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Summary. We present an evaluation of different techniques for the estimation of
forces and torques measured by a single six-axis force/torque sensor placed along
the kinematic chain of a humanoid robot arm. In order to retrieve the external
forces and detect possible contact situations, the internal forces must be estimated.
The prediction performance of an analytically derived dynamic model as well as
two supervised machine learning techniques, namely Least Squares Support Vector
Machines and Neural Networks, are investigated on this problem. The performance
are evaluated on the normalized mean square error (NMSE) and the comparison is
made with respect to the dimension of the training set, the information contained
in the input space and, finally, using a Euclidean subsampling strategy.

Key words: Force sensing, machine learning, humanoid robotics.





1

Learning to Exploit Proximal Force Sensing: a

Comparison Approach

Matteo Fumagalli, Arjan Gijsberts, Serena Ivaldi, Lorenzo Jamone, Giorgio
Metta, Lorenzo Natale, Francesco Nori, and Giulio Sandini

Robotics, Brain and Cognitive Science Department
Italian Institute of Technology
Via Morego, 30 Genoa 16163
E-mail: {name.surname}@iit.it

1.1 Introduction

Emerging applications require robots to act safely in dynamic, unstructured
environments. In order to avoid damaging the robot and the surrounding en-
vironment (physical objects and/or interacting agents), special sensors are
usually applied to detect contact situations [21, 1]. Classical approaches to
manipulation exploit a force/torque (FT) sensor placed on the end-effector,
where most of the interactions occur. External forces acting on the other parts
of the arm, however, cannot be measured with this configuration. Further-
more, it may not be feasible to put the sensor on the end-effector, due to its
size or weight. An alternative solution is to place the sensor at the base of the
manipulator or along the kinematic chain (e.g. after the shoulder) [19, 6]. In
this case, the FT sensor measures both external and internal forces, the latter
being the ones depending on gravitational, Coriolis and inertial forces. This
solution allows the robot to detect interaction with the environment not only
on the end-effector (e.g. voluntarily touching or grasping an object), but on
the whole arm (e.g. hitting unexpected obstacles, being stopped by a human
agent during motion). In order to accurately detect the external contribution
of the forces, the manipulator dynamics must be compensated, i.e. the internal
forces must be known, modeled or estimated.

Multiple approaches can be used for the estimation of these internal forces.
Firstly, the functional estimation can be done using an analytical model de-
scribing the physics of the system, or at least its most significant properties.
Model-based estimation strongly relies on the availability of a (mathemati-
cal) model of the robot [20], and is recommended only if the kinematic and
dynamic parameters are known or identifiable with high accuracy. To this
purpose, rigid multi-body dynamic modeling is generally used and some or
all the parameters are identified [24] in order to improve the model accuracy.
Within this context, the overall model accuracy is primarily limited by the
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(potentially nonlinear) effects which the model does not explicitly take into
account (e.g. gearbox backlash). Alternatively, supervised machine learning
approaches can be used to approximate the internal dynamic model from a
set of training examples. This approach may be preferred when explicitly mod-
eling all possible nonlinear effects is cumbersome [25]. The main drawback of
supervised learning methods is the need for collecting a rich and significant
training set. Furthermore, it may be necessary to perform the training phase
offline, due to the high computational requirements of these learning meth-
ods. In contrast, the model-based approach only needs to identify a small set
of significant parameters; this identification technique requires much fewer
data and computational resources and therefore can typically be performed
efficiently online.

In this chapter, we investigate an analytical model and two supervised ma-
chine learning methods (Least Squares Support Vector Machines and Feed-
forward Neural Networks) for the estimation of internal forces in a robotic
arm, which is equipped with a six-axis FT sensor inside the kinematic chain.
It seems reasonable to assume, however, that the results can be generalized
to similar problems in robotics (i.e. problems related to the estimation of the
dynamical parameters of a kinematic chain).

Firstly, we focus our attention on the amount of training data necessary to
obtain accurate predictions. The qualitative measure for the prediction is the
average Normalized Mean Square Error (NMSE) for the forces and torques in
three dimensions. In our framework, the minimum amount of external forces
that the robot can detect is proportional to the magnitude of this estimation
error; this value is critical in order to have safe interaction with the environ-
ment. We expect machine learning methods to benefit from larger data sets;
on the other hand, model based techniques should be more insensitive to the
size of the training set.

