
Computer Science

Learning to Extract Symbolic Knowledge
from the World Wide Web

Mark Craven Dan DiPa-squo

Andrew McCalluni Tom Mitchell

Sean Slattery

September 1, 1998

CMU-CS-9S-122

Day no Freitag

Kainal Nigam

ellon

Learning to Extract Symbolic Knowledge

from the World Wide Web

Mark Craven Dan DiPasquo Dayne Freitag

Andrew McCallum Tom Mitchell Kamal Nigam

Sean Slattery

September 1, 1998

CMU-CS-98-122

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The World Wide Web is a vast source of information accessible to computers, but understandable
only to humans. The goal of the research described here is to automatically create a computer

understandable knowledge base whose content mirrors that of the World Wide Web. Such a knowl-
edge base would enable much more effective retrieval of Web information, and promote new uses
of the Web to support knowledge-based inference and problem solving. Our approach is to develop
a trainable information extraction system that takes two inputs. The first is an ontology that
defines the classes (e.g., Company, Person, Employee, Product) and relations (e.g., Employed.By,
Produced.By) of interest when creating the knowledge base. The second is a set of training data
consisting of labeled regions of hypertext that represent instances of these classes and relations.
Given these inputs, the system learns to extract information from other pages and hyperlinks on
the Web. This paper describes our general approach, several machine learning algorithms for this
task, and promising initial results with a prototype system that has created a knowledge base
describing university people, courses, and research projects.

This research has been supported in part by the DARPA HPKB program under research contract
F30602-97-1-0215. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of DARPA or the
U.S. government.

DTIC QUALITY INSPECTED 4

Keywords: information extraction, machine learning, World Wide Web, knowledge
bases, Web spider, text classification, relational learning.

Contents

1. The Opportunity 3

2. Overview of the WEBKB System 5

3. Problem Formulation 8

4. Experimental Testbed 10

5. Learning to Recognize Class Instances 11

5.1. Statistical Text Classification 11

5.1.1. Approach 12

5.1.2. Experimental Evaluation 14

5.2. First-Order Text Classification 20

5.2.1. Approach 20

5.2.2. Experimental Evaluation 21

5.3. Combining Learners 23

5.3.1. Approach . 23

5.3.2. Experimental Evaluation 23

5.4. Identifying Multi-Page Segments 25

5.4.1. Approach 26

5.4.2. Experimental Evaluation ; 27

5.5. Section Summary 27

6. Learning to Recognize Relation Instances 28

6.1. Problem Representation 28

6.2. Learning Methods 29

6.3. Experimental Evaluation 31

7. Learning to Extract Text Fields 33

1

7.1. Approach 33

7.2. Experimental Evaluation . 35

8. Related Work 36

8.1. Document Classification 36

8.2. Information Extraction 37

8.3. Extracting Semantic Information from Hypertext 38

8.4. Extracting Knowledge Bases from the Web 38

8.5. Web Agents 39

9. Conclusions and Future Work 40

A Obtaining More Evenly Distributed Scores from Naive Bayes 43

1. The Opportunity

The rise of the World Wide Web has made it possible for your workstation to retrieve over
200,000,000 Web pages for your personal perusal. The Web has already become one of the
largest and most diverse sources of information on the planet, and many expect it to grow
into the world's primary knowledge resource over the next decade.

The research described here is motivated by a simple observation: although your work-
station can currently retrieve over 200,000,000 Web pages, it currently understands none
of these Web pages. The goal of our WEBKB research project is to automatically create
a computer-understandable knowledge base whose content mirrors that of the World Wide
Web. Such a "World Wide Knowledge Base" would consist of computer understandable as-
sertions in symbolic, probabilistic form (e.g., Employed.By(MarkCraven, CarnegieMellonUniv),
Probability=.99). We expect such a world wide knowledge base would have many uses. At
a minimum, it would allow much more effective information retrieval by supporting queries
such as "find all universities within 20 miles of Pittsburgh that offer evening courses on
Java programming." Going a step further, it would enable new uses of the Web to support
knowledge-based inference and problem solving. For example, it would provide the knowl-
edge base needed by a software travel agent that might handle requests such as "make me
hotel and flight arrangements for the upcoming ACM conference." Notice that information
about the ACM conference, nearby hotels, and flights is already available in human-readable
form, spread across multiple text pages on the Web. A knowledge base that makes this in-
formation computer-understandable would support a variety of intelligent knowledge-based

agents.

How might we construct and maintain such a world wide knowledge base? The thesis
explored in this paper is that one can develop such a knowledge base by (1) using machine
learning to create information extraction methods for each of the desired types of knowl-
edge, then (2) applying these learned information extraction methods to extract symbolic,
probabilistic statements directly from Web hypertext. Each assertion in the knowledge base
can therefore carry with it a justification, in terms of the Web sources and information
extraction method, that provide its evidential support. As the Web evolves over time, the
current validity of knowledge base facts can be tested by verifying their continued evidential
support.

This paper explores the above thesis by proposing and evaluating several learning algo-
rithms relevant to this information extraction task, and by presenting the prototype WE-

BKB system which has successfully built up a knowledge base containing several thousand
assertions about computer science departments using these learned information extractors.

We begin by briefly surveying the capabilities of the WEBKB system in the next section.
The subsequent section considers in detail the representational assumptions underlying our
approach. The remaining sections present our experimental testbed, several learning algo-
rithms and experimental results for the various information extraction tasks, related work,
and conclusions.

Ontology: Entity
Name:
Home. Page:
Home.Page.Title:

Other Activity

Research.Project
Members.Of.Project:
Pls.Of:

Course
Instructors.Of:
TAs.Of:

Person
Department.Of:
Projects.Of:
Courses.Taught.By:
Name.Of:

Department
Members.Of.Department:

Faculty
Projects.Led.By:
Students.Of:

Student
Advisors .Of:
Courses.TAed.By:

KB Instances:

("Fundamentals of CS Home Page

I
Instructors.Of: Jim, Tom
Home.Page: .

\
\
\
\
\
\

Web Pages:

ijim

Research: WebWatcher Project
! Courses.Taught.By: Fund, of CS,...

Home.Page: »

\
\
\
\

\

Fundamentals of CS Home Page Jim's Home Page

I teach several courses:
- Fundamentals of CS. AI,..

My research includes

Intelligent web agents

Human computermteraction termteractic

\

Figure 1: The inputs and outputs of the WEB KB system. The top part of the figure shows an ontology that
defines the classes and relations of interest. The bottom part shows two Web pages identified as training
examples of the classes Course and Faculty. Together,these two pages also constitute a training example for
the relations Instructors.Of and Courses.Taught.By. Given the ontology and a set of training data, WEBKB

learns to interpret additional Web pages and hyperlinks to add new instances to the knowledge base, such
as those shown in the middle of the figure.

2. Overview of the WEBKB System

The WEBKB system is first trained to extract information of the desired types, and is then
allowed to browse new Web sites in order to automatically populate a knowledge base with
new assertions. When training this system, the user must provide two inputs:

1. A specification of the classes and relations of interest. This is the ontology that defines
the vocabulary for the target knowledge base. An example of such an ontology is
provided in the top half of Figure 1. This particular ontology defines a hierarchy of
classes including Person, Student, Research.Project, Course, etc. It also defines relations

between these classes such as Advisors.Of (which relates an instance of a Student to
the instances of Faculty who are the advisors of the given student). This ontology
constitutes the initial version of the knowledge base.

2. Training examples that describe instances of the ontology classes and relations. For
example, the two Web pages shown at the bottom of Figure 1 represent instances
of Course and Faculty classes. Furthermore, this pair of pages represents an instance
of the relation Courses.Taught.By (i.e., the Courses.Taught.By Jim includes Fundamen-
tals.of.CS).

Given such an ontology and a set of training examples, the WEBKB system learns general
procedures for extracting new instances of these classes and relations from the Web. In
the current prototype, this is accomplished by learning to classify arbitrary Web pages
and hyperlink paths according to the classes and relations defined by the ontology. When
exploring the Web, the WEBKB system starts from a given input URL and explores pages
using a breadth-first search to follow links. Each explored page is examined, using learned
class descriptions, to see if it represents a member of one of the ontology classes. If a page
is a class member, an entity representing that page is placed into the knowledge base, and
the ontology relations for that page are instantiated based on learned rules and the known
local structure of the Web. If a page is not a class member, the search is truncated, and
links from this page are not followed.

In one such crawling experiment the system was given a training set of approximately
8,000 Web pages and 1,400 Web-page pairs taken from the computer science department Web
sites at four universities (Cornell, University of Texas at Austin, University of Washington,
and University of Wisconsin). These training examples were hand labeled according to the
ontology shown in Figure 1. The system was then allowed to explore the Web site of a fifth
computer science department (at Carnegie Mellon University), and to add new knowledge
base entries based on information extracted from this new Web site.

Two new instances added by the system to its knowledge base, as a result of browsing this
new university Web site, are shown in Figure 2. The top instance describes a new Faculty
added to the knowledge base, as a result of examining a Web page that the system classified
into this category. As a result, the system created the new faculty instance in the knowledge
base, and extracted several relations involving this instance. For example, it determined (cor-
rectly) the Name of this faculty member, a course taught by the faculty member, and three

(*DAVID-GARLAN*

(GENERALIZATIONS (FACULTY))

(NAME "David Garlan")

(COURSES.TAUGHT.BY (*CMU-CS-15-675-ARCHITECTURES-0F-S0FTWARE-SYSTEMS*))

(PROJECTS.OF (»ARCHITECTURAL-MISMATCH*

CMU-CS-COMPOSABLE-SOFTWARE-SYSTEMS-HOME-PAGE *ABLE-PROJECT*))

(DEPARTMENT.OF (*SCHOOL-OF-COMPUTER-SCIENCE-LOCAL-PAGE*))

(HOME.PAGE "http://www.cs.emu.edu/afs/cs.emu.edu/user/garlan/www/home.html"))

(♦ABLE-PROJECT*

(GENERALIZATIONS (RESEARCH.PROJECT))

(MEMBERS.OF.PROJECT (+BRIDGET-SPITZNAGEL* *DAVID-GARLAN* *RALPH-MELTON*

HEATHER-RICHTER))

(HOME.PAGE "http://www.cs.emu.edu/afs/cs.emu.edu/project/able/www/index.html"))

Figure 2: Two of the entities automatically extracted from the CMU computer science department Web site
after training on four other university computer science sites. These entities are added as new instances of
Faculty and Project to the knowledge base shown in Figure 1.

