Thus, we

have built a synthetic dataset, where the region blurred and

the strength of the blur are known. We present details of

this dataset in Section 4.1. We evaluate our approach for

non-uniform blind deblurring at several levels. First, we

evaluate our energy formulation for blur prediction (Sec-

tion 2.2), with and without the influence of the smoothness

cost. Given this blur estimation, we then evaluate the pro-

posed deconvolution method, and compare with the popular

Richardson-Lucy algorithm [29, 32]. We also compare the

quality of the resulting sharp image with that obtained from

two baseline deblurring algorithms based on [13, 33].

4.1. Datasets

For a quantitative evaluation of our blur prediction and

deblurring methods, we introduce a synthetic dataset. It

consists of 4 sharp images, which were subjected to dif-

ferent levels of horizontal and Gaussian blurs. To achieve

this, we manually selected regions of interest (e.g., an ob-

ject or a part of the background), applied different types

and levels of blurs, and added a Gaussian noise (of variance

1). In essence, this produces ground truth (blur estimate)

segmentations and corresponding blurred images for each

sharp image. The dataset consists of 56 images in all. Note
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Figure 4. Blur estimation for real (left) and synthetic (right) images

with horizontal motion blur. From top to bottom: input image,

estimated blur (regions shown in red) with unary and binary costs,

the result of [5] using only blur cues, and [5] with blur as well as

object cues. We observe that our approach better handles texture-

less regions.

that this synthetic dataset may not very accurate, in partic-

ular, near the blur boundaries. Nevertheless, it provides us

a good test bed for evaluating different algorithms quantita-

tively. A few sample images from the synthetic dataset can

be seen in Figures 4, 5.

We also show a qualitative evaluation of our approach on

real images with different types and levels of blur, such as

the 11 images used in [5], images from [25], and some of

our own images. A selection of these results are shown in

the paper. For the remainder of the results, the reader may

refer to the project webpage.4

In our experiments, we used a bank of 64 Gabor filters,

with different orientations and frequencies, and a dictionary

of 320 atoms learned on a set of blurry and sharp natural

images to generate the feature set for an image. The pa-

rameter γ in Equation (2) is set to 10, and µb and µc from

Equation (4) are set to 25 and 200 respectively. We set the

parameter that balances the relative strength of unary and

binary terms, λ to 1.

4http://www.di.ens.fr/willow/research/nonuniblur

Figure 5. The car and horse images from our synthetic dataset are

shown here with horizontal motion blur. The bus image is shown

in Figure 4 (right).

Image Richardson-Lucy Our framework

Bus 26.55 33.66
Car 27.60 37.53
Horse 24.04 34.25

Table 2. A comparison of PSNR values of our non-blind deblurring

(deconvolution) method with that produced by an adapted version

of the Richardson-Lucy algorithm. Here we show the average val-

ues for three images from our synthetic dataset, each subjected to

six levels of horizontal blur.

4.2. Blur Estimation

We evaluated our local blur estimators (i.e., unary cost)

on regions extracted from uniformly blurred images. In the

horizontal blur case, the task is to predict one value from

the set σi = {1 3 5 7 9 11 13}, and in the Gaussian blur

case, we used a set of 9 blurs of variances uniformly spread

between 0 and 4. We predicted the blur at each pixel indi-

vidually, with an accuracy of 72% and 62% in the horizon-

tal and Gaussian blurs respectively. A visualization of blur

prediction on an entire image using unary costs alone, i.e.,

λ = 0 in Equation (1), is shown in Figure 3 (middle). These

prediction results, although promising, are quite noisy.

We introduce the smoothness term B (4) to ensure that

nearby pixels have consistent blur values. The influence

of this term can be seen in Figure 3 (right). We evaluated

this quantitatively with the standard intersection vs. union

score in Table 1. A comparison with [5] is also shown. The

method by [5] uses a two-step process: (i) blur cues are first

used to construct an initial blur estimate segmentation; and

then (ii) a color model is learned for each region to yield the

final segmentation. We show the results of these two steps

(see also Figure 4). Since our approach only uses blur cues,

it would be fair to compare it with the results from step (i).

As seen in the figure, our segmentation results are compara-

ble to, if not better than, the results of step (i). We observe

that our method better handles texture-less regions. Note

that adding object-level priors to our approach are likely to

improve the results even further.

Our framework handles images with multiple blur levels

(see Figure 3 (right) for example, which shows three distinct

blur regions). We tested this generic framework in a binary

setting, where only one blur level is assumed, with the other

label corresponding to sharp regions, similar to [5]. This

10771077107710791079



Image [13] [33] Our framework

Bus 28.04 24.14 31.98
Car 21.97 31.55 35.09
Horse 23.77 34.77 34.73

Table 3. PSNR values obtained with our method and two state-

of-the-art uniform blind deconvolution algorithms on the bus, car,

and horse images from our synthetic dataset (see Figures 4, 5).

We provide a good approximation for uniform (horizontal) blur re-

gions with a manually marked bounding box enclosing the blurry

object. Our method, despite the lack of such ‘ground truth’ blur

regions, performs better than the two other methods here.

Figure 6. Segmentation and deblurring result for an image

from [25]. Left to right: Blurry image, estimated segmentation,

deblurred image.

2-label approach shows a performance comparable to [5]

with object cues, and outperforms it when only blur cues

are used.

4.3. Deblurring

Given the computed non-uniform blur in an image, we

estimate the sharp image with our deblurring method. Since

there appear to be no deconvolution methods that handle

gracefully non-uniform blurs considered here, we adapted

three methods to make our baseline comparisons. First,

following [35], we adapted Richardson-Lucy to a known

non-uniform blur. We show this comparison as average

PSNR values, computed on three synthetic images with six

strengths of blur each, in Table 2. We also compared our

deblurring results with two state-of-the-art uniform blind

deblurring algorithms [13, 33]. We applied these methods

on a (manually marked) bounding box tightly enclosing the

blurred object, which provides a good approximates for a

uniform blur region. These results are shown in Table 3. We

observe that our method, which requires no such ‘ground

truth’ blur regions, outperforms [13] significantly, and is

comparable to or better than [33]. In Table 4 we compare

the PSNR values of blurred and estimated sharp image.

We also evaluated our blur estimation and deconvolution

methods qualitatively on real images from other [5, 25],

as well our own datasets. A selection of these results are

shown in Figures 6, 7, and 8 for horizontal motion and defo-

cus blurs. The interested reader is encouraged to see other,

and high resolution images on the project website.

Horizontal blur Gaussian blur

Blurry image 33.21 33.17

Our framework 33.86 33.93

Table 4. Average PSNR values on the synthetic dataset for hori-

zontal and Gaussian blur types. Here we show the PSNR for sharp

vs. blurry images (as Blurry image), and sharp vs. deblurred im-

ages (as Our framework).

5. Discussion

We presented a novel approach for first estimating non-

uniform blur caused by horizontal motion or defocus, and

then the sharp (deconvolved) image. We demonstrated its

promise through experiments with real as well as synthetic

data. The quantitative evaluations on synthetic data provide

a good base to compare future methods more concretely. A

promising direction future work is the construction of a tree

structure estimator to be able to handle two different types

of blur in the same image.
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