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Abstract

We introduce instancewise feature selection as

a methodology for model interpretation. Our

method is based on learning a function to ex-

tract a subset of features that are most informative

for each given example. This feature selector is

trained to maximize the mutual information be-

tween selected features and the response variable,

where the conditional distribution of the response

variable given the input is the model to be ex-

plained. We develop an efficient variational ap-

proximation to the mutual information, and show

the effectiveness of our method on a variety of

synthetic and real data sets using both quantitative

metrics and human evaluation.

1. Introduction

Interpretability is an extremely important criterion when a

machine learning model is applied in areas such as medicine,

financial markets, and criminal justice (e.g., see the discus-

sion paper by Lipton ((Lipton, 2016)), as well as references

therein). Many complex models, such as random forests,

kernel methods, and deep neural networks, have been devel-

oped and employed to optimize prediction accuracy, which

can compromise their ease of interpretation.

In this paper, we focus on instancewise feature selection as a

specific approach for model interpretation. Given a machine

learning model, instancewise feature selection asks for the

importance score of each feature on the prediction of a given

instance, and the relative importance of each feature is al-

lowed to vary across instances. Thus, the importance scores

can act as an explanation for the specific instance, indicating

which features are the key for the model to make its predic-

tion on that instance. A related concept in machine learning

1University of California, Berkeley 2Work done partially during
an internship at Ant Financial 3Georgia Institute of Technology
4Ant Financial 5The Voleon Group. Correspondence to: Jianbo
Chen <jianbochen@berkeley.edu>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

is feature selection, which selects a subset of features that

are useful to build a good predictor for a specified response

variable (Guyon & Elisseeff, 2003). While feature selection

produces a global importance of features with respect to the

entire labeled data set, instancewise feature selection mea-

sures feature importance locally for each instance labeled

by the model.

Existing work on interpreting models approach the prob-

lem from two directions. The first line of work computes

the gradient of the output of the correct class with respect

to the input vector for the given model, and uses it as a

saliency map for masking the input (Simonyan et al., 2013;

Springenberg et al., 2014). The gradient is computed using

a Parzen window approximation of the original classifier

if the original one is not available (Baehrens et al., 2010).

Another line of research approximates the model to be in-

terpreted via a locally additive model in order to explain

the difference between the model output and some “refer-

ence” output in terms of the difference between the input

and some “reference” input (Bach et al., 2015; Kindermans

et al., 2016; Ribeiro et al., 2016; Lundberg & Lee, 2017;

Shrikumar et al., 2017; Sundararajan et al., 2017). Ribeiro

et al. (2016) proposed the LIME, methods which randomly

draws instances from a density centered at the sample to

be explained, and fits a sparse linear model to predict the

model outputs for these instances. Shrikumar et al. (2017)

presented DeepLIFT, a method designed specifically for

neural networks, which decomposes the output of a neural

network on a specific input by backpropagating the contri-

bution back to every feature of the input. Lundberg & Lee

(2017) used Shapley values to quantify the importance of

features of a given input, and proposed a sampling based

method “kernel SHAP” for approximating Shapley values.

(Sundararajan et al., 2017) proposed Integrated Gradients

(IG), which constructs the additive model by cumulating the

gradients along the line between the input and the reference

point. Essentially, the two directions both approximate the

model locally via an additive model, with different defini-

tions of locality. While the first one considers infinitesimal

regions on the decision surface and takes the first-order term

in the Taylor expansion as the additive model, the second

one considers the finite difference between an input vector

and a reference vector.
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Training Efficiency Additive Model-agnostic

Parzen (Baehrens et al., 2010) Yes High Yes Yes

Salient map (Simonyan et al., 2013) No High Yes No

LRP (Bach et al., 2015) No High Yes No

LIME (Ribeiro et al., 2016) No Low Yes Yes

Kernel SHAP (Lundberg & Lee, 2017) No Low Yes Yes

DeepLIFT (Shrikumar et al., 2017) No High Yes No

IG (Sundararajan et al., 2017) No Medium Yes No

L2X Yes High No Yes

Table 1. Summary of the properties of different methods. “Train-

ing” indicates whether a method requires training on an unlabeled

data set. “Efficiency” qualitatively evaluates the computational

time during single interpretation. “Additive” indicates whether a

method is locally additive. “Model-agnostic” indicates whether a

method is generic to black-box models.