Student Faculty Person Research.Project Course Department Overall
Extracted
Correct

180
130

66
28

246
194

99
72

28
25

1
1

620
450

Accuracy 72% 42% 79% 73% 89% 100% 73%

Table 1: Class instance recognition accuracy when exploring CMU computer science department Web site,
after training on computer science department at four other universities.

instances of the Projects.Of relation for this faculty member: *ARCHITECTURAL-MISMATCH*,

CMU-CS-CGMP0SABLE-S0FTWARE-SYSTEMS-H0ME-PAGE, and *ABLE-PROJECT*. These three
projects are themselves instances of the Research.Project class, extracted from other Web
pages. The description of one of these, the *ABLE-PR0 JECT*, is shown at the bottom of the
figure.

How accurate is the system in extracting such information? In this experiment, the system
visited 2722 Web pages at the new Carnegie Mellon site, and as a result added 374 new class
instances to its knowledge base. The fraction of correctly extracted instances is summarized
in Table 1. For example, this table indicates that the system created 28 new knowledge base
instances of the class Course. Of these 28 new instances, 25 in fact represented courses and
the other 3 did not. Its accuracy in extracting relation instances is summarized in a similar
fashion in Table 2. Note that since we don't have a labelling for all the pages and relations
at Carnegie Mellon, we have no way of calculating coverage results for these tasks.

Figure 3 shows the information displayed by the system as it browses. Note this display
shows the Web page that is currently being visited (top right), and the information extracted
by the system from this Web page (middle left). The interface also contains a control panel

9AttXdB#*AÄA* tt^ttlftlf K«t ■ £^0&tMttM&0i flMMhAAMjlijiiiA - 111
Edit Vtew Go Bookmarks Options Directory Window Help

6«eK ! I Honei R«lo*d i
*°i a t -^ • a t w

{ Open i Flint ; Fmd
iol

Stop

What's Hew?) What's Cool?- Uestwalions Net Sparch I■eiiplp Sultw;in>

Command: ;Contjniie |Baek |Su?p {Quit

StntKB? Vf«# w>|jätt|>»/j'vww.e#.<s»iu,ecfu/ftKa>tD<5o

GOTO WO.;

—.j ■

me Hakte htcn:ffw<g,eB,C

a«s«tfä^ *s FACÖLTY with seers -0.1097^24

Stti<5ter*fcs found«
Faculty fcAinas 2
Courses found: 0
3te»3eßt«' tounä* 0

Avrim L. Blum
Associate Professor of Computer Science

Department of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213-3891
avrim@cs.aini.edif

Office: Wean 4107
Tel: (412) 2S8-6452
Fax: (412)268-5576

My mean res earch interests are machine learning theory,
approximation algorithms, and on-line algorithms. I also am
worldng onOraphplan . a graph-algorithmbasedplannerfor
STRIPS-like domains. I was recently program committee co-chair
for COLT '96 (the Ninth Annual Conference on Computational
L earning Theory), and on the pro gram c ommittee for SODA '97
(the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms).

M
Hierarchy curroundiiig U.ENTTTY

a •
DEFAHXMEOT

» *€MU-SCHSOL-OF-CQMPX3TER-l

• FACULTY

POST.DOC

• «HEIL-HEFFERMAN
• *COUG-B5EFERMAtJ

»CPUS
frwTMTY

*:

Figure 3: The Web interface to the WEB KB system. The upper left pane serves as a control panel. The
middle left pane describes the current activity of the WEB KB system, and the lower left panes summarizes
the session. The upper right pane shows the page currently being processed, and the lower right pane
provides a mechanism for browsing the extracted knowledge base.

Instructors.Of Members.Of. Project Department.Of Overall
Extracted
Correct

23
18

125
92

213
181

361
291

Accuracy 78% 74% 85% 81%

Table 2: Relation instance recognition accuracy when exploring CMU computer science department Web
site, after training on computer science department at four other universities.

that allows the user to interact with the system (top left), and to browse the growing
knowledge base (bottom right).

3. Problem Formulation

As summarized in the previous section, the WEBKB system provides experimental support
for our thesis that a system can be trained to automatically populate a knowledge base by
browsing Web hypertext. Later sections describe in detail the learning algorithms used by
this WEBKB system. In this section, we consider the precise problem formulation and the
representational assumptions that underlie our current approach.

To summarize, we are interested in the following general problem:

Given:

- an ontology that defines the classes (e.g., Person) and relations (e.g., Instructor.Of)
of interest,

- training examples from the Web that describe instances of these classes and rela-
tions.

Determine:

- general procedures capable of extracting additional instances of these classes and
relations by browsing the rest of the Web.

Note that we do not necessarily extract new instances for all of the classes and relations
in the ontology. For example, our ontology may have a class Country along with instances
for all of the countries in the world. In this case, since we already know all instances, we do
not need to learn procedures to recognize new ones.

To pursue the problem of learning to extract instances from the Web, we must make some
assumptions about the types of knowledge to be extracted from the Web, and the way in
which this knowledge is represented in hypertext on the Web. These assumption are:

• Assumptions about how class instances are described on the Web. We assume that
each instance of an ontology class is represented by one or more contiguous segments
of hypertext on the Web. By "contiguous segment of hypertext" we mean either a
single Web page, or a contiguous string of text within a Web page, or a collection of
several Web pages interconnected by hyperlinks. For example, an instance of a Person
might be described by a single page (the person's home page), or by a reference to
the person in a string of text within an arbitrary Web page, or by a collection of
interconnected Web pages that jointly describe the person.

• Assumptions about how relation instances are described on the Web. Consider an ar-
bitrary instance R(A,B) of a relation R. We assume that each instance of a relation
is represented on the Web in one of three ways. First, the instance R(A,B) may be
represented by a segment of hypertext that connects the segment representing A to
the segment representing B. For example, the bottom of Figure 1 shows two hyperlinks
that connect the segment representing Jim with the segment representing Fundamen-
tals.of.CS. These hyperlinks represent the relation Instructor.Of(Fundamentals.of.CS,
Jim). Second, the instance R(A,B) may alternatively be represented by a contiguous
segment of text representing A that contains the segment that represents B. For exam-
ple, the relation instance Research.Of(Jim, Human.Computer.Interaction) is represented
in Figure 1 by the fact that Jim's home page contains the phrase "Human computer in-
teraction" in a particular context. Finally, the instance R(A,B) may be represented by
the fact that the hypertext segment for A satisfies some learned model for relatedness
to B. For example, we might extract the instance Research.Of(Jim,Artificial.Intelligence)
by classifying Jim's page using a statistical model of the words typically found in pages
describing AI research.

In addition to these assumptions about the mapping between Web hypertext and the
ontology, we make several simplifying assumptions in our initial research reported in this
paper. We plan to relax the following assumptions in the future as our research progresses.

• We assume in this paper that each class instance is represented by a single Web page
(e.g., a person is represented by their home page). If an instance happens to be
described by multiple pages (e.g., if a person is described by their home page plus a
collection of neighboring pages describing their publications, hobbies, etc.), our current
system is trained to classify only the primary home page as the description of the
person, and to ignore the neighboring affiliated pages. Alternatively, if an instance
happens to be described by a text fragment, our system does not currently create a
knowledge base instance for this. It does, however, extract certain relation values from
such text fragments (e.g., the Name of the person, as illustrated in Figure 1).

• We assume that each class instance is represented by a single contiguous segment of
hypertext. In other words, if the system encounters two non-contiguous Web pages
that represent instances of the same class, it creates two distinct instances of this
class in its knowledge base. While this assumption will often be satisfied (e.g., two
distinct personal home pages typically represent two distinct people), there are clearly

9

•

exceptions (e.g., there are many different Web pages describing Elvis). Overcoming this
"multiple Elvis problem" will require methods that hypothesize equivalences between
independently discovered instances.

We assume that all relations are two-place relations; that is,'each relation has only two
arguments. We believe that it will be fairly easy to relax this assumption.

Given this problem definition and our current set of assumptions, we view the following
as the three primary learning tasks that are involved in extracting knowledge-base instances
from the Web:

1. Recognizing class instances by classifying bodies of hypertext. Section 5 looks at this

problem, using both statistical and relational learning techniques. It also examines
how to relax our assumption about class instances being represented by single Web
pages.

2. Recognizing relation instances by classifying chains of hyperlinks. Section 6 investi-
gates a relational learning solution to this problem.

3. Recognizing class and relation instances by extracting small fields of text from Web
pages. Section 7 looks at this task and also uses a relational learning approach.

4. Experimental Testbed

All experiments reported in this paper are based on the ontology for computer science
departments shown in Figure 1. This ontology includes the classes Department, Faculty,
Staff, Student, Research.Project, and Course. Our Web page classification experiments also
use the class Other as the label for Web pages that fall into none of these ontology classes.
Each ontology class has an associated set of slots, or relations, that exist among instances
of this class and other class instances in the ontology. For example, the Course class has a
slot called Instructors.Of that relates courses to people.

We assembled two data sets1 for the experiments reported here. The first is a set of
pages and hyperlinks drawn from four CS departments: University of Texas at Austin,
Cornell University, University of Washington, and University of Wisconsin. The second is a
set of pages from numerous other computer science departments. The four-department set
includes 4,127 pages and 10,945 hyperlinks interconnecting them. The second set includes
4,120 additional pages. The pages for most of the classes in our data set were collected
using "index" pages for our classes of interest (e.g., a page that has hyperlinks to all of the
students in a department), so labeling this data was straightforward. After gathering this
initial set of pages, we then collected every page that was both (i) pointed to by a hyperlink

1 These data sets are publicly available at http: //www. cs. emu. edu/af s/cs . emu. edu/project/theo-20/
www/data/.

10

in the initial set, and (ii) from the same university as the page pointing to it. Most of the
pages gathered in the second step were labeled as Other.

In addition to labeling pages, we also hand-labeled relation instances. Each of these
relation instances consists of a pair of pages corresponding to the class instances involved
in the relation. For example, an instance of the Instructors.Of relation consists of a Course
home page and a Person home page. Our data set of relation instances comprises 251
Instructors.Of instances, 392 Members.Of.Project instances, and 748 Members.Of.Department
instances. These instances are all from the four-department set.

Finally, we also labeled the name of the owner of pages in the Person class. This was
done automatically by tagging any text fragment in the person's home page that matched the
name as it appeared in the hyperlink pointing to the page from the index page. The matching
heuristics were conservative, favoring precision over recall. Consequently, we believe that,
although some name occurrences were missed, there were no false positives. From 174 Person
pages, this procedure yielded 525 distinct name occurrences. These instances are all from

the four-department set as well.

For all of the subsequent experiments in this paper, we use a four-fold cross-validation
methodology to evaluate our algorithms. We conduct four runs in which we train classifiers
using data from three of the universities in our data set (plus the second set of pages where
applicable), and test the classifiers using data from the remaining university. On each
iteration we hold out a different university for the test set.