Secondly, we pose our interest in understanding how the type of supplied
data influences the estimation error. In particular, we verify empirically the
usefulness of velocity and acceleration measurements when estimating (rela-
tively complex) dynamical models. This issue is particularly important in the
field of humanoid robotics, where smooth motions are usually preferred. As
a consequence, velocities and accelerations need to satisfy some smoothness
requirements, which prevent data from being completely random1. Therefore,
successfully exploiting velocity and acceleration data is difficult, especially
without specific sensors dedicated to their measurement.

At last, we analyze the effect of sampling distribution on the generaliza-
tion performance. This analysis can give information about the way training

1 Typical identification techniques make strong assumptions on the supplied data
set. Machine learning techniques assume sufficiently distributed samples that
cover the variability of the underlying function. Model based approaches assume
persistently exciting conditions (see [10] for a definition).
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Fig. 1.1. The humanoid robot James.

data should be gathered or subsampled to practical dimensions from a larger
training set.

The chapter is organized as follows. In Section 1.2 the robotic platform
and the estimation problem are described. Section 1.3 describes three different
approaches for internal forces estimation: an analytical model with identified
parameters and the two machine learning methods. Experimental results are
reported and discussed in Section 1.4. Section 1.5 contains the conclusions.

1.2 Robot Setup and Problem Formulation

This work has been carried out on the humanoid robot James [8]. James is a
humanoid torso, consisting of a 7 DOF head, a 7 DOF left arm and a 8 DOF
left hand, with the overall size of a 10 years old boy (cf. Fig. 1.1). Among the
7 degrees of freedom of the arm (3 for the shoulder, 1 for the elbow and 3
for the wrist), only 4 (the shoulder and elbow) have been considered in this
work2. At the top of the upper arm, just below the shoulder, a single 6-axis
FT sensor (ATI mini45 [15]) is placed (see Fig. 2(a)). This solution has been
chosen because most of the space in the upper and forearm is occupied by the
motors actuating the wrist, elbow and fingers, and by the DSP boards used to

2 The justification for this simplification is that state of the wrist (position, velocity
and acceleration) only has a minor effect on the internal forces, due to the rela-
tively negligible amount of mass after the wrist (i.e. the hand mass) with respect
to the whole arm.
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Fig. 1.2. (a) The reference frames for James’ arm. Of the five joints, only four are
independently actuated, θ3 and θ4 being mechanically coupled. (b) Detail of James’
upper-arm, showing the FT sensor and its placement (red square).

control them. Furthermore, this placement enables the robot to detect both
internal forces due to arm motion and external forces due to contacts between
the arm/hand and the environment.

As explained before, the FT sensor measures both internal and external
forces, the latter being the ones to be determined for interaction control pur-
pose (e.g. obstacle detection and avoidance). The whole arm surface is taken
into account for possible contact points (so the contact may happen in any
point on the arm, not only on the end-effector). In the following we will dis-
cuss the retrieval of the external forces and the consequent need to estimate
the internal ones.

Let us consider an open kinematic chain with n degrees of freedom. Let
q ∈ R

n be the generalized coordinates describing the pose of the kinematic
chain. The FT sensor measurement will be denoted x = [f>, τ>]> ∈ R

6. As
previously said, this quantity contains both external and internal forces f ∈ R

3

and torques τ ∈ R
3. Specifically we have:

x = xI + xE , (1.1)

where xI and xE refer to the internal and external forces/torques, respectively.
More precisely, neglecting the effect of the elasticity of the transmissions and
defining fE , τE as the external forces and torques applied at the contact
point, equation (1.1) can be expanded as follows (see [20] for details on the
derivations):
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[
f

τ

]

= M(q)q̈ + C(q, q̇)q̇ +G(q)
︸ ︷︷ ︸

xI

+T (q,d)

[
fE

τE

]

︸ ︷︷ ︸

xE

, (1.2)

where M , C and G are the inertial, Coriolis and gravity matrices of the
dynamic system equations, and T is a roto-translation matrix describing the
transformation of the external forces from the contact point reference frame to
the sensor reference frame, with d being the distance vector from the contact
point to the sensor.