In this paper, our approach to instancewise feature selection

is via mutual information, a conceptually different perspec-

tive from existing approaches. We define an “explainer,” or

instancewise feature selector, as a model which returns a

distribution over the subset of features given the input vector.

For a given instance, an ideal explainer should assign the

highest probability to the subset of features that are most in-

formative for the associated model response. This motivates

us to maximize the mutual information between the selected

subset of features and the response variable with respect

to the instancewise feature selector. Direct estimation of

mutual information and discrete feature subset sampling are

intractable; accordingly, we derive a tractable method by

first applying a variational lower bound for mutual informa-

tion, and then developing a continuous reparametrization of

the sampling distribution.

At a high level, the primary differences between our ap-

proach and past work are the following. First, our frame-

work globally learns a local explainer, and therefore takes

the distribution of inputs into consideration. Second, our

framework removes the constraint of local feature additivity

on an explainer. These distinctions enable our framework to

yield a more efficient, flexible, and natural approach for in-

stancewise feature selection. In summary, our contributions

in this work are as follows (see also Table 1 for systematic

comparisons):

• We propose an information-based framework for in-

stancewise feature selection.

• We introduce a learning-based method for instancewise

feature selection, which is both efficient and model-

agnostic.

Furthermore, we show that the effectiveness of our method

on a variety of synthetic and real data sets using both quanti-

tative metric and human evaluation on Amazon Mechanical

Turk.

2. A framework

We now lay out the primary ingredients of our general ap-

proach. While our framework is generic and can be applied

to both classification and regression models, the current

discussion is restricted to classification models. We assume

one has access to the output of a model as a conditional

distribution, Pm(· | x), of the response variable Y given the

realization of the input random variable X = x ∈ Rd.

X XS

S

E

Figure 1. The graphical model of obtaining XS from X .

2.1. Mutual information

Our method is derived from considering the mutual infor-

mation between a particular pair of random vectors, so we

begin by providing some basic background. Given two ran-

dom vectors X and Y , the mutual information I(X;Y ) is

a measure of dependence between them; intuitively, it cor-

responds to how much knowledge of one random vector

reduces the uncertainty about the other. More precisely, the

mutual information is given by the Kullback-Leibler diver-

gence of the product of marginal distributions of X and Y
from the joint distribution of X and Y (Cover & Thomas,

2012); it takes the form

I(X;Y ) = EX,Y

[

log
pXY (X,Y )

pX(X)pY (Y )

]

,

where pXY and pX , pY are the joint and marginal prob-

ability densities if X,Y are continuous, or the joint and

marginal probability mass functions if they are discrete. The

expectation is taken with respect to the joint distribution of

X and Y . One can show the mutual information is nonneg-

ative and symmetric in two random variables. The mutual

information has been a popular criteria in feature selection,

where one selects the subset of features that approximately

maximizes the mutual information between the response

variable and the selected features (Gao et al., 2016; Peng

et al., 2005). Here we propose to use mutual information as

a criteria for instancewise feature selection.

2.2. How to construct explanations

We now describe how to construct explanations using mu-

tual information. In our specific setting, the pair (X,Y )
are characterized by the marginal distribution X ∼ PX(·),
and a family of conditional distributions of the form

(Y | x) ∼ Pm(· | x). For a given positive integer k, let
℘

k = {S ⊂ 2d | |S| = k} be the set of all subsets of

size k. An explainer E of size k is a mapping from the

feature space Rd to the power set ℘k; we allow the map-

ping to be randomized, meaning that we can also think of

E as mapping x to a conditional distribution P(S | x) over

S ∈ ℘k. Given the chosen subset S = E(x), we use xS to

denote the sub-vector formed by the chosen features. We

view the choice of the number of explaining features k as
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best left in the hands of the user, but it can also be tuned as

a hyper-parameter.

We have thus defined a new random vector XS ∈ Rk; see

Figure 1 for a probabilistic graphical model representing its

construction. We formulate instancewise feature selection

as seeking explainer that optimizes the criterion

max
E

I(XS ;Y ) subject to S ∼ E(X). (1)

In words, we aim to maximize the mutual information be-

tween the response variable from the model and the selected

features, as a function of the choice of selection rule.