5. Learning to Recognize Class Instances

The first task for our system is to identify new instances of ontology classes from the text
sources on the Web. In this section we address the case in which class instances are repre-
sented by Web pages; for example, a given instance of the Student class is represented by
the student's home page.

In the first part of this section we discuss a statistical bag-of-words approach to classi-
fying Web pages. We use this method along with three different representations of pages.
In the second part of this section we discuss learning first-order rules to classify Web pages.
This approach is appealing in that first-order rules can describe page classes using a rich de-
scription of the local graph structure around the page. Finally, we evaluate the effectiveness
of combining the predictions made by all four of these classifiers.

5.1. Statistical Text Classification

In this section we consider classifying Web pages using statistical methods. Our approach
is similar to a growing body of work in text classification that involves using a so-called bag

of words or unigram representation. However, we apply our method in novel ways that take
advantage of the redundancy of hypertext. Specifically, we train three independent classifiers

11

which use different representations for page classification:

• Full-Text: the words that occur anywhere in the page,

• Title/Heading: the words that occur in the title and HTML headings of the page,

• Hyperlink: the words that occur in hyperlinks (i.e., the words in the anchor text) that
point to the page.

5.1.1. Approach

Our approach involves building a probabilistic model of each class using labeled training
data, and then classifying newly seen pages by selecting the class that is most probable
given the evidence of words describing the new page.

The method that we use for classifying Web pages is naive Bayes, with minor modifications
based on Kullback-Leibler Divergence. Given a document d to classify, we calculate a score
for each class c as follows:

t'=l

where n is the number of words in d, T is the size of the vocabulary, and w{ is the tth word
in the vocabulary. Pr(wi\c) thus represents the probability of drawing to,- given a document
from class c, and Pr(wi\d) represents the frequency of occurrence of w{ in document d. The
class predicted by the method for a given document is simply the class with the greatest
score. This method makes exactly the same classifications as Naive Bayes, but produces
classification scores that are less extreme. Below we explain naive Bayes; in Appendix 1 we
detail our modifications to it.

Naive Bayes

The probabilistic models we use ignore the sequence in which the words occur. These
models are often called unigram or bag-of-words models because they are based on statistics
about single words in isolation.

Since the unigram model naively assumes that the presence of each word in a document
is conditionally independent of all other words in the the document given its class, this
approach, when used with Bayes Rule is often called Naive Bayes. The independence as-
sumption is clearly false, and it produces obviously incorrect class-membership probabilities.
However, it is often the case that even when the assumption does not hold and Naive Bayes
produces inaccurate probability estimates, it still is able to classify test examples with high
accuracy [17].

There are two common approaches to naive Bayes text classification. One, the multi-

variate Bernoulli model, is a Bayesian Network with no dependencies between words and
binary word counts; the document is considered to be the "event" and the words are features

12

ofthat event. The other approach, the multinomial model, is a unigram language model with
integer word counts; the words are considered to "events" and the document is comprised
of a collection of these events. We use the second approach, since it has been found to
out-perform the first on several data sets [41].

We formulate Naive Bayes for text classification as follows. Given a set of classes C =
{ci,...C|c|} and a document consisting of n words, (wi,W2,...wn), we classify the document
as a member of the class, c, that is most probable, given the words in the document:

c = argmaxcPr(c|tüi,...,t(;n). (2)

We transform Pr(c|ii»i,..., wn) into a computable expression by repeatedly applying Bayes
Rule to the individual words in Pr(C|wi, ...,wn) (Eq. 3) and assuming that words are inde-
pendent of each other (Eq. 4). We also drop the denominator (Eq. 5), since this term is a

constant across all classes.

Pr {c\w1,...,wn) = Pre)].].—-—; r~ (3)

" Pr(iu,-|c) ,.,
-

Pr(c)Il p / \ (4)
t=\ Pr(tö.O
n

oc Pr(c)nPrKlc) (5)

The modifications that transform this traditional formulation of naive Bayes into the form
we use (shown in Equation 1) are described in Appendix 1.

Estimating Word Probabilities

A key step in implementing Naive Bayes is estimating the word probabilities, Pr(to,-|c). To
make our probability estimates more robust with respect to infrequently encountered words,
we use a smoothing method to modify the probabilities that would have been obtained
by simple event counting. One important effect of smoothing is that it avoids assigning
probability values of zero to words that do not occur in the training data for a particular
class. Since Naive Bayes involves taking a product of word probabilities, a single zero for
a class would prevent that class from being the maximum even if there are many other
words that strongly indicate that class. Rather than smoothing with the common Laplace
Estimates (i.e., adding one to all the word counts for a class), we use Witten-Bell smoothing
[62], which we have found to perform better on several data sets. Witten-Bell sets Pr(to,-|C)
as follows:

Pr(iü,-|c)

where AT(iw,-,c) is the count of the number of times word Wi occurs in the training data for

13

class c, Tc is the total number of unique words in class c, and T is the total number of unique
words across all classes.

Feature Selection

Another important implementation issue is deciding upon the vocabulary size to be used
for the problem domain. We have found empirically that we get slightly more accurate
classifications when using a restricted vocabulary size. Thus we limit our vocabulary to
2000 words in all of our experiments. The vocabulary is selected by ranking words according
to their average mutual information with respect to the class labels. We write W{ for a
random variable indicating whether word to,- is present or absent in a document, and write
v{ € {wu ^Wi} for the values it takes on. We write C for a random variable taking values of
all the class labels, c <E C. Then, average mutual information is

I(C;Wi) = H{C)-H{C\Wi) (7)

= -EPr(c)log(Pr(c)) (8)
cec

-- E Pr(ü8)EP^k)log(Pr(cK)) (9)

E Erlieg f^f.) (io)

lves This feature selection method has been found to perform best among several alternat
[63], and has been used in many text classification studies [25, 29, 30, 45, 40].

5.1.2. Experimental Evaluation

We evaluate our method using the cross-validation methodology described in Section 4.
On each iteration of the cross-validation run, we train a classifier for each of the page repre-
sentations described at the beginning of this section: full-Text, title/heading, and hyperlink.
Table 3 shows the resulting confusion matrix (summed over the four test sets) for the full-
text classifiers. Each column of the matrix represents one class and shows how the instances
of this class are classified. Each row represents the instances that are predicted to belong
to a given class, and shows the true classes of these instances. This table illustrates several
interesting results. First, note that for most classes, our classifiers are quite accurate. For
example, 83% of the Course and 77% of the Faculty instances are correctly classified. The
notable exception to this trend is the Other class; only 35% of the instances belonging to this
class are correctly classified. We discuss this result in more detail below. A second interest-
ing result is that many of the remaining mistakes made by the classifiers involve confusing
different subclasses of Person. For example, although only 9% of the Staff instances are
correctly assigned to the Staff category, 80% of them are correctly classified into the more
general class of Person. As this result suggests, not all mistakes are equally harmful; even
when we fail to correctly classify an instance into one of the leaf classes in our ontology, we

14

Actual

in
V-

3
o
u

c
<U

-o
3

to

3
U 5= re

4-J
to

4-> o <u
"Ö*
CL
.c u
k.

V
10
0)

4-> c
E

Q.
V

a
4-> o

Predicted Accuracy

Course 202 17 0 0 1 0 552 26.2

Student 0 421 14 17 2 0 519 43.3

Faculty 5 56 118 16 3 0 264 17.9

Staff 0 15 1 4 0 0 45 6.2

Research.Project 8 9 10 5 62 0 384 13.0

Department 10 8 3 1 5 4 209 1.7
Other 19 32 7 3 12 0 1064 93.6

Coverage 82.8 75.4 77.1 8.7 72.9 100.0 35.0

Table 3: A confusion matrix showing full-text classification results combined across all of the four-university
test runs. The overall coverage and accuracy are also shown.

can still make many correct inferences about the instance if we correctly assign it to a more

general class.

The low level of classification accuracy for the Other class is largely explained by the
nature of this class. Recall from Section 4 that the instances of this class were collected by
gathering pages that were one hyperlink away from the instances in the other six classes. For
this reason, many of the instances of the Other class have content, and hence word statistics,
very similar to instances in one of the "core" classes. For example, whereas the home page
for a course will belong to the Course class, "secondary" pages for the course, such as a page
describing reading assignments, will belong to the Other class. Although the content of many
of the pages in the Other class might suggest that they properly belong in one of the core
classes, our motivation for not including them in these classes is the following. When our
system is browsing the Web and adding new instances to the knowledge base, we want to
ensure that we do not add multiple instances that correspond to the same real-world object.
For example, we should not add two new instances to the knowledge base when we encounter
a course home page and its secondary page listing the reading assignments. Because of this
requirement, we have framed our page classification task as one of correctly recognizing the
"primary" pages for the classes of interest. As Table 3 indicates, this is a very difficult task,
but as we will show shortly, by combining several sources of evidence for each page, it is one

we can perform with high accuracy.

One way to obtain insight into the learned classifiers is to ask which words contribute
most highly to the quantity Scorec(d) for each class. To measure this, we used one of our

15

Student

my 0.0247
page 0.0109
home 0.0104
am 0.0085
university 0.0061
computer 0.0060
science 0.0059
me 0.0058
at 0.0049
here 0.0046

Faculty Staff

Course

course 0.0151
DD.DD 0.0130
homework 0.0106
will 0.0088
D 0.0080
assignments 0.0079
class 0.0073
hours 0.0059
assignment 0.0058
due 0.0058

DDDD 0.0138
of 0.0113
and 0.0109
professor 0.0088
computer 0.0073
research 0.0060
science 0.0057
university 0.0049
DDD 0.0042
systems 0.0042

Research. Project

group 0.0060
project 0.0049
research 0.0049
of 0.0030
laboratory 0.0029
systems 0.0028
and 0.0027
our 0.0026
system 0.0024
projects 0.0020

rice 0.0023
scout 0.0018
my 0.0016
Columbia 0.0015
sekine 0.0013
satoshi 0.0012
liebrock 0.0009
watanabe 0.0007
Saskatchewan 0.0007
me 0.0007

Department

department 0.0179
science 0.0153
computer 0.0111
faculty 0.0070
information 0.0069
undergraduate 0.0058
graduate 0.0047
staff 0.0045
server 0.0042
courses 0.0042

Other

D 0.0374
DD 0.0246
the 0.0153
eros 0.0010
hplay£> 0.0097
uDDb 0.0067
to 0.0064
bluto 0.0052
gt 0.0050
that 0.0043

Table 4: The top ten most highly weighted words. For each class, the table shows the ten words that are
most highly weighted by one of our learned full-text models. The weights shown represent the weighted
log-odds ratio of the words given the class. The symbol D is used to represent an arbitrary digit. For
example, the top word shown for the Faculty class, DDDD, represents any four-digit token (such as that
occurring in a phone number).