Whenever the robot interacts with an external object, a non-null external
force component xE arises: in order to detect a collision or a contact, xE must
be identified from the sensor measurements x. Practically, the identification
can be performed by subtracting the internal forces (xI) from the measured
ones (x):

xE = x − xI , (1.3)

which yields an indirect measurement of the external forces and torques3.
Then, the vector xI must be computed from the model, or derived from ex-
perimental data. When the robot moves freely in its workspace, the sensor
only perceives the internal components of forces and torques (i.e. xI = x).
These components only depend on position, velocity and acceleration of the
joints. The problem of retrieving xE is therefore reduced to the estimation of
the internal forces and torques, i.e. the mapping from q, q̇, q̈ to f , τ :

xI = f(q, q̇, q̈). (1.4)

1.3 Proposed Approaches

Two distinct ways to identify f(·) in equation (1.4) are: (1) deriving it analyt-
ically, (2) approximating it using a set of examples (i.e. machine learning). In
the latter case, the learning algorithm is agnostic to the underlying dynamics
model that is used to produce the examples. One advantage of this approach
is that nonlinear effects do not need to be explicitly modeled, as these are
learned implicitly by the algorithm. In this section, we will detail the model-
based approach and two machine learning algorithms, namely Least Squares
Support Vector Machines and Neural Networks.

Remark 1. It is worth discussing some issues related to the noise effecting the
measurement equation (1.4) which is at the base of all the proposed iden-
tification methods. Among the different contributions, the F/T sensor itself

3 Notice that xE does not correspond to the real external forces fE and torques
τ E , but to their projection on the sensor, i.e. xE = T (q,d)[f>E , τ>

E ]>. To retrieve
the real external forces and torques, we must also know the distance d from the
contact point to the sensor. In the future, we plan to mount a full body sensing
skin [5], which will provide the necessary feedback to detect the contact location.
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is a primary source of noise (see the specifications in [15]) but it is not the
only one. As a matter of fact, also the velocity and acceleration measurements
are subject to numerical inaccuracies, as these are computed using first and
second order numerical differentiation of the position measurements. These
derivatives are estimated based on the difference between the samples at time
t and t−W , i.e.

q̇t =
qt − qt−W

W∆T
, q̈t =

q̇t − q̇t−W

W∆T
for t = W, . . . ,∞ . (1.1)

This computation is performed on the DSP boards embedded in the robot
arm at 1 kHz rate, i.e. ∆T = 1 ms. The window length W has been set
to 35, i.e. W∆T = 35ms4. Other sources of noise include communication
delays effecting the synchronization of sensory measurements and reliability
of the position measurements in presence of elasticity in the actuation design
(elastic tendons and rubber transmission belts). The complex interaction of
these various sources of noise makes it very difficult to characterize the overall
system noise and therefore a complete analysis will be left outside the scope
of the current paper.

1.3.1 Model-Based Approach

Let us consider a robotic manipulator with n degrees of freedom and links,
and a force/torque sensor located in the middle of the kinematic chain, imme-
diately after one of the joints. As already pointed out, the sensor will measure
both internal (xI) and external (xE) force/torque component acting on the
following links. In this section, we assume that the FT sensor measures only
the internal forces, i.e. xE ≡ 0. Therefore, (1.2) can be written as:

[
f

τ

]

= M(q)q̈ + C(q, q̇)q̇ +G(q) . (1.2)

Starting from this formulation, we derive a model based approach for esti-
mating the parameters in (1.2). In order to tune this model, a set of parameters
that best fits the force/torque acquisition, given a certain data set of joint po-
sitions q, velocities q̇ and accelerations q̈, needs to be found. Equation (1.2)
is written as the linear product of a matrix D(q, q̇, q̈) and a vector η (see [10]
for details). The matrix D(q, q̇, q̈) depends solely on the joint positions, ve-
locities and accelerations, whereas η contains the dynamical parameters that
we would like to estimate. Practically:

x =

[
f

τ

]

= D(q, q̇, q̈)η , (1.3)

where η has a complex structure that can be formalized as follows:

4 This window length has been chosen specifically to low-pass filter the position
measurements and the computed velocities, whilst maintaining sufficient accuracy.
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η = [ψ, Ψ ]
>

.