It turns out that a global optimum of Problem (1) has a nat-

ural information-theoretic interpretation: it corresponds to

the minimization of the expected length of encoded mes-

sage for the model Pm(Y | x) using Pm(Y |xS), where the

latter corresponds to the conditional distribution of Y upon

observing the selected sub-vector. More concretely, we have

the following:

Theorem 1. Letting Em[· | x] denote the expectation over

Pm(· | x), define

E∗(x) : = argmin
S

Em

[

log
1

Pm(Y | xS)

∣

∣

∣
x

]

. (2)

Then E∗ is a global optimum of Problem (1). Conversely,

any global optimum of Problem (1) degenerates to E∗ al-

most surely over the marginal distribution PX .

The proof of Theorem 1 is left to the supplementary materi-

als. In practice, the above global optimum is obtained only

if the explanation family E is sufficiently large. In the case

when Pm(Y |xS) is unknown or computationally expensive

to estimate accurately, we can choose to restrict E to suitably

controlled families so as to prevent overfitting.

3. Proposed method

A direct solution to Problem (1) is not possible, so that we

need to approach it by a variational approximation. In par-

ticular, we derive a lower bound on the mutual information,

and we approximate the model conditional distribution Pm

by a suitably rich family of functions.

3.1. Obtaining a tractable variational formulation

We now describe the steps taken to obtain a tractable varia-

tional formulation.

A variational lower bound: Mutual information between

XS and Y can be expressed in terms of the conditional

distribution of Y given XS :

I(XS ;Y ) = E

[

log
Pm(XS , Y )

P(XS)Pm(Y )

]

= E

[

log
Pm(Y |XS)

Pm(Y )

]

= E

[

logPm(Y |XS)
]

+ Const.

= EXES|XEY |XS

[

logPm(Y |XS)
]

+ Const.

For a generic model, it is impossible to compute expecta-

tions under the conditional distribution Pm(· | xS). Hence

we introduce a variational family for approximation:

Q : =
{

Q | Q = {xS → QS(Y |xS), S ∈ ℘k}
}

. (3)

Note each member Q of the family Q is a collection of

conditional distributions QS(Y |xS), one for each choice

of k-sized feature subset S. For any Q, an application of

Jensen’s inequality yields the lower bound

EY |XS
[logPm(Y |XS)] ≥

∫

Pm(Y |XS) logQS(Y |XS)

= EY |XS
[logQS(Y |XS)],

where equality holds if and only if Pm(Y |XS) and

QS(Y |XS) are equal in distribution. We have thus ob-

tained a variational lower bound of the mutual information

I(XS ;Y ). Problem (1) can thus be relaxed as maximizing

the variational lower bound, over both the explanation E
and the conditional distribution Q:

max
E,Q

E

[

logQS(Y | XS)
]

such that S ∼ E(X). (4)

For generic choices Q and E , it is still difficult to solve the

variational approximation (4). In order to obtain a tractable

method, we need to restrict both Q and E to suitable families

over which it is efficient to perform optimization.

A single neural network for parametrizing Q: Recall

that Q = {QS(· | xS), S ∈ ℘k} is a collection of condi-

tional distributions with cardinality |Q| =
(

d
k

)

. We assume

X is a continuous random vector, and Pm(Y | x) is contin-

uous with respect to x. Then we introduce a single neural

network function gα : Rd × [c] → [0, 1] for parametrizing

Q, where [c] = {0, 1, . . . , c− 1} denotes the set of possible

classes, and α denotes the learnable parameters. We define

QS(Y |xS) : = gα(x̃S , Y ), where x̃S ∈ Rd is transformed

from x by replacing entries not in S with zeros:

(x̃S)i =

{

xi, i ∈ S,

0, i /∈ S.

When X contains discrete features, we embed each discrete

feature with a vector, and the vector representing a specific

feature is set to zero simultaneously when the corresponding

feature is not in S.

3.2. Continuous relaxation of subset sampling

Direct estimation of the objective function in equation (4)

requires summing over
(

d
k

)

combinations of feature sub-

sets after the variational approximation. Several tricks

exist for tackling this issue, like REINFORCE-type Al-

gorithms (Williams, 1992), or weighted sum of features

parametrized by deterministic functions of X . (A similar

concept to the second trick is the “soft attention” struc-

ture in vision (Ba et al., 2014) and NLP (Bahdanau et al.,

2014) where the weight of each feature is parametrized by



Learning to Explain: An Information-Theoretic Perspective on Model Interpretation

a function of the respective feature itself.) We employ an

alternative approach generalized from Concrete Relaxation

(Gumbel-softmax trick) (Jang et al., 2017; Maddison et al.,

2014; 2016), which empirically has a lower variance than

REINFORCE and encourages discreteness (Raffel et al.,

2017).