16

training sets to calculate

PrMcJlogf^Ä) (11)

for each word Wi and class c. Figure 4 shows the ten words for each class that have the
greatest value of this weighted log-odds ratio. As the table illustrates, most of the highly
weighted words are intuitively prototypical for their class. The exceptions to this general-
ization are mostly from the Staff class, for which there is little training data, and the Other

class, which represents an extremely diverse set of pages.

Another interesting result illustrated by this table is that many words which are conven-
tionally included in stop lists

2
 are highly weighted by our models. For example, the words

my, me, and am are typical stop-list words but they are among the top ten words for the
Student class. Although these are common words, they are clearly predictive of the Student
class since first-person pronouns and verb conjugations do not appear frequently on pages
in the other classes. This result suggests that it is advantageous to select a vocabulary in a
domain specific way (as we did using mutual information), instead of using a general purpose

stop list.

One approach to improving classification accuracy is to limit the predictions made by the
classifiers to just those predictions in which they are most confident. This is easily achieved
with our method because the quantity Scorec(d) calculated when classifying a page can be
taken as a measure of the confidence in the classification. By setting a minimum threshold
on this confidence, we can select a point that sacrifices some coverage in order to obtain
increased accuracy. Given our goal of automatically extracting knowledge base information
from the Web, it is desirable to begin with a high-accuracy classifier, even if we need to limit
coverage to only 10% of the 200,000,000 pages available on the Web.

The effect of trading off coverage for accuracy using our full-text classifiers is shown in
Figure 4. The horizontal axis on this plot represents coverage: the percentage of pages for a
given class that are correctly classified as belonging to the class. The vertical axis represents
accuracy: the percentage of pages classified into a given class that are actually members of
that class. To understand these results, consider, for example, the class Student. As the
results in Table 3 show, when the classifiers predict that a page belongs to the Student class
they are correct 43% of the time. The rightmost point on the Student curve in the Table 4
corresponds to this point. As we raise the confidence threshold for this class, however, the
accuracy of our predictions rises. For example, at a coverage of 20%, accuracy reaches a

level of 67%.

So far, we have discussed the results only for the full-text classifiers. Figures 5 and 6 show
the accuracy/coverage curves for the hyperlink and title/heading classifiers, respectively. As
before, these curves show the aggregate results for all four test sets in our cross-validation

run.

■
2 A stop list is a set of words that are removed from documents before they are processed by an information-

retrieval or text-classification system. There are standard stop lists which include words generally thought
to convey little information about the document topic.

17

ü
3

100%

80%

60%

40%

20%

Course -*-
Student -+-
Faculty -Q-

Research. Project ••■*
Department -*-

Staff -*-

40% 60%
Coverage

80% 100%

Figure 4: Accuracy/coverage tradeoff for full-text classifiers. Predictions within each class are ordered
according to their confidence. Each curve shows the behavior of the classifier as a threshold on this confidence
is varied. The z-axis represents the percentage of pages for a given class that are correctly classified
belonging to the class. The j/-axis represents the percentage of pages assigned to a given class that
actually members of that class.

as
are

100% f

80%

>>

o
3

60%

40%

20%

Q..\ .-'

0%

Course -»-
Student -+-■

Faculty -a-
Research.Project ■■■*

Department -*-
Staff -*■-

20% 40% 60%
Coverage

80% 100%

Figure 5: Accuracy /coverage tradeoff for hyperlink classifiers.

18

>>
i
3
U

uuyo 1 1 1 1

Course -»—
,_. Student -+—

1
Faculty -a-—

Research.Project •■•*
80% Department -*—-

Staff -*-
Q

 K
""+*;

"'>H H—
60%

""I— -*-—+.
&... —*--*..
 ji.-.^....-.-.A "-+-^_

B- ^- -B- —Q.

40% : L K. \ "El.. *
\ \ "B,

'■■*» o n n " ^^—fi ,. i—0 ^ v - v -$t^

* x... \ ia
"X -X \

20% x \ -x. s
x \ \

*\
\

; < 1 1 1 1 1

0% 20% 40% 60%
Coverage

80% 100%

Figure 6: Accuracy/coverage tradeoff for title/heading classifiers.

As we discussed earlier, one of the aspects that distinguishes learning in hypertext from
learning in flat-text domains is that hypertext provides multiple, somewhat independent
sources of evidence for the meaning of a given piece of text. As we hypothesized, the
results in Figures 5 and 6 indicate that these multiple sources of evidence can be potentially
exploited to make better predictions.

Consider, for example, the accuracy of the Department predictions made by the hyperlink
classifiers. Whereas the full-text classifiers are only 9% accurate at full coverage, the hy-
perlink classifiers are 57% accurate. Moreover, the Department accuracy/coverage curve for
the hyperlink classifiers is uniformly superior to the curve for the full-text classifiers. The
reason for this difference in accuracy is that although our data set includes few Department
pages from which to generalize, it includes many hyperlinks that point to Department pages.
Thus the hyperlink classifiers have relatively large samples of data from which to learn the
word statistics of hyperlinks that point to Department pages, and similarly they have a fairly
large number of hyperlinks on which to base their prediction when classifying a page after
training.

The title/heading classifiers also illustrate cases in which using a hypertext-based repre-
sentation for page classification can result in better predictive accuracy than simply using
a flat-text representation. The title/heading classifiers' curve for both the Faculty and Re-
search.Project classes, for example, are better than the corresponding curves for the full-text
classifiers at coverage levels of 40% and less. One explanation for this result is that titles and
headings provide something of a summary of a given page and thus tend to contain words

that are highly predictive of the page's class.

19

5.2. First-Order Text Classification

As noted previously, the hypertext structure of the Web can be thought of as a graph in
which Web pages are the nodes of the graph and hyperlinks are the edges. The methods
for classifying Web pages that we discussed in the previous sections consider the words in
either a single node of the graph or in a set of edges impinging on the same node. However,
these methods do not allow us to learn models that take into account such features as the
pattern of connectivity around a given page, or the words occurring in neighboring pages.
It might be profitable to learn, for example, a rule of the form "A page is a Course home
page if it contains the words textbook and TA and is linked to a page that contains the
word assignment." Rules of this type, that are able to represent general characteristics of a
graph, require a first-order representation. In this section, we consider the task of learning
to classify pages using a learner that is able to induce first-order rules.

5.2.1. Approach

The learning algorithm that we use in this section is Quinlan's FOIL algorithm [49, 50]. FOIL
is a greedy covering algorithm for learning function-free Horn clauses3. FOIL induces each
Horn clause by beginning with an empty tail and using a hill-climbing search to add literals
to the tail until the clause covers only (mostly) positive instances. The evaluation function
used for the hill-climbing search is an information-theoretic measure.

The representation we provide to the learning algorithm consists of the following back-
ground relations:

• has_worc?(Page): This set of relations indicate which words occur in which pages. Each
boolean relation indicates the pages in which the word word occurs. The vocabulary
for this set includes stemmed4 words that have at least 200 occurrences but that do
not occur in more than 30% of the training-set pages. These two constraints were
selected with the intention of assembling a vocabulary of reasonable size that would
likely include the words with the most discrimination power. We had between 592 and
729 of these predicates in each of the cross-validation runs.

link_to(Page, Page): This relation represents the hyperlinks that interconnect the pages
in the data set.

•

We apply FOIL to learn a separate set of clauses for six of the seven classes considered in
the previous section5. We do not learn a description of the Other class, but instead treat it
as a default class.

3We use the terms clause and rule interchangeably

4
Stemming refers to the process of heuristically reducing words to their root form. For example the words

compute, computers and computing would be stemmed to the root comput.

5There is a vefsion of FOIL specifically designed for multi-class problems such as ours. We found, however,
that the inductive bias of this version is not well suited to our particular task.

20

When classifying test instances, we calculate an associated measure of confidence along
with each prediction. We calculate these confidence values for two reasons. First, we use
them to resolve conflicting predictions from our six independently learned rule sets. Second,
we are interested in measuring how the accuracy of our learned rule sets varies as we adjust

their coverage.

We use the following procedure to calculate the confidence of each of our predictions.
First, we estimate the error rate of each of our learned clauses by calculating an m-estimate
[12] (with m = 2) of the rule's error over the training examples. We then use these scores
to sort the clauses in order of descending accuracy.6 To integrate the predictions of our six
independently learned classifiers, we use the following procedure:

• If no classifier had a rule that matched the given page, then we predict Other with

confidence 1.0.

• If only one classifier had a matching rule, then we predict the associated class with con-
fidence corresponding to the rule's score. The Other class is predicted with confidence

of one minus this score.

• If more than one classifier has a matching rule for the given example, then we predict
each class with confidence equal to the score of its best matching rule divided by the
total number of classifiers that had matching rules. The Other class is predicted with
a confidence value that would make the total confidence sum to one.

5.2.2. Experimental Evaluation

For the experiments reported here, we used release 6.4 of FOIL with the default settings. As
with the experiments in Section 5.1, we use a four-fold cross-validation methodology. The
resulting accuracy/coverage plot for each class is shown in Figure 7. Comparing these results
to those in Figure 4, one can see that although the first-order rules generally provide lower
coverage than the statistical classifiers, they provide superior accuracy for several classes.

Figure 8 shows three of the rules7 learned by FOIL in its various cross-validation runs.
The learned rule for Course shown here illustrates the power of a first-order representation.
This rule classifies a page as the home page for a course if it passes three groups of tests:

1. The page has the word instructor, but doesn't have the word good.

6This change does not affect the classifications made by a learned set of clauses. It affects only our
confidence associated with each prediction.

7Throughout the paper, we use a Prolog-like syntax for learned rules. The symbol :- represents the
implication operator, with the head of the rule on the left side of the operator and the body on the right
side. Constants, such as the names of our ontology classes and relations, start with lowercase letters.
Variables start with uppercase letters.

21

ü
s
8
<

100%

80%

60%

40%

20%

Course -e—
Student -+—
Faculty -&—

Research.Project -■*
Department -*—

Staff -*-

0% 20% 40% 60%
Coverage

80% 100%

Figure 7: Accuracy/coverage tradeoff for FOIL page classifiers.

2. The page contains a hyperlink to a page which does not contain any hyperlinks to
other pages.

3. This linked page contains the word assign.

This rul can be summarized as follows:

Predict that a page is a Course home page if it has the word instructor and is
linked to a leaf page which talks about assignments.