The row vectors ψ and Ψ depend only on the system dynamical parameters
and have the following structure:

ψ =
[
m1ϕ · · · mnϕ

]
∈ R

nψ (1.4)

Ψ =
[
r1 · · · rn

]
∈ R

nΨ , (1.5)

where

ϕ =
[

l>1 · · · l>n , c
>
1 · · · c>n

]
∈ R

nϕ (1.6)

ri =
[
si,1 · · · si,n, I

1
i · · · I6

i

]
(1.7)

si,j =
[
miϕ

2
j miϕjϕj+1 · · · miϕjϕnϕ

]
. (1.8)

For each link i = 1, . . . , n, li ∈ R
3 is the vector representing the lengths

of the link in the x, y and z directions with respect to the previous joint’s
reference frame, ci ∈ R

3 is the vector of the center of mass of each link,
with respect to the same reference frame5. Further, mi ∈ R and Ik

i ∈ R are
the mass and inertial parameters of each link for k = 1, . . . , 6. Interestingly,
equation (1.3) can be further simplified to the form x = D̂(q, q̇, q̈)φ, where
φ is the minimum set of identifiable parameters, i.e. a linear combination of
the elements of vector η (see [10] for details).

The vector φ of the system dynamical parameters can be often retrieved
from an accurate model of the robot (e.g. CAD drawings), but this procedure
is typically neither feasible nor accurate. Different ways for identifying the
dynamic parameters can be found in the literature, but their discussion is out
of the scope of this work (the interested reader should refer to [6, 10]). Here
we focus on a technique based on a weighted linear least squares solution.
Let us define a weighting diagonal matrix ω containing the variances of each
component of force (fx, fy, fz) and torque (τx, τy, τz):

ω =










1

σ2

fx

0 · · · 0

0 1

σ2

fy

· · · 0

...
...

. . .
...

0 0 · · · 1

σ2
τz










. (1.9)

At the ith time instant, we measure the system position (qi), velocity (q̇i)
and acceleration (q̈i) and the associated force sensor output xi. After ` time
samples, a possible estimation for the vector φ of dynamical parameters is

5 Each kinematic chain link has an associated reference frame, defined by the
Denavit-Hartenberg convention [3] . All the dynamic and kinematic quantities
of each link (center of mass, inertia, lengths, etc.) refer to the associated refer-
ence frame.
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given by the vector φ◦ which minimizes the (weighted) norm of the error
vectors (xi − D̂iφ), i.e.:

φ◦ = arg min
φ

∑̀

i=1

(xi − D̂iφ)>ω(xi − D̂iφ) . (1.10)

where we defined D̂i = D̂(qi, q̇i, q̈i). The explicit solution is given by:

φ◦ = ∆†
ΩY =

[
∆>Ω∆

]−1
∆>ΩY , (1.11)

where Ω = diag(ω) and

∆ =








D̂1

D̂2

...

D̂`








Y =








y1

y2

...
y`








. (1.12)

Remark 2. Given the discussion above, learning the optimal parameters value
φ◦ consists in a matrix inversion. With simple algebraic simplifications, it can
be proved that the dimension of the matrix to be inverted does not depend
on the number of acquired data but only on the dimension of the vector φ.
Similarly, once the model has been trained, the model prediction (the predic-
tion of x given q, q̇ and q̈) consists in evaluating D̂(q, q̇, q̈) and the product
D̂(q, q̇, q̈)φ◦. Therefore, the computational complexity of the prediction de-
pends mainly on the evaluation of the matrix D̂ (in our example represented
by ∼ 1700 multiplications, ∼ 700 sums and 8 sine/cosine evaluations).

1.3.2 Least Squares Support Vector Machines for Regression

Least Squares Support Vector Machines (LS-SVMs) belong to the class of
kernel methods, which use a positive definite kernel function to estimate a
linear approximator in a (usually) high-dimensional feature space [23]. Its for-
mulation shares similarities with the Support Vector Machine for Regression
(SVR) [22]. Let us define the data set S = {xi, yi}

`
i=1

, where inputs xi ∈ R
n

and corresponding outputs yi ∈ R for i = 1, . . . , `. LS-SVM estimates a linear
decision function of the form f(x) = 〈w, φ(x)〉 + b, where b is a bias term
and φ(·) : R

n 7→ R
f maps samples from the input space into a (usually)

high-dimensional feature space. The weight vector w and bias b are chosen
such that both the squared norm of w and the sum of the squared errors
εi = yi −f(xi) are minimized. This is described by the following optimization
problem:

minimize
1

2
‖w‖2 +

1

2
C
∑̀

i=1

ε2i (1.13)

subject to yi = 〈xi,w〉 + b+ εi for 1 ≤ i ≤ ` ,
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where C is a regularization constant. Standard application of the Lagrange
method yields the dual optimization problem [23]:

maximize
1

2
‖w‖2 +

1

2
C
∑̀

i=1

ε2i −
∑̀

i=1

αi (〈xi,w〉 + b+ εi − yi) . (1.14)