The Gumbel-softmax trick uses the concrete distribution as

a continuous differentiable approximation to a categorical

distribution. In particular, suppose we want to approximate a

categorical random variable represented as a one-hot vector

in Rd with category probability p1, p2, . . . , pd. The random

perturbation for each category is independently generated

from a Gumbel(0, 1) distribution:

Gi = − log(− log ui), ui ∼ Uniform(0, 1).

We add the random perturbation to the log probability of

each category and take a temperature-dependent softmax

over the d-dimensional vector:

Ci =
exp{(log pi +Gi)/τ}

∑d

j=1
exp{(log pj +Gj)/τ}

.

The resulting random vector C = (C1, . . . , Cd) is called a

Concrete random vector, which we denote by

C ∼ Concrete(log p1, . . . , log pd).

We apply the Gumbel-softmax trick to approximate

weighted subset sampling. We would like to sample a sub-

set S of k distinct features out of the d dimensions. The

sampling scheme for S can be equivalently viewed as sam-

pling a k-hot random vector Z from Dd
k : = {z ∈ {0, 1}d |

∑

zi = k}, with each entry of z being one if it is in the

selected subset S and being zero otherwise. An importance

score which depends on the input vector is assigned for each

feature. Concretely, we define wθ : R
d → Rd that maps the

input to a d-dimensional vector, with the ith entry of wθ(X)
representing the importance score of the ith feature.

We start with approximating sampling k distinct features

out of d features by the sampling scheme below: Sam-

ple a single feature out of d features independently for k
times. Discard the overlapping features and keep the rest.

Such a scheme samples at most k features, and is easier

to approximate by a continuous relaxation. We further ap-

proximate the above scheme by independently sampling k
independent Concrete random vectors, and then we define

a d-dimensional random vector V that is the elementwise

maximum of C1, C2, . . . , Ck:

Cj ∼ Concrete(wθ(X)) i.i.d. for j = 1, 2, . . . , k,

V = (V1, V2, . . . , Vd), Vi = max
j

Cj
i .

The random vector V is then used to approximate the k-hot

random vector Z during training.

We write V = V (θ, ζ) as V is a function of θ and a collec-

tion of auxiliary random variables ζ sampled independently

from the Gumbel distribution. Then we use the elementwise

product V (θ, ζ)⊙X between V and X as an approximation

of X̃S .

3.3. The final objective and its optimization

After having applied the continuous approximation of fea-

ture subset sampling, we have reduced Problem (4) to the

following:

max
θ,α

EX,Y,ζ

[

log gα(V (θ, ζ)⊙X,Y )
]

, (5)

where gα denotes the neural network used to approximate

the model conditional distribution, and the quantity θ is used

to parametrize the explainer. In the case of classification

with c classes, we can write

EX,ζ

[

c
∑

y=1

[Pm(y | X) log gα(V (θ, ζ)⊙X, y)
]

. (6)

Note that the expectation operator EX,ζ does not depend on

the parameters (α, θ), so that during the training stage, we

can apply stochastic gradient methods to jointly optimize

the pair (α, θ). In each update, we sample a mini-batch of

unlabeled data with their class distributions from the model

to be explained, and the auxiliary random variables ζ, and

we then compute a Monte Carlo estimate of the gradient of

the objective function (6).

3.4. The explaining stage

During the explaining stage, the learned explainer maps

each sample X to a weight vector wθ(X) of dimension d,

each entry representing the importance of the corresponding

feature for the specific sample X . In order to provide a de-

terministic explanation for a given sample, we rank features

according to the weight vector, and the k features with the

largest weights are picked as the explaining features.

For each sample, only a single forward pass through the neu-

ral network parametrizing the explainer is required to yield

explanation. Thus our algorithm is much more efficient

in the explaining stage compared to other model-agnostic

explainers like LIME or Kernel SHAP which require thou-

sands of evaluations of the original model per sample.

4. Experiments

We carry out experiments on both synthetic and real data

sets. For all experiments, we use RMSprop (Maddison et al.,

2016) with the default hyperparameters for optimization.

We also fix the step size to be 0.001 across experiments.

The temperature for Gumbel-softmax approximation is fixed

to be 0.1. Codes for reproducing the key results are avail-

able online at https://github.com/Jianbo-Lab/

L2X.

https://github.com/Jianbo-Lab/L2X
https://github.com/Jianbo-Lab/L2X
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Figure 2. The clock time (in log scale) of explaining 10, 000 sam-

ples for each method. The training time of L2X is shown in

translucent bars.