The sample rule learned for the Student class comes from the cross-validation run leaving
pages from the University of Washington out of the training set. Notice that this rule
refers to a page (bound to the variable B) that has two common first names on it (paul and
jame, the stemmed version of james). This rule (and similar rules learned with the other
three training sets) illustrates that FOIL has learned to exploit "student directory" pages in
order to identify student home pages. For example, when Washington is the test set, all of
the correct applications of the rule bind B to a page entitled "Graduate Students at UW
CS&E". The Faculty rule will not classify a page as Faculty unless there is a page containing
the stemmed variant of Faculty that points into the given page.

All three of these rules show how Web-page classification is different from ordinary text
classification in that neighboring pages may provide strong evidence about the class of a
given page. Learning methods which can use this information effectively should perform
better than standard techniques in this domain.

22

student(A) :- not(has.cfafa(A)), not(has_commerc£(A)), link_to(B,A), has_j'ame(B), bas.paul(B), not(has_mcn7(B)).
Training Set: 147 Pos, 0 Neg; Test Set: 126 Pos, 5 Neg

faculty(A) :- has_pro/essor(A), has_p/?(A), link_to(B,A), has_/ac«W(B).
Training Set: 47 Pos, 0 Neg; Test Set: 18 Pos, 3 Neg

course(A) :- hasJnstructor(A), not(has_#oo<i(A)), link_to(A,B), not(link_to(B,_l)), has-assign(B).

Training Set: 31 Pos, 0 Neg; Test Set: 31 Pos, 3 Neg

Figure 8: A few of the rules learned by FOIL for classifying pages.

5.3. Combining Learners

The previous experiments show that the best representation for page classification depends
on the class. This observation suggests that it might be profitable to combine the predictions
made by our four classifiers. In this section, we describe and evaluate a simple approach to

this task.

5.3.1. Approach

The method that we employ for combining the predictions of our classifiers takes advantage
of the fact that each classifier produces a measure of confidence along with each prediction.
The method we use is a simple voting scheme that uses confidence values as tie-breakers.
That is, given the predictions made by our four classifiers for a given Web page, we predict
the class that has a plurality of the votes made by the individual classifiers, if there is one.
If no class has a plurality, then we select the class associated with the highest confidence
prediction.

In order to ensure that the confidence measures output by our different classifiers are
comparable, we calibrate each classifier by inducing a mapping from its output scores to the
probability of a prediction being correct. We do this by simply binning the scores produced
by each classifier for a given class, and then measuring the training-set accuracy of the scores
that fall into each bin.

5.3.2. Experimental Evaluation

Figure 9 shows the accuracy/coverage curves for the voting predictors. By comparing this
figure to the accuracy/coverage curves for the full-text classifiers shown in Figure 4 one can
see that, in general, more accurate predictions are achieved by considering evidence other
than full-text when classifying pages. At high levels of coverage, the voting classifiers are
more accurate than the full-text classifiers for the Course and Department classes. Addi-
tionally, the Research.Project predictions made by the voting classifier are significantly more
accurate than the full-text predictions, although the coverage attained by the voting classifier
is not as good.

23

i
I

100%

80%

60%

40%

20%

40% 60%
Coverage

100%

Figure 9: Accuracy/coverage tradeoff for combined classifiers with vocabulary size of 2000 words.

Although Figure 9 indicates that predictive accuracy is helped in some cases by com-
bining multiple classifiers, the results of this experiment are somewhat disappointing. The
accuracy/coverage curves for the voting classifiers are not uniformly better than the corre-
sponding curves of the constituent classifiers. Ideally, we would like the accuracy/coverage
curve for each class to be as good or better than the best counterpart curve among the
constituent classifiers.

We believe that the results shown in Figure 9 are disappointing because our method for
combining the predictions of multiple classifiers is overly simple. Specifically, we believe
that the method fails to accurately map classification scores to estimated accuracies, and
thus the combining function often does not "listen" to the right classifiers. Interestingly, we
have observed that the voting method performs much better when our statistical classifiers
are limited to very small vocabularies. Figure 10 shows the accuracy/coverage curves for
voting when we use statistical classifiers trained with a vocabulary size of 200 words. In
comparing this figure to our baseline full-text classifier (Figure 4), one can see that the
curves produced by the small-vocabulary voting method are generally superior to the full-text
classifier curves. Moreover, the small-vocabulary voting classifiers achieved this result using
constituent classifiers that were not as accurate as their 2000-word vocabulary counterparts.

In future work, we plan to train neural networks to perform the combining function. We
hypothesize that such a combining method will be better able to exploit the specialized areas
of expertise exhibited by our individual classifiers.

24

g
3
U
Ü
<

100%

80%

60%

40%

20%

Course -»-
Student -+-
Faculty ■•&•

Research.Project -■*
Department -*-

Staff -*■-

B- —Q-
..■B'\ --Ej.-H—-Q

0% 20% 40% 60%
Coverage

80% 100%

Figure 10: Accuracy/coverage tradeoff for combined classifiers with vocabulary size of 200 words.

5.4. Identifying Multi-Page Segments

As discussed in Section 3, our representational assumption is that each class instance in the
knowledge base corresponds to some contiguous segment of hypertext on the Web. This
allows, for example, that a particular student might be represented on the Web by a single
Web page, or by a cluster of interlinked Web pages centered around their home page.

In the experiments reported thus far, we have effectively made a simpler assumption: that
each instance is represented by a single Web page. In fact, in labeling our training data,
we encountered a variety of students (and instances of other ontology classes) that were
described by a several interlinked Web pages rather than a single page. In these cases we
hand labeled the primary home page as Student, and labeled any interlinked pages associated
with the same student as Other.

To remove this simplifying assumption we must develop methods for identifying sets of
interlinked pages that represent a single knowledge base instance. In this section we present
a set of hand-written heuristics that identify groups of related pages and also identify the
"primary" home page in the group. We show here that classification accuracy in the previous
sections is significantly improved when these heuristics are used to group pages and to
automatically assign the label Other to non-primary pages, to fit the assumption we made
while hand labeling the data.

25

5.4.1. Approach

Consider the Web pages of a prototypical faculty member. She has a main page (http:
//www.my.edu/user/jdoe/index.html), a page listing her publications (http://www.my.
edu/user/jdoe/pubs.html), and a page describing her research interests (http://www.
my.edu/user/jdoe/work/research.html). Our working assumption about entity-Web re-
lationships indicates that we should recognize that these pages correspond to a single entity,
identify the best representative page for that entity, classify that page as a Faculty, and clas-
sify the rest of the pages as Other. We accomplish this by solving two subtasks: grouping
related pages together, and identifying the most representative page of a group.

Spertus [60] identifies regularities in URL structure and naming, and presents several
heuristics for discovering page groupings and identifying representative home page. We use
a similar, slightly expanded, approach. In an ideal scenario, one could imagine trying to
learn these heuristics from examples. In the following experiment we have instead provided
these rules by hand.

The most obvious groupings that can be extracted from a URL are based on direc-
tory structure prefixes. Key directory components of a URL indicate a logical grouping of

Web pages into an entity. For example, given the URL http://www.my.edu/user/jdoe/
research.html, we can deduce the existence of an entity corresponding to the URL prefix
http: //www.my .edu/user/jdoe/, because the keyword /user/ in the penultimate directory
position typically indicates the presence of a person entity in the directory space denoted
by jdoe. Other typical penultimate prefix markers are /faculty/, /people/, /home/, and
/projects/. Three ultimate prefix markers (in UNIX-style globbing pattern) are /cs???/,
/www/ and /~*/, the first being a typical indicator of a course, and the last being a typi-
cal indicator of the username of a person or organization. Our algorithm groups URLs by
their longest directory prefix that matches one of these given patterns. In the event that no
pattern matches, the entire directory prefix is used for the grouping. In our example above,
the three URLs would each have the entity prefix as http://www.my.edu/user/jdoe/, and
thus would be grouped together.

Applying these grouping heuristics results in sets of Web pages that approximate a sin-
gle ontology entity. From these sets, we identify the single primary page that is most
representative of that entity. Usually this corresponds to the "home page" of the en-
tity. Thus, we take any page that has the filename pattern "index.html", "home.html",
"homepage.html", or "cs???.html" and label it the primary page. Additionally, any
page in which the complete URL is the directory prefix, (for example, the URL http:
//www.my.edu/user/jdoe/) or one in which the filename matches the directory above it
(as in http://www.my.edu/user/jdoe/jdoe.html) is also identified as a primary page. All
pages that do not match any of these patterns in a group, are classified automatically as
Other. In the event that no page in a group matches any of these heuristics, the page with
the highest (non-Other) classification confidence is labeled the primary page. In our exam-
ple, http://www.my.edu/user/jdoe/index.html would be classified as Faculty (assuming
our classifier was correct), and the other pages would be classified as Other regardless of the
classifier prediction.

26

100%

80%

8
<

60% -

40%

20%

, p—* 1 1 1

 K \

\ H ' 1—
\ H ^

^—*x. \ ~~~+\ Course -»—
i<^^^~~*^ X.\ \ Student -+--.

.B—-B x\ * Faculty -Q-—
'ET'' \ ^^-— Research.Project ••■*

'B—a '\^9^ Department -*•—
'""•EJ-. \.B ^^ Staff -*— •a-\^ -E3-...J\

S> ^N»
...X.. \

.X""' ""X X\ \ Ö
X- \

~X v
/

v ■•••'' X \ x * \ \
X

\ 's

*
■

 I I I I

0% 20% 40% 60%
Coverage

80% 100%

Figure 11: Accuracy/coverage tradeoff for the full-text classifier after the application of URL heuristics.

5.4.2. Experimental Evaluation

The impact of using the URL heuristics with the original full-text page classifier is summa-
rized in Figure 11. Comparing these curves to Figure 4 one can see the striking increase
in accuracy for any given level of coverage across all classes. Also note some degradation
in total coverage. This occurs because some pages that were previously correctly classified
have been misidentified as being "secondary" pages. .

5.5. Section Summary

This section focused on the task of recognizing class instances by Web page classification.
We showed that, because hypertext provides much redundant information, Web pages can
be classified using several sources of information: the full text of pages, the text in titles
and headings, the text associated with hyperlinks, text in neighboring pages, and the file
organization represented in URLs. Our experiments suggest that none of these approaches
alone is sufficient for recognizing instances of ontology classes with high accuracy. In the
experiments described in Section 2, we used both full-text classifiers and URL heuristics. We
also showed in this section that one promising line of research is to combine the predictions
of multiple classifiers that use different sources of evidence.

27

6. Learning to Recognize Relation Instances

In the previous section we discussed the task of learning to extract instances of ontology
classes from the Web. Our approach to this task assumed that the class instances of interest
are represented by whole Web pages or by clusters of Web pages. In this section, we dis-
cuss the task of learning to recognize relations of interest that exist among extracted class
instances. The hypothesis underlying our approach is that relations among class instances
are often represented by hyperlink paths in the Web. Thus, the task of learning to recognize
instances of such relations involves inducing rules that characterize the prototypical paths
of the relation.