Here αi ∈ R are the Lagrange multipliers associated with each sample. Us-
ing this dual formulation, the decision function can be rewritten as f(x) =
∑`

i=1
αi 〈φ(xi), φ(x)〉 + b. One particular advantage of this expansion is that

the solution is described in terms of inner products with respect to the train-
ing samples xi. Hence, a kernel function k(xi,xj) = 〈φ(xi), φ(xj)〉 can be
used to implicitly map the data into the feature space. Given a kernel matrix
K = {k(xi,xj)}

`

i,j=1
, the solution to the optimization problem in (1.14) is

given by a system of linear equations:

[
α

b

]

=

[
K + C−1I 1

1T 0

]−1 [
y

0

]

. (1.15)

Note that solving the LS-SVM optimization problem reduces to a (`+1)×(`+
1) matrix inversion, which in return can be solved efficiently using Cholesky
decomposition [2]. Another advantage of LS-SVM over other kernel methods
(e.g. SVR), is that the Leave-One-Out (LOO) error can be computed exactly
using a single training run on the complete data set [2]. It is important to note
that the final generalization performance of the LS-SVM is strongly dependent
on the selection of both C and the kernel function. For our experiments, we
consider the commonly used Radial Base Function (RBF) kernel k(xi,xj) =
exp(−γ‖xi−xj‖

2), where parameter γ tunes the radius of the Gaussian. A grid
search on the range C ∈

[
20, 21, . . . , 216

]
and γ ∈

[
2−11, 2−10, . . . , 21

]
is used

to select “optimal” hyperparameters, where the generalization performance
of each configuration is estimated using the LOO error on the training set.
Furthermore, we considered the cases that x = {q, [q, q̇], [q, q̇, q̈], [q, q̈]}. As
the output y is limited to scalar values, a distinct machine has to be trained
for each output dimension, such that y = {fx, fy, fz, τx, τy, τz}.

Remark 3. Though LS-SVM has several advantageous properties with respect
to SVM, one apparent disadvantage is that it does not produce sparse mod-
els. Input samples xi can only be removed from the kernel expansion when
αi = 0, which in return is only the case if εi = 0. As a result, on practical
problems all input samples will be included in the model. This reflects neg-
atively on the prediction time. For m output dimensions and assuming the
RBF kernel function, the prediction of an n dimensional input vector requires
m (`(n+ 1) + 1) sums, m`(n + 2) products, and m` exponentials; where ` is
the size of the data set the m distinct machines has been trained on.

Remark 4. The scope of this work is limited to batch learning on small to
medium sized data sets. Nguyen-Tuong et al. (cf. [18] in this volume) have
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shown that – on a similar learning problem – Gaussian Processes Regression
(GPR) commonly outperforms other methods in this particular context. It is
worth noting that the performance of LS-SVM can be expected to be similar to
GPR, as both methods share some similarities in the approximation function6.

1.3.3 Neural Networks

Lastly, a multiple input - multiple output one-hidden-layer (OHL) feed-
forward neural network (NN) is chosen as the second machine learning
method, for its generalization and approximation capabilities [9], and de-
noising property when dealing with experimental data. More specifically, we
constrain the approximation function to take on a fixed, parameterized struc-
ture, that is a ν “neurons”, n inputs, m outputs neural network, µ̂(·,w), with
sigmoidal activation functions σ in both hidden and output layer7 :

µ̂(x̃,w) = col

(

σ̃j

[
ν∑

h=1

chjσ(x̃,κh) + bj

]

, j = 1, . . . ,m

)

(1.16)

where µ̂(·,w) : R
n × R

W 7→ R
m, chj , bj ∈ R,κh ∈ R

n+1, j = 1, . . . ,m,
being ν the number of neurons constituting the network. The vector w ∈
R