4.1. Synthetic Data

We begin with experiments on four synthetic data sets:

• 2-dimensional XOR as binary classification. The input

vector X is generated from a 10-dimensional standard

Gaussian. The response variable Y is generated from

P (Y = 1|X) ∝ exp{X1X2}.

• Orange Skin. The input vector X is generated from a 10-

dimensional standard Gaussian. The response variable Y
is generated from P (Y = 1|X) ∝ exp{

∑

4

i=1
X2

i − 4}.

• Nonlinear additive model. Generate X from a

10-dimensional standard Gaussian. The response

variable Y is generated from P (Y = 1|X) ∝
exp{−100 sin(2X1) + 2|X2|+X3 + exp{−X4}}.

• Switch feature. Generate X1 from a mixture of two Gaus-

sians centered at ±3 respectively with equal probability.

If X1 is generated from the Gaussian centered at 3, the

2−5th dimensions are used to generate Y like the orange

skin model. Otherwise, the 6− 9th dimensions are used

to generate Y from the nonlinear additive model.

The first three data sets are modified from commonly used

data sets in the feature selection literature (Chen et al., 2017).

The fourth data set is designed specifically for instancewise

feature selection. Every sample in the first data set has the

first two dimensions as true features, where each dimension

itself is independent of the response variable Y but the

combination of them has a joint effect on Y . In the second

data set, the samples with positive labels centered around a

sphere in a four-dimensional space. The sufficient statistic

is formed by an additive model of the first four features. The

response variable in the third data set is generated from a

nonlinear additive model using the first four features. The

last data set switches important features (roughly) based on

the sign of the first feature. The 1− 5 features are true for

samples with X1 generated from the Gaussian centered at

−3, and the 1, 6− 9 features are true otherwise.

We compare our method L2X (for “Learning to Explain”)

with several strong existing algorithms for instancewise

feature selection, including Saliency (Simonyan et al., 2013),

DeepLIFT (Shrikumar et al., 2017), SHAP (Lundberg &

Lee, 2017), LIME (Ribeiro et al., 2016). Saliency refers to

the method that computes the gradient of the selected class

with respect to the input feature and uses the absolute values

as importance scores. SHAP refers to Kernel SHAP. The

number of samples used for explaining each instance for

LIME and SHAP is set as default for all experiments. We

also compare with a method that ranks features by the input

feature times the gradient of the selected class with respect

to the input feature. Shrikumar et al. (2017) showed it is

equivalent to LRP (Bach et al., 2015) when activations are

piecewise linear, and used it in Shrikumar et al. (2017) as

a strong baseline. We call it “Taylor” as it is the first-order

Taylor approximation of the model.

Our experimental setup is as follows. For each data set, we

train a neural network model with three hidden dense lay-

ers. We can safely assume the neural network has success-

fully captured the important features, and ignored noise fea-

tures, based on its error rate. Then we use Taylor, Saliency,

DeepLIFT, SHAP, LIME, and L2X for instancewise feature

selection on the trained neural network models. For L2X,

the explainer is a neural network composed of two hidden

layers. The variational family is composed of three hid-

den layers. All layers are linear with dimension 200. The

number of desired features k is set to the number of true

features.

The underlying true features are known for each sample,

and hence the median ranks of selected features for each

sample in a validation data set are reported as a performance

metric, the box plots of which have been plotted in Figure 3.

We observe that L2X outperforms all other methods on

nonlinear additive and feature switching data sets. On the

XOR model, DeepLIFT, SHAP and L2X achieve the best

performance. On the orange skin model, all algorithms have

near optimal performance, with L2X and LIME achieving

the most stable performance across samples.

We also report the clock time of each method in Figure 2,

where all experiments were performed on a single NVidia

Tesla k80 GPU, coded in TensorFlow. Across all the four

data sets, SHAP and LIME are the least efficient as they

require multiple evaluations of the model. DeepLIFT, Tay-

lor and Saliency requires a backward pass of the model.

DeepLIFT is the slowest among the three, probably due to

the fact that backpropagation of gradients for Taylor and

Saliency are built-in operations of TensorFlow, while back-

propagation in DeepLIFT is implemented with high-level

operations in TensorFlow. Our method L2X is the most

efficient in the explanation stage as it only requires a for-

ward pass of the subset sampler. It is much more efficient

compared to SHAP and LIME even after the training time

has been taken into consideration, when a moderate number
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Figure 3. The box plots for the median ranks of the influential features by each sample, over 10, 000 samples for each data set. The red

line and the dotted blue line on each box is the median and the mean respectively. Lower median ranks are better. The dotted green lines

indicate the optimal median rank.