For example, an instance of the Instructors.Of relation might be represented by a hyperlink
directly from the home page of a course to the home page of the instructor, as described by
the following rule:

instructors_of(A, B) :- course(A), person(B), link_to(A, B).

Here, the variables A and B represent Web pages, the literals course(B) and person(A) rep-
resent the predicted classifications of the pages, and the literal link_to(A, B) tests for the
existence of a hyperlink from page A to page B.

6.1. Problem Representation

Because this task involves discovering hyperlink paths of unknown and variable size, we
employ a learning method that uses a first-order representation for its learned rules. Specif-
ically, the algorithm we have developed for this task is based on the FOIL algorithm [49, 50]
which we used for page classification in Section 5.2. We discuss our algorithm in more detail
below.

The problem representation we use for our relation learning tasks consists of the following
background relations:

• class(Page) : For each class in the set of page classes considered in Section 5, the class

relation lists the pages that represent instances of class. For pages in the training set,
the instances of these relations are determined using the actual classes of the pages. For
pages in the test set, however, we use the predicted page classes given by the classifiers
discussed in Section 5. Since the WEBKB system has access only to predicted page
classes, our test set conditions are representative of those the system faces.

link_to(Hyperlink, Page, Page) : This relation represents Web hyperlinks. For a given
hyperlink, the first argument of the relation specifies an identifier for the hyperlink,
the second argument specifies the page in which the hyperlink is located, and the third
argument indicates the page to which the hyperlink points.

28

•

• has_w;or^(Hyperlink) : This set of relations indicates the words that are found in the
anchor (i.e., underlined) text of each hyperlink. The vocabulary for this set of relations
includes words that occur at least n times (we set n = 3 in our experiments) in
the hyperlinks of the training set. Note that whereas the has.word relations used in
Section 5.2 describes Web pages, the set used here characterizes hyperlinks.

• all_words_capitalized(Hyperlink) : The instances of this relation are those hyperlinks in
which all of the words in the anchor text start with a capital letter.

• has_alphanumeric_word(Hyperlink) : The instances of this relation are those hyperlinks
which contain a word with both alphabetic and numeric characters (e.g., I teach CS760).

• has_neighborhood_«;orrf(Hyperlink) : This set of relations indicates the words that are
found in the "neighborhood" of each hyperlink. The neighborhood of a hyperlink
includes words in a single paragraph, list item, table entry, title or heading in which
the hyperlink is contained. The vocabulary for this set of relations includes the top 200
most frequently occurring words in each training set, except for words on a stoplist.

We learn definitions for the following target relations from the data set described in
Section 4: members_of_project(Page, Page), instructorsjof_course(Page, Page), and depart-
ment_of_person(Page, Page). In addition to the positive instances for these relations, our
training sets include approximately 300,000 negative examples. We form the set of nega-
tive training instances for each target relation by enumerating each pair of non-Other pages
from the same university that is not a positive instance of the target relation. Addition-
ally, for the Department.Of.Person relation we augment the negative instances with each
Person-Department pair which is not a positive instance.

6.2. Learning Methods

As stated above, the algorithm we use for learning relation rules is similar to FOIL in that it
uses a greedy covering approach to learn a set of Horn clauses. The two primary differences
between our method and FOIL are twofold. First, unlike FOIL our method does not simply
use hill-climbing when searching for the next clause to add to a concept definition. Second,
our method uses a different evaluation function for this search process. We discuss each of
these differences in turn.

As described in Section 5.2, FOIL constructs clauses using a hill-climbing search through
a space of candidate literals. We have found that, for our relation:learning tasks, such a hill-
climbing strategy is unable to learn rules for paths consisting of more than one hyperlink.
The search process that our method employs instead consists of two phases. In the first
phase, the "path" part of the clause is learned, and in the second phase, additional literals
are added to the clause using a hill-climbing search.

Our algorithm for constructing the path part of a clause is a variant of Richards and
Mooney's relational pathfinding method [52]. This method is designed to alleviate the basic
weakness of hill-climbing search, namely that to learn good definitions it is often necessary

29

Input: training set of negative and uncovered positive instances

1.
2.
3.
4.
5.
6.

for each uncovered positive instance
find a path (up to bounded length) using the background relations

select the most common path prototype for which clause search hasn't yet failed
generalize the path into an initial clause
do hill-climbing to refine the clause
if hill-climbing fails to find an acceptable clause, backtrack to step 3.

Return: learned clause

Figure 12: The procedure for learning a clause in our deterministic variant of relational pathfinding.

expand subgraphs return path

Figure 13: Finding a path in the background relations. On the left is shown a graph of constants linked by
a single binary relation. This graph can be thought of as representing Web pages connected by hyperlinks.
Suppose the pair (p2t p9) is an uncovered positive instance. Pathfinding proceeds by expanding the subgraphs
around the two constants until an intersection is detected, and then returning the path that links the two
constants.

to take a step in the search space which does not exhibit any immediate gain. The basic
idea underlying relational pathfinding is that a relational problem domain can be thought of
as a directed graph in which the nodes are the domain's constants and the edges correspond
to relations which hold among constants. The relational-pathfinding algorithm tries to find
a small number of prototypical paths in this graph that characterize the instances of the
target relation.

Figure 12 provides an overview of our pathfinding procedure for learning a single clause.
This procedure is iterated until a complete definition has been learned. The first step in the
method is to find the shortest path of a bounded length (when one exists) for each positive
instance (of the target relation) that has not been covered by a previously learned clause.
This process, illustrated in Figure 13 involves expanding a subgraph around each of the
constants in the instance. Each subgraph is expanded by finding all constants which can be
reached using an instance of one of the background relations to connect to a constant at the
frontier of the subgraph.

After finding such a path for each uncovered positive instance, the most common path

30

find path for each positive instance

pi i P2 i tim

return most common path

Figure 14: Finding the most common path for a set of positive instances. Given the graph shown in Figure 13,
suppose that the positive instances are (pi, p7), (p2, p7), (p2, p9), and (p3, p9). Our algorithm finds the
shortest path for each instance and then returns the most common path prototype. In this example the first
three instances have the same path prototype, whereas the instance (p3, p9) has different one (notice the
direction of the hyperlinks). This path prototype is converted into an initial clause.

prototype is used for the initial clause.8 A path prototype specifies the number of hyperlinks
in the path and their directions, but it does not reference the particular pages and hyperlinks
in any particular instance. The notion of the most common path prototype is illustrated in
Figure 14. The initial clause is formed by replacing each constant in the path with a unique
variable. This clause is then further refined by a simple hill-climbing search, such as that
used in FOIL. If the hill-climbing search fails to find an acceptable clause, then the procedure
backtracks by removing the last selected path prototype from the list of candidates and then
trying the next most common prototype.

We further bias the search for clauses by initializing each one with the classes of the pair
of pages in the relation. For example, when learning clauses for the target relation mem-
bers_of_project(A, B), we initialize the tail of each clause with the literal research_project(A)
and person(B). This bias takes advantage of domain knowledge which is present in the on-

tology given to the WEBKB system.

The second difference between our relation-learning algorithm and FOIL is that whereas
FOIL uses an information-theoretic measure to guide its hill-climbing search, our method,
like Dzeroski and Bratko's ra-FoiL [19], uses ra-estimates of a clause's error to guide its
construction. We have found that using this evaluation function causes the algorithm to
learn fewer, more general clauses than when FOIL'S information gain measure is used.

6.3. Experimental Evaluation

We evaluate our approach to learning relation rules using the four-fold cross-validation
methodology described in Section 4. On each iteration, we learn the target relations us-

8If the method is constrained from learning recursive definitions, the path for each positive instance needs
to be found only once since it will not change as clauses are added for the target relation. In this case, before
learning each new clause the algorithm needs only to update counts indicating the number of instances
covered by each path prototype.

31

instructors_of(A,B) :- course(A), person(B), link_to(C,B,A).

Test Set: 133 Pos, 5 Neg

department_of(A,B) :- person(A), department(B), link_to(C,D,A), link_to(E,F,D), link_to(G,B,F),

neigh borhood_word_<7radua£e(E).

Test Set: 371 Pos, 4 Neg

members_of_project(A,B) :- research_project(A), person(B), link_to(C,A,D), link.to(E,D,B),

neighborhood_word_peop/e(C).

Test Set: 18 Pos, 0 Neg

Figure 15: A few of the rules learned for recognizing relation instances.

ing training instances from three of the universities in our data set, and test learned clauses
using instances from the fourth university.

Figure 15 shows a learned clause for each of the Instructors.Of, Department.Of, and Mem-
bers. Of. Project relations. On average, there were 7.3, 3.8, and 6.5 clauses learned for these
target concepts respectively. Along with each rule, we show how well the rule classified
test-set instances. Each of these rules was learned on more than one of the training sets,
therefore the test-set statistics represent aggregates over the four test sets.

The rules learned for the Instructors.Of relation are the simplest among the three target
relations. The learned rule shown for this relation, for example, looks for cases in which
a Course page has a hyperlink pointing to a Person page. The rule shown for the Mem-
bers.Of.Project relation is more interesting. It describes Members.Of.Project instances in
which the project's home page points to an intermediate page which points to personal
home pages. The hyperlink from the project page to the intermediate page must have the
word "people" near it. This rule covers cases in which the members of a research project are
listed on a subsidiary "members" page instead of on the home page of the project. The rule
shown for the Department.Of relation involves a three-hyperlink path that links a department
home page to a personal home page. The rule requires that the word "graduate" occur near
the second hyperlink in the path. In this case, the algorithm has learned to exploit the fact
that departments often have a page that serves as a graduate student directory, and that
any student whose home page is pointed to by this directory is a member of the department.

Along with each of our predicted relation instances, we calculate an associated confidence
in the prediction. We can then vary the coverage of our learned rule sets by varying a
threshold on these confidence values. We calculate the confidence of each prediction by
considering where most of the uncertainty in the prediction lies: in the page classifications
that are tested by each learned clause. The confidence measure for a predicted relation
instance is simply the product of the confidence measures for the page classifications that
factor into the relation prediction.

32

1
I

100%

80%

60%

40%

20%

<' 0
-A-
-+■-

—0—

 \—

—s—
_-H—

—«—
—-1— -K_

 «

-H—

—e—^-—_^_—«—9 4—0

—H h ^

 f

I—B.
-

-

'■■E—-Q.._

-

-

Department. Of.Person
Instructors.Of.Course -H

l

Members.Of.Project

i i

-■&-■

0% 20% 40% 60% 80% 100%
Coverage

Figure 16: Accuracy/coverage tradeoff for learned relation rules.