W ,W = (n + 1)ν + (ν + 1)2m collects all the parameters to be op-
timized. The notations σ̃ and x̃ account for the output and input nor-
malization.8 Furthermore, we trained four different type of networks, with
x = {q, [q, q̇], [q, q̇, q̈], [q, q̈]} and n = {4, 8, 12} respectively, for different
number of neurons ν = 5, 20, 50, 100, 150 and different training sets. The
number of outputs was always fixed to 6 (forces and torques). The training
algorithm is based on the well known Levenberg-Marquardt (LM) algorithm
[12, 13]. The criterion for training the network (that is to find the optimal
parameters w◦) is to minimize the mean square error between the estimated
and the measured data:

minimize Φ(w) =
1

2

∑̀

i=1

ε>i (w)εi(w) , (1.17)

where εi(w) = yi − µ̂(x̃i,w) is the error between the measured and the
predicted data. Once all the partial derivatives of the error function Φ are

6 The main differences between both methods are that LS-SVM includes a bias
term and requires less assumptions on the distribution of the data.

7 We chose a sigmoidal output layer (instead of a classical linear output layer)
since it naturally generates bounded values within a specific range, which are
consistent with the output ranges after data normalization. This choice allows to
remove signal constraints and not to take care of the possibility that the network
generates inconsistent values.

8 The input variables are normalized from their original range to [−1, 1], while the
network outputs are scaled from [−1, 1] (the output range of a sigmoidal tanh-
based neural network) to the forces and torques real ranges.
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back-propagated, the weights update equation is applied:

wk+1 = wk − [J>(wk)J(wk) + µI]−1J>(wk)ε(wk) , (1.18)

where ε(wk) = [ε0(wk), . . . , εN−1(wk)], and J(wk) ∈ R
N×W is the Jacobian

matrix of the errors with respect to the parameters of the NN:

J(w) =







∂ε0

∂w0

∂ε0

∂w1

. . . ∂ε0

∂wW−1

...
...

. . .
...

∂εN−1

∂w0

∂εN−1

∂w1

. . . ∂εN−1

∂wW−1






. (1.19)

The parameter µ, adjusted iteratively, balances the LM between a steepest
descent and a Gauss-Newton algorithm. To improve the training performance
we used the Nguyen-Widrow (NW) method [17] to initialize the network (see
also [7, 14]).

Remark 5. The proposed neural network training is designed for batch learn-
ing, and generically the estimate improves with the growth of both training
set and number of parameters9. Since the training is performed offline, in
the prediction phase the computation is quite fast, consisting only of a sin-
gle forward pass of the network. More precisely, given the number of neurons
ν for a OHL neural network with n inputs, m outputs, sigmoidal activa-
tion functions (hyperbolic tangent tanh(x) = (ex − e−x)/(ex + e−x)) in the
hidden and output layer, the necessary operations are ν(n + m) products,
ν(n+m+1)+m+2(ν+m) sums, 2(ν+m) exponentials and ν+m divisions,
and the flops count is linear with ν. As an example, for 20 neurons, 4 inputs,
6 outputs and both layers with the usual hyperbolic tangent, the flops count
(computed with the Lightspeed Matlab toolbox v.2.2. [16] ) is 2766.

1.4 Results and Discussion

The three previously discussed methods have been evaluated experimentally
on a common data set that has been gathered during a sequence of random
arm movements, performed in joint space. Every movement brings the arm
from a starting position qs ∈ R

4 to a final position qf ∈ R
4, which subse-

quently becomes the starting position for the next movement. Each of these
positions is defined by a vector of joint angles, which are chosen randomly
using a uniform distribution within the admissible range of the respective

9 The number of parameters usually depend on three factors: the complexity of the
function to be approximated (i.e. a very smooth function requires fewer neurons
than a highly varying one, as more basis function are necessary to approximate
the irregular changes of the latter), the dimension of the training set and the
quality of the training set (i.e. to which extent the training set is representative
for the variable space).
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q[◦] q̇[◦/s] q̈[◦/s2]
joint # 0 1 2 3 0 1 2 3 0 1 2 3

max 150 60 30 70 18 15 20 15 103 76 248 34
min 50 -100 -60 10 -39 -49 -34 -23 -135 -85 -158 -38

Table 1.1. Value ranges of the arm joint positions, velocities and accelerations.

joint. Joint velocity profiles during motion are bell-shaped with a predefined
maximum velocity, which causes the absolute velocities to vary from zero to
the maximum value during any movement. Trivially, the sign of the velocity
depends on the direction of the motion. The joint accelerations (i.e. actual
slope of the velocity profiles) depend on the distance between qs and qf, since
the time duration of the movement is kept constant. Joint positions, velocities
and accelerations were retrieved from the DSP boards at 50 Hz. Velocities and
accelerations were computed via numerical differentiation on the DSP boards
at a higher frequency (1 kHz). A simple collision avoidance strategy was used
during the experimental data acquisition, in order to ensure that the arm
would not collide with the body or the environment.