Truth Model Key words

positive positive Ray Liotta and Tom Hulce shine in this sterling example of brotherly love and commitment. Hulce plays

Dominick, (nicky) a mildly mentally handicapped young man who is putting his 12 minutes younger, twin

brother, Liotta, who plays Eugene, through medical school. It is set in Baltimore and deals with the issues

of sibling rivalry, the unbreakable bond of twins, child abuse and good always winning out over evil. It is

captivating, and filled with laughter and tears. If you have not yet seen this film, please rent it, I promise,

you’ll be amazed at how such a wonderful film could go unnoticed.

negative negative Sorry to go against the flow but I thought this film was unrealistic, boring and way too long. I got tired of
watching Gena Rowlands long arduous battle with herself and the crisis she was experiencing. Maybe the
film has some cinematic value or represented an important step for the director but for pure entertainment

value. I wish I would have skipped it.

negative positive This movie is chilling reminder of Bollywood being just a parasite of Hollywood. Bollywood also tends

to feed on past blockbusters for furthering its industry. Vidhu Vinod Chopra made this movie with the

reasoning that a cocktail mix of deewar and on the waterfront will bring home an oscar. It turned out to be

rookie mistake. Even the idea of the title is inspired from the Elia Kazan classic. In the original, Brando

is shown as raising doves as symbolism of peace. Bollywood must move out of Hollywoods shadow if it
needs to be taken seriously.

positive negative When a small town is threatened by a child killer, a lady police officer goes after him by pretending to be

his friend. As she becomes more and more emotionally involved with the murderer her psyche begins to

take a beating causing her to lose focus on the job of catching the criminal. Not a film of high voltage

excitement, but solid police work and a good depiction of the faulty mind of a psychotic loser.

Table 2. True labels and labels predicted by the model are in the first two columns. Key words picked by L2X are highlighted in yellow.

of samples (10,000) need to be explained. As the scale of

the data to be explained increases, the training of L2X ac-

counts for a smaller proportion of the over-all time. Thus

the relative efficiency of L2X to other algorithms increases

with the size of a data set.

4.2. IMDB

The Large Movie Review Dataset (IMDB) is a dataset of

movie reviews for sentiment classification (Maas et al.,

2011). It contains 50, 000 labeled movie reviews, with a

split of 25, 000 for training and 25, 000 for testing. The

average document length is 231 words, and 10.7 sentences.

We use L2X to study two popular classes of models for

sentiment analysis on the IMDB data set.

4.2.1. EXPLAINING A CNN MODEL WITH KEY WORDS

Convolutional neural networks (CNN) have shown excel-

lent performance for sentiment analysis (Kim, 2014; Zhang

& Wallace, 2015). We use a simple CNN model on

Keras (Chollet et al., 2015) for the IMDB data set, which
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Truth Predicted Key sentence

positive positive There are few really hilarious films about science fiction but this one will knock your sox off. The lead
Martians Jack Nicholson take-off is side-splitting. The plot has a very clever twist that has be seen to be
enjoyed. This is a movie with heart and excellent acting by all. Make some popcorn and have a great
evening.

negative negative You get 5 writers together, have each write a different story with a different genre, and then you try to
make one movie out of it. Its action, its adventure, its sci-fi, its western, its a mess. Sorry, but this movie

absolutely stinks. 4.5 is giving it an awefully high rating. That said, its movies like this that make me
think I could write movies, and I can barely write.

negative positive This movie is not the same as the 1954 version with Judy garland and James mason, and that is a shame
because the 1954 version is, in my opinion, much better. I am not denying Barbra Streisand’s talent at all.
She is a good actress and brilliant singer. I am not acquainted with Kris Kristofferson’s other work and
therefore I can’t pass judgment on it. However, this movie leaves much to be desired. It is paced slowly, it
has gratuitous nudity and foul language, and can be very difficult to sit through. However, I am not a big
fan of rock music, so its only natural that I would like the judy garland version better. See the 1976 film
with Barbra and Kris, and judge for yourself.

positive negative The first time you see the second renaissance it may look boring. Look at it at least twice and definitely
watch part 2. it will change your view of the matrix. Are the human people the ones who started the war?
Is ai a bad thing?