Using these confidence measures, Figure 16 shows the test-set accuracy /coverage curves
for the three target relations. The accuracy levels of all three rule sets are fairly high. The
Members.Of.Project rules are better than 70% accurate at coverage levels of up to about
46%. The Instructors.Of rules are over 80% accurate at coverage levels of 66% and above.
The Department.Of rules are at least 97% accurate at coverage levels of up to 84%. The
limited coverage levels of the learned rules is due primarily to the limited coverage of our
page classifiers. Note that all of the learned rules include literals which test predicted page
classifications. As Figure 11 shows, the coverage exhibited by our page classifiers is below

% for most classes.

7. Learning to Extract Text Fields

In some cases, the information we want to extract will not be represented by Web pages
or relations among pages, but by small fragments of text embedded in pages. For example,
given a personal home page, we might be interested in extracting the person's name. This
type of task is commonly called information extraction. This section discusses our approach
to learning rules for such information extraction tasks.

7.1. Approach

We have developed an information extraction learning algorithm called SRV for "Sequence
Rules with Validation." SRV is a top-down first-order learner in the spirit of FOIL. SRV

33

shares with FOIL its general search heuristic and gain metric, but differs in the kind of input
it expects and the comprehensiveness of its search. Input to SRV is a set of pages, labeled to
identify instances of the field we want to extract, and a set of attributes defined over tokens.
Output is a set of information extraction rules. The extraction process involves examining
every possible text fragment of appropriate size to see whether it matches any of the rules.

As in FOIL, "growing" a rule in SRV means hill-climbing through a space of possible
literals, at each step adding a literal that matches as many positive examples as possible
while excluding a large number of previously covered negative examples. When a rule is
deemed good enough (either it covers only positive examples, or further specialization is
judged to be unproductive), all positive examples matching it are removed from the training
set, and the process is repeated. In our particular domain, a positive example is a labeled

text fragment—a sequence of tokens—in one of our training documents; a negative example

is any unlabeled token sequence having the same size as some positive example. During
training we assess the goodness of a literal using all such negative examples.

The representation used by our rule learner attempts to express the salient characteristics
of positive examples mainly in terms of the individual tokens contained within them and
surrounding them. At each step in rule growth, several different types of predicate may be
added:

• length(Sequence, Relop, l\l): The learner can assert that the length of a field, in terms
of number of tokens, is less than, greater than, or equal to some integer.

• some(Sequence, Var, Path, Attr, Value): The learner can posit an attribute-value test for
some token in the sequence (e.g., "the field contains some token that is capitalized").
One argument to this predicate is a variable. Each such variable binds to a distinct
token. Thus, if the learner uses a variable already in use in the current rule, it is
specializing the description of a single token; if the variable is a new one, it describes
a previously unbound token.

• position(Sequence, Var, From, Relop, N): The learner can say something about the
position of a token bound by a some-predicate in the current rule. The position is
specified relative to the beginning or end of the sequence.

• relpos(Sequence, Varl, Var2, Relop, N): Where at least two variables have been intro-
duced by some-predicates in the current rule, the learner can specify their ordering
and distance from each other.

Like FOIL, SRV can exploit relational structure in the domain. For SRV, the only possible
form of relational structure is that relating tokens to each other. The most obvious example
is the successor relation, which connects adjacent tokens, but more interesting kinds of
structure can be exploited, such as syntactic structure. In asserting a some predicate, the
learner has the option of adding an arbitrary path of relational attributes to the test, so
that it can make statements of the form, "some token which is followed by a token which is
followed by a token that is capitalized." Thus, although some predicates only refer to tokens

34

ownername(Fragment) :- some(Fragment, B, [], irutitle, true),

length(Fragment, <, 3),

some(Fragment, B, [prev_token], word, "gmt"),

some(Fragment, A, [], longp, true),

some(Fragment, B, [], word, unknown),

some(Fragment, B, [], quadrupletonp, false)

Figure 17: An extraction rule for name of home page owner. The English rendering of this rule is, "a
sequence of two tokens, one of which (A) is in a HTML title field and longer than four characters, the other
of which (B) is preceded by the token gmt, is unknown from training, and is not a four-character token."
This is a high-accuracy rule, achieving 10 correct out of 12 matched on a validation set.

inside a field, the learner can exploit information available in text surrounding the field, as
well. Initially, the learner may only use paths of length one; whenever such a path is used in
a some predicate, the system makes longer paths available. In this way, the computational
expense that this facility entails is kept under control.

7.2. Experimental Evaluation

As in the previous experiments, we followed the leave-one-university-out methodology, re-
peatedly holding the pages belonging to one of the four universities out for testing and
training on the remaining three. The data set for the present experiment consists of all
Person pages in the data set. The unit of measurement in this experiment is an individual
page. If SRV'S most confident prediction on a page corresponds exactly to some instance
of the page owner's name, or if it makes no prediction for a page containing no name, its
behavior is counted as correct. Otherwise, it is counted as an error.

Last-Modified: Wednesday, 26-Jun-96 01:37:46 GMT

<title> Bruce Randall Donald</title>

<hl>

<p>

Bruce Randall Donald

Associate Professor

Figure 18: An example HTML fragment which the above rule matches. In this case, the fragment Bruce
Randall in the title is extracted. Note that this is an erroneous prediction since it misses the last name of
the person.

Figures 17 and 18 show a learned rule and its application to a test case. Figure 19
shows the accuracy-coverage curve for SRV on the name-extraction task. Under the criteria
described above, it achieves 65.1% accuracy when all pages are processed. A full 16% of the
files did not contain their owners' names, however, and a large part of the learner's error
is because of spurious predictions over these files. If we consider only the pages containing
names, SRV'S performance is 77.4%.

35

8
<

100%

80%

60%

40%

20%

20% 40% 60%
Coverage

80% 100%

Figure 19: Accuracy /coverage tradeoff using SRV for name extraction. A prediction on a file that does not
contain a name is counted as an error.

8. Related Work

There are several significant bodies of research that are related to the tasks and methods
discussed in this paper. In this section we briefly review the main areas of related work.

8.1. Document Classification

Our work is related to research in document classification, such as that reported at recent
Text REtrieval Conferences (TREC) [3, 4]. A wide variety of methods have been applied to
the document-classification task.

The TFIDF approach to information retrieval is the basis for the Rocchio classification
. algorithm which has become a standard baseline algorithm for text classification [8, 15, 32].
Its "word-vector" approach involves describing classes with a vector of weights, where each
weight indicates how important the corresponding word is to the class. This representation
has been used with many different learning algorithms, including memory based reason-
ing [38], neural networks [46, 55], linear discriminant analysis [55], logistic regression [55],
Widrow-Hoff and the exponentiated gradient (EG) algorithm [34].

Another useful line of research in text classification comes from basic ideas in probability
and information theory. Bayes Rule has been the starting point for a number of classification
algorithms [5, 6, 33, 35, 43, 46], and the Minimum Description Length principle has been
used as the basis of an algorithm as well [32].

36

Another line of research has been to use symbolic learning methods for text classification.
Numerous studies have used algorithms such as decision trees, Swap-1, Ripper and Charade
can be found in [5, 6, 8, 13, 34, 35, 43, 44, 46, 61]. These studies indicate that these
algorithms are quite competitive with statistical-based methods.

8.2. Information Extraction

The problem that we are addressing is related to the traditional information extraction task,
such as the research done in the Message Understanding (MUC) [1, 2] community. The work
in the MUC community has considered problems such as extracting symbolic descriptions
of terrorist attacks from news articles, constructing case frames that indicate fields such as
the Perpetrator, Victim, etc. One key difference between this work and the research reported
here is that we are concerned with extracting information from hypertext, whereas the MUC
work has focused on ordinary flat text. In addition, our approach relies heavily on machine
learning methods that can be trained to extract information, whereas most early work in
the MUC community relied on hand-crafted methods for extracting information.

Recently, the problem of using machine-learning methods to induce information-extraction
routines has received more attention. PALKA [28] and AutoSlog [54] are machine learning
systems which learn extraction patterns from collections of parsed documents that have been
annotated to identify fragments of interest. These patterns are then reviewed and manu-
ally installed into a larger information extraction system. AutoSlog-TS [53] removes the
requirement that documents be annotated.

CRYSTAL [58] and RAPIER [11] both demonstrate that machine learning techniques
can be used to learn rules that perform extraction autonomously. CRYSTAL is a covering
algorithm which takes parsed, annotated sentences as input and produces rules for extracting
from novel sentences. Rapier uses ideas from relational learning and relaxes somewhat the
reliance on syntactic pre-processing. Starting with maximally specific extraction patterns,
both systems learn by dropping constraints and merging patterns. This contrasts with the
general-to-specific approach introduced here.

Several researchers have explored the problem of text extraction from the Web and other
Internet sources. One example is ILA [47], a system designed to learn extraction patterns
over the human-readable output of online databases. ILA exploits prior expectations about
the probable contents of a database to learn how records are formatted for output by a
particular system. Similar, but specifically designed for use with HTML is Shopbot [18], a
bargain hunting agent. These approaches are related to the general problem of "wrapper
induction" [31], learning extraction patterns for highly regular sources. At the same time,
ideas that have proven useful for general text have also been shown to work well for Web
pages. Webfoot [59] is a modification of CRYSTAL in which parsed sentence fragments are
replaced by segments of HTML.

37

8.3. Extracting Semantic Information from Hypertext

Several other research groups have considered the semantic information that can be auto-
matically inferred and extracted from hypertext. Spertus [60] presents a set of heuristics
that relate hypertext conventions to semantic relationships. Specifically, she considers rela-
tionships that can often be inferred from hyperlink structure, file system organization, and
HTML page structure.

Monge and Elkan [42] have developed a system that finds the Web page for a paper
given a bibliographic citation to it. Part of the task performed by this system is to find the
personal home page and the publications page of an author starting from the home page of
the person's institution. For this task, Monge and Elkan use search-control rules which are
somewhat similar to the relation-recognition rules we learned in Section 6. Their rules look
for certain keywords in hyperlinks to decide which ones to follow in the search. Whereas
their rules are hand-coded for a specific task, our work considers the problem of learning
such rules for arbitrary relations.

Pirolli et al. [48] consider the task of classifying pages into functional categories such
as head, index and reference. They characterize the classes using features such as file size,
number of incoming and outgoing hyperlinks, average depth of children pages in the hyper-
link graph, etc. Whereas our work has not directly involved learning functional classes of
pages, we have observed that our first-order learners for both page and relation classifica-
tion often implicitly learn such functional categories. Recall, for example, that our learned
first-order rules for recognizing Student pages prominently exploited the class of person index

pages. The features we use also differ somewhat from those of Pirolli et al., but common
to both approaches is the central importance of vector-based text similarity and hyperlink
connectivity.