The complete data set of 40000 samples has been shuffled and split in
two equal parts. The set of the first 20000 samples is used for training and
is subsequently subsampled to obtain smaller sized training sets, whereas the
second half is used as a common test set. The reported performance measure
on the test set is the average Normalized Mean Squared Error (NMSE) over
all 6 output dimensions, where the NMSE is defined as the mean squared
error divided by the variance of the respective output dimension. For the
two machine learning approaches, the input dimensions have been rescaled
(see original ranges Table 1.1) to be approximately within the range [−1,+1],
based on the maximum and minimum values found in each input dimension
in the training set.

1.4.1 Number of Training Samples

In this initial experiment we measured the performance of each method when
increasing the number of training samples. The results in Fig. 1.3 show clearly
that the two learning methods have a strong dependency on the size of the
training set. As more samples become available, they consistently continue to
improve performance, eventually outperforming the model-based approach by
an order of magnitude.

Interestingly, the model-based approach appears to perform at a constant
level, regardless of the number of samples. This is confirmed by further analysis
on even smaller data sets, as demonstrated in Fig. 1.4. When considering only
the joint positions, it shows the remarkable capability of achieving acceptable
performance using only 5 training samples. This means that the model-based
approach is the preferred approach when only very few samples are available.
The machine learning methods require many more samples to achieve similar
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Fig. 1.3. Comparison of the three methods on random training subsets of increasing
dimension and three different input spaces. P denotes the input space containing
only joint positions (q ∈ R

4), PV contains both joint positions and velocities (q, q̇ ∈
R

8), and PVA contains joint positions, velocities and accelerations (q, q̇, q̈ ∈ R
12).

performance. This is not surprising considering that the model based approach
takes advantage of additional information implicit in the structure of the
model.

1.4.2 Contribution of Velocity and Acceleration on the Estimation

Another observation (Fig. 1.5) is that inclusion of joint velocities and accelera-
tions does not always improve the generalization performance when training is
done on a small number of samples. Intuitively, one might expect that adding
relevant information could only improve the estimation. However, learning
methods require an increasing amount of training samples to make effective
use of this additional information (i.e. the curse of dimensionality [4]). This
affects particularly the learning methods, since these need to construct their
model based solely on training data. Fig. 1.5 shows that both LS-SVM and NN
eventually use joint velocities to improve their predictions, given a sufficiently
large training set.

Joint accelerations, however, do not improve prediction performance in
any of the cases (cf. Fig. 1.6). This is probably due to the low signal to noise
ratio for the acceleration and, in first place, to the robotic setup used to obtain



16 Fumagalli et al.

5 10 15 20 25 30 35 40 45 50 55

0.1

0.2

0.5

0.7

0.3

0.4

0.6

0.05

Training set dimension

N
M

S
E

 

 
P − Model
PV − Model
PVA − Model

Fig. 1.4. Performance of the model-based method on very small training sets.

the data set. In particular, the joint accelerations were not measured directly
but were derived from positions. This causes the acceleration measurements
to be much less precise and reliable than those for joint velocities and posi-
tions. Furthermore, the range of accelerations is relatively small10 and within
this range we observed that the contribution of M(q)q̈ in equation (1.2) is
relatively small compared to the contribution of the other terms (C(q, q̇)q̇
and G(q)).

1.4.3 Selective Subsampling

The data set we acquired is characterized by the fact that there is an abun-
dance of training samples. Thus far, we have used a uniform random sub-
sampling strategy, as to ensure that the qualitative properties of the subset
approximate those of the original data set. However, with such an abundance
of samples it is likely that the original data set is oversampled (i.e. additional
samples do not further increase the generalization performance) and contains
samples that are (nearly) identical to each other. This similarity of input
samples particularly affects LS-SVM, as this method describes the prediction
function in terms of inner products with respect to all training samples.