Table 3. True labels and labels from the model are shown in the first two columns. Key sentences picked by L2X highlighted in yellow.

is composed of a word embedding of dimension 50, a 1-D

convolutional layer of kernel size 3 with 250 filters, a max-

pooling layer and a dense layer of dimension 250 as hidden

layers. Both the convolutional and the dense layers are fol-

lowed by ReLU as nonlinearity, and Dropout (Srivastava

et al., 2014) as regularization. Each review is padded/cut to

400 words. The CNN model achieves 90% accuracy on the

test data, close to the state-of-the-art performance (around

94%). We would like to find out which k words make the

most influence on the decision of the model in a specific

review. The number of key words is fixed to be k = 10 for

all the experiments.

The explainer of L2X is composed of a global component

and a local component (See Figure 2 in Yang et al. (2018)).

The input is initially fed into a common embedding layer

followed by a convolutional layer with 100 filters. Then

the local component processes the common output using

two convolutional layers with 50 filters, and the global com-

ponent processes the common output using a max-pooling

layer followed by a 100-dimensional dense layer. Then we

concatenate the global and local outputs corresponding to

each feature, and process them through one convolutional

layer with 50 filters, followed by a Dropout layer (Srivastava

et al., 2014). Finally a convolutional network with kernel

size 1 is used to yield the output. All previous convolutional

layers are of kernel size 3, and ReLU is used as nonlinearity.

The variational family is composed of an word embedding

layer of the same size, followed by an average pooling and

a 250-dimensional dense layer. Each entry of the output

vector V from the explainer is multiplied with the embed-

ding of the respective word in the variational family. We use

both automatic metrics and human annotators to validate

the effectiveness of L2X.

Post-hoc accuracy. We introduce post-hoc accuracy for

quantitatively validating the effectiveness of our method.

Each model explainer outputs a subset of features XS for

each specific sample X . We use Pm(y | X̃S) to approx-

imate Pm(y | XS). That is, we feed in the sample X to

the model with unselected words masked by zero paddings.

Then we compute the accuracy of using Pm(y | X̃S) to

predict samples in the test data set labeled by Pm(y | X),
which we call post-hoc accuracy as it is computed after

instancewise feature selection.

Human accuracy. When designing human experiments,

we assume that the key words convey an attitude toward a

movie, and can thus be used by a human to infer the review

sentiment. This assumption has been partially validated

given the aligned outcomes provided by post-hoc accuracy

and by human judges, because the alignment implies the

consistency between the sentiment judgement based on se-

lected words from the original model and that from humans.

Based on this assumption, we ask humans on Amazon Me-

chanical Turk (AMT) to infer the sentiment of a review

given the ten key words selected by each explainer. The

words adjacent to each other, like “not good at all,” keep

their adjacency on the AMT interface if they are selected

simultaneously. The reviews from different explainers have

been mixed randomly, and the final sentiment of each review

is averaged over the results of multiple human annotators.

We measure whether the labels from human based on se-

lected words align with the labels provided by the model,

in terms of the average accuracy over 500 reviews in the

test data set. Some reviews are labeled as “neutral” based

on selected words, which is because the selected key words

do not contain sentiment, or the selected key words contain

comparable numbers of positive and negative words. Thus

these reviews are neither put in the positive nor in the nega-

tive class when we compute accuracy. We call this metric

human accuracy.

The result is reported in Table 4. We observe that the model
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prediction based on only ten words selected by L2X align

with the original prediction for over 90% of the data. The hu-

man judgement given ten words also aligns with the model

prediction for 84.4% of the data. The human accuracy is

even higher than that based on the original review, which is

83.3% (Yang et al., 2018). This indicates the selected words

by L2X can serve as key words for human to understand the

model behavior. Table 2 shows the results of our model on

four examples.

4.2.2. EXPLAINING HIERARCHICAL LSTM

Another competitive class of models in sentiment analysis

uses hierarchical LSTM (Hochreiter & Schmidhuber, 1997;

Li et al., 2015). We build a simple hierarchical LSTM by

putting one layer of LSTM on top of word embeddings,

which yields a representation vector for each sentence, and

then using another LSTM to encoder all sentence vectors.