We can guarantee a certain “sparsity” of the training set by taking a sub-
set, such that the inter-sample distance is at least a threshold t. Let us define
a distance measure D(xi,xj) =

√

(xi − xj)Σ−1(xi − xj), where xi,xj ∈ R
n

and Σ is an n× n matrix containing the variances of all input dimensions on

10 The chosen motors produce limited torques, which reflects into relatively low
accelerations.
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Fig. 1.5. Comparison of the performance for all methods with increasing input
spaces (i.e. P, PV and PVA; defined as in Fig. 1.3). Note that both axes are in
logarithmic scale to accentuate differences in final performance.

its diagonal. This measure coincides with the Euclidean distance in the stan-
dardized input space. In order to construct a Euclidean subset Et, we iterate
over a permutation of the original data set S using index i = 1, . . . , ` and
append only those samples to Et, for which minD(xi,x) ≥ t ∀x ∈ Et.

Fig. 1.7 shows the prediction performance of LS-SVM with random and
Euclidean subsampling. The Euclidean subsets were generated by varying the
threshold t, such that the size of the subsets were nearly identical to each of
the random subsets. Whether selective subsampling based on Euclidean dis-
tance outperforms random subsampling depends on the input space that is
used to determine the inter-sample distance, and the size of the training set.
When this distance is determined solely based on the joint positions, then Eu-
clidean subsampling results in a significant improvement for small data sets.
In contrast, random subsampling performs better than Euclidean subsampling
based on joint positions, velocities and accelerations. It is our belief that this
difference is due to the Euclidean strategy attempting to create a uniform
sampling distribution in all dimensions under consideration, effectively form-
ing subsets that contain a wide range of velocities and accelerations (besides
positions). Given the relatively low velocities and accelerations of the robot,
the force and torques are primarily caused by gravity. In return, gravity is
only dependent on the joint positions of the robot. It is therefore beneficial,
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Fig. 1.6. Performance after inclusion of joint accelerations. The figures on the left
hand side compare the performance on P and PA (defined analogously to P , PV
and PV A in Fig. 1.3), while those the right hand side compare PV and PV A.

for limited training sets, to select those samples that help LS-SVM to model
this gravity component.

Further, we can note that the different subsampling strategies perform
nearly identically for large training sets. This can easily explained by the fact
that the size of Et is inversely proportional to the chosen distance threshold
t and, by definition, Et becomes a random permutation of S as t approaches
zero. In short, for large data sets, and thus a small inter-sample threshold,
the Euclidean and random subsets have very similar sample distributions and
therefore similar performance.

1.5 Conclusions

In this paper, we presented and compared different approaches to force/torque
estimation from a FT sensor. Experimental data-driven learning methods are
proposed and compared with respect to the classical model-based technique,
and advantages and disadvantages of both types of approaches are discussed.
Learning algorithms outperform the rigid body dynamic model in terms of
prediction accuracy, given that a sufficient amount of training data is avail-
able. The generalization performance of these methods improves steadily as
more training samples become available. LS-SVM converges slightly faster
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Fig. 1.7. Comparison of random and selective subsampling based on standardized
Euclidean distance. Euclidean P and Euclidean PVA denote subsampling based on
Euclidean distance thresholds t = {1.35, 1.15, 0.88, 0.65, 0.5, 0.35, 0.18} using posi-
tion inputs and thresholds t = {6.0, 5.3, 4.5, 3.7, 3.1, 2.5, 1.8} using position-velocity-
acceleration inputs, respectively.

than Neural Networks, but their final performance on large data sets is nearly
identical. The model-based method, on the other hand, requires very few sam-
ples (in order of ten) to achieve acceptable predictions, and in practice requires
very few samples if the estimate relies only on joint positions. Furthermore, we
tested the relevance of velocity and acceleration information when learning the
dynamic equation which describes the FT measurement. It was observed that
machine learning methods improve their prediction when including velocity
data at the cost of requiring larger training sets. On the contrary, acceleration
does not significantly improve performance and the reason for this incongru-
ence has to be found in the low signal to noise ratio (positions are double
differentiated to obtain accelerations). We also evaluated the impact of train-
ing set pre-processing by defining a suitable selective subsampling strategy: a
Euclidean distance metric was introduced and the resulting training set was
compared with a random sampling one. For LS-SVM, the resulting spatial dis-
tribution of the training samples improves the estimation for small data sets,
while its beneficial effect disappear with increasing the size of the training set.
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