The output representation vector by the second LSTM is

passed to the class distribution via a linear layer. Both

the two LSTMs and the word embedding are of dimension

100. The word embedding is pretrained on a large cor-

pus (Mikolov et al., 2013). Each review is padded to contain

15 sentences. The hierarchical LSTM model gets around

90% accuracy on the test data. We take each sentence as a

single feature group, and study which sentence is the most

important in each review for the model.

The explainer of L2X is composed of a 100-dimensional

word embedding followed by a convolutional layer and a

max pooling layer to encode each sentence. The encoded

sentence vectors are fed through three convolutional layers

and a dense layer to get sampling weights for each sentence.

The variational family also encodes each sentence with a

convolutional layer and a max pooling layer. The encoding

vectors are weighted by the output of the subset sampler,

and passed through an average pooling layer and a dense

layer to the class probability. All convolutional layers are of

filter size 150 and kernel size 3. In this setting, L2X can be

interpreted as a hard attention model (Xu et al., 2015) that

employs the Gumbel-softmax trick.

Comparison is carried out with the same metrics. For human

accuracy, one selected sentence for each review is shown

to human annotators. The other experimental setups are

kept the same as above. We observe that post-hoc accu-

racy reaches 84.4% with one sentence selected by L2X, and

human judgements using one sentence align with the origi-

nal model prediction for 77.4% of data. Table 3 shows the

explanations from our model on four examples.

4.3. MNIST

The MNIST data set contains 28×28 images of handwritten

digits (LeCun et al., 1998). We form a subset of the MNIST

data set by choosing images of digits 3 and 8, with 11, 982

Figure 4. The above figure shows ten randomly selected figures

of 3 and 8 in the validation set. The first line include the original

digits while the second line does not. The selected patches are

colored with red if the pixel is activated (white) and blue otherwise.

IMDB-Word IMDB-Sent MNIST

Post-hoc accuracy 0.90.8 0.849 0.958

Human accuracy 0.844 0.774 NA

Table 4. Post-hoc accuracy and human accuracy of L2X on three

models: a word-based CNN model on IMDB, a hierarchical LSTM

model on IMDB, and a CNN model on MNIST.

images for training and 1, 984 images for testing. Then we

train a simple neural network for binary classification over

the subset, which achieves accuracy 99.7% on the test data

set. The neural network is composed of two convolutional

layers of kernel size 5 and a dense linear layer at last. The

two convolutional layers contains 8 and 16 filters respec-

tively, and both are followed by a max pooling layer of pool

size 2. We try to explain each sample image with k = 4 im-

age patches on the neural network model, where each patch

contains 4 × 4 pixels, obtained by dividing each 28 × 28
image into 7 × 7 patches. We use patches instead of raw

pixels as features for better visualization.

We parametrize the explainer and the variational family

with three-layer and two-layer convolutional networks re-

spectively, with max pooling added after each hidden layer.

The 7× 7 vector sampled from the explainer is upsampled

(with repetition) to size 28 × 28 and multiplied with the

input raw pixels.

We use only the post-hoc accuracy for experiment, with

results shown in Table 4. The predictions based on 4 patches

selected by L2X out of 49 align with those from original

images for 95.8% of data. Randomly selected examples

with explanations are shown in Figure 4. We observe that

L2X captures most of the informative patches, in particular

those containing patterns that can distinguish 3 and 8.

5. Conclusion

We have proposed a framework for instancewise feature

selection via mutual information, and a method L2X which

seeks a variational approximation of the mutual information,

and makes use of a Gumbel-softmax relaxation of discrete

subset sampling during training. To our best knowledge,

L2X is the first method to realize real-time interpretation of

a black-box model. We have shown the efficiency and the

capacity of L2X for instancewise feature selection on both

synthetic and real data sets.



Learning to Explain: An Information-Theoretic Perspective on Model Interpretation

Acknowledgements

L.S. was also supported in part by NSF IIS-1218749, NIH

BIGDATA 1R01GM108341, NSF CAREER IIS-1350983,

NSF IIS-1639792 EAGER, NSF CNS-1704701, ONR

N00014-15-1-2340, Intel ISTC, NVIDIA and Amazon

AWS. We thank Nilesh Tripuraneni for comments about

the Gumbel trick.

References

Ba, J., Mnih, V., and Kavukcuoglu, K. Multiple ob-

ject recognition with visual attention. arXiv preprint

arXiv:1412.7755, 2014.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,

K.-R., and Samek, W. On pixel-wise explanations for

non-linear classifier decisions by layer-wise relevance

propagation. PloS one, 10(7):e0130140, 2015.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M.,
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