8.4. Extracting Knowledge Bases from the Web

Other groups have worked on extracting propositional knowledge-base information from the
Web. Luke et al. [37] have proposed an extension to HTML called SHOE whereby Web
page authors can encode ontological information on their pages. The have also developed
a system, Expose, that extracts SHOE-encoded information from Web pages, and stored it
in a local knowledge base. Their hope is that a library of standard ontologies will come
into common usage, enabling agents such as Expose to learn the information encoded on the
Web.

The START Information Server [27] provides a natural language interface to a knowl-
edge base collected from the Web. The knowledge base contains meta-information about
the content of the Web, so that a query to START returns relevant hypertext segments.
START builds its knowledge base by discovering mostly manually added natural language
annotations on Web pages.

The most significant recent development in this area is the advent of Extensible Markup

38

Language (XML) [10]. Whereas HTML is designed to describe the layout of information in
a page, XML can be used to describe information about the contents of the page. As with
SHOE, Web page authors can use XML to encode ontological information about their pages.
Since XML is a World Wide Web Consortium standard, however, it is sure to be widely used.
We believe that methods for annotating the contents of Web pages, such as SHOE and XML,
can assist with the task of extracting knowledge bases from the Web, but do not obviate
the need for our WEBKB approach. There are two notable limitations of approaches such
as SHOE and XML. First, they are of no use when Web page authors do not employ them.
Second, they presuppose a universal ontology. That is, since individual Web page authors are
responsible for annotating Web pages, the success of these approaches hinges on the extent
to which authors employ standard, shared ontologies in a consistent manner. Moreover,
ontological decisions are largely in the hands of Web page authors in this approach. There
may be cases where the ontological categories used to describe a given Web page are not
appropriate or relevant categories for the tasks to which an extracted knowledge base will
be applied. In the WEBKB approach, on the other hand, these ontological decisions can be
made by the users of the system. One interesting way in the XML and WEBKB approaches
can potentially be combined, is by exploiting XML-annotated pages as pre-labeled training
data. We plan to explore this issue in future research.

8.5. Web Agents

The WEBKB system described here is an example of a Web agent that browses the Web,
extracting information as it goes. Many other Web agents have been developed over the
past few years, including several that involve some form of learning. However, the vast
majority of these systems use learning to improve their ability to retrieve text information,
rather that to extract computer-understandable information. For example, Joachims et al.

[26] describe a Web agent called Web Watcher that serves as a tour guide for users browsing
the Web. Web Watcher learns to suggest appropriate hyperlinks given users' interests, based
on the hyperlinks followed by previous users with similar interests. As such, it involves
learning to classify hyperlinks - a task similar to the work reported here on learning to
extract relational information. A system with a similar goal is Letizia [36], which learns
the interests of a single user, in contrast to Web Watcher which learns from a community of
users. Syskill and Webert [46] offers a more restricted way of browsing than Web Watcher
and Letizia. Starting from a manually constructed index page for a particular topic, the user
can rate hyperlinks off this page. The system uses the ratings to learn a user specific topic
profile that can be used to suggest unexplored hyperlinks on the page. Syskill and Webert
can also use search engines like LYCOS to retrieve pages by turning the topic profile into a
query. Lira [7] works in an off-line setting. A general model of one user's interest is learned
by asking the user to rate pages. Lira uses the model to browse the Web off-line and returns
a set of pages that match the user's interest. One related system that is closer in spirit to
our work is Shakes et a/.'s [56] Ahoy system, which attempts to locate the home page of
a person, given information such as the person's name, organizational affiliation etc. Ahoy
uses knowledge of home page placement conventions to search for personal home pages, and
in fact learns these conventions from experience.

39

9. Conclusions and Future Work

We began this paper with a goal and a thesis. The goal is to automatically create a large
knowledge base whose content mirrors that of the World Wide. The thesis is that one can
automatically create knowledge bases from the Web by first using machine learning algo-
rithms to create information extraction methods for each of the desired types of knowledge,
and then applying these methods to extract probabilistic, symbolic statements directly from
Web hypertext.

This paper provides support for our thesis by proposing and testing a variety of machine
learning algorithms for information extraction, and by describing the WEBKB system that
incorporates the learned information extractors to browse Web sites and populate a knowl-

edge base. As shown in Section 2 and elsewhere, our system has achieved an accuracy of

better than 70% at coverage levels of approximately 30% when using these learned infor-
mation extractors to populate its university knowledge base while browsing new Web sites.

These results provide encouraging initial support for our thesis, and suggest many routes for
future research.

We have explored a variety of learning methods for this task, including statistical bag-
of-words classifiers, first-order rule learners, and multi-strategy learning methods. We have
found that statistical bag of words methods, derived from document classification methods
in information retrieval, work well for classifying individual Web pages. However, these
methods do not take advantage of the special hypertext structure available on the Web.
Therefore, we developed first-order learning algorithms both for learning to classify pages
and learning to recognize relations among several pages. These first-order methods are
capable of describing patterns that occur across multiple Web pages, their hyperlinks, and
specific words that appear on these pages and hyperlinks. Our experiments indicate that
these methods tend to have higher accuracy than the bag of words classifiers, though they
frequently provide lower coverage. In addition to these first-order learning methods that
"look outward" from the page to consider its neighbors, we also have developed methods
that "look inward" to consider the detailed structure of hypertext and specific text fragments
within a single Web page. The SRV algorithm described in Section 7 learns relational rules
that extract specific types of text fields within a Web page, such as a person's name.

We believe that the toolbox of methods we have described here will be applicable to a
wide range of problem domains. For new domains, however, we may apply and combine the
methods in ways not explored in this paper. For example, in current work in a new problem
domain, we are using page classifiers to recognize instances of a particular relation (the
economic sector of a company), whereas in the work described here we used page classifiers
to recognize class instances. In short, the most appropriate method for recognizing instances
for a particular class or relation will depend on how these instances tend to be represented
in the Web.

Based on the initial results reported here, we are optimistic about the future prospects
for automatically constructing and maintaining a symbolic knowledge base by interpreting
hypertext on the Web. Key questions remain, however. For example, what level of accuracy

40

can be achieved by learned procedures for extracting information from the Web, and what
level of accuracy will be required of them? For some tasks the required accuracy will be
quite high (e.g., for an intelligent system that automatically invests money on behalf of its
user). However, for tasks such as information retrieval on the Web, the system need only be
sufficiently accurate to outperform the current keyword-based retrieval systems that have
no real notion of an ontology. Although further research toward stronger learning methods
is warranted, we conjecture that there will be a steady stream of applications where even an
approximately correct knowledge base will outperform current keyword retrieval methods. A
second type of question for our system is how much effort will be required to train the system
for each new ontology, or for each extension to the growing ontology? In the experiments
reported here, the system was trained using thousands of hand-labeled Web pages that were
collected at a cost of approximately one or two per son-weeks of effort. In newer work we are
beginning to explore methods for reducing the dependence on hand labeled data. Below is
a list of these and other research opportunities that merit further research:

• Develop learning methods that exploit the hierarchical relationships that exist among
classes in the hierarchy. For example, in recent work we have shown that the accuracy
of our Bayesian bag of words classifier can be improved by using the class hierarchy to
obtain more accurate estimates of class conditional word probabilities [40].

• Use the vast pool of unlabeled Web pages to supplement the available hand-labeled
data to improve learning accuracy. Recently we have shown that the EM algorithm
can be used to combine labeled and unlabeled data to boost accuracy [45]. We are
also exploring the combination of EM with pool-based training for active learning in
which the learner requests labels for specific Web pages whose label will be especially

helpful [39].

• Co-training multiple classifiers. For example, consider a problem setting in which one
Web page classifier examines the words on the page, and a second classifier examines
instead the words on the incoming hyperlinks to that page. In recent work, we have
proposed a method by which each classifier acts as a trainer for the other, and we
have provided initial experiments and theoretical analysis showing the promise of this
approach [9].

• Exploit more linguistic structure. We plan to explore ways in which noun, verb, and
prepositional phrases extracted from the text can be used as features for information
extraction. We have conducted preliminary experiments that show improved accuracy
in some cases when our bag of words representation is augmented by these extracted
phrases [24]. We conjecture that such linguistic features will be even more useful for
tasks with few words, such as classifying individual hyperlinks.

• Explore multiple strategies for learning to extract text fields from Web pages. We have
developed a number of approaches to this task [20, 21, 23], including multi-strategy
learning [22].

• Integrate statistical bag-of-words methods into first-order learning tasks. We have
begun developing methods that augment first-order learning with the ability to use bag-

41

•

of-words classifiers to invent new predicates for characterizing the pages and hyperlinks
referenced in learned rules [57].

Exploit more HTML structure. We plan to investigate the utility of representing the
HTML structure of pages when learning rules for relation classification and information
extraction. We have investigated one approach to representing HTML structure and
exploiting it for learning tasks [16].

Learn regularities over the growing knowledge base. We plan to use learning methods
to discover interesting regularities over the facts that have been extracted from the
Web, and to use these learned facts to improve future fact extraction. For example, in
the university knowledge base we might expect to learn how to predict the department
of a faculty member based on the department of her student advisees.

Extend the ontology to new problem domains. We are currently applying our methods
to the task of extracting information about companies from the Web.

42

A Obtaining More Evenly Distributed Scores from Naive Bayes

While Naive Bayes often provides accurate classifications, it presents problems when one
wants to interpret the score for each class as an estimate of uncertainty. Per-class scores for
the winning class tend to gravitate toward 1.0 and scores for the losing class tend toward
0.0. Often the effect is so strong that floating-point round-off error causes the probability
to be calculated as exactly 1.0 for the winning class and 0.0 for the others. These extreme
values are an artifact of the independence assumption. If for each word, the value of Pr(u;|C)
between different classes differs by one order of magnitude, then the final probabilities with
differ by as many orders of magnitude as there are words in the document. Class-conditional
word probabilities would be much more similar across classes if word dependencies were taken
into account.

We would like scores that accurately reflect the uncertainty in each prediction and enable
us to sensibly compare the scores of multiple documents. We attempt to counter the extreme
values, while still avoiding the complexity of modeling word-dependencies, in two steps.

First, instead of using the product of the word likelihoods, we use the geometric mean
of the likelihoods. This approach is closely related to the concept of perplexity in language
modeling for speech recognition [51]. Perplexity is a measure of the likelihood of some data
given a model, where the likelihood is normalized for the length of the data. We begin with
Naive Bayes (Eq. 5), rewrite the sum to an equivalent expression that sums over all words in
the vocabulary T instead of just the words in the document (Eq. 12), take the log, (Eq. 13),
and divide by the number of words in the document (Eq. 14). This results in the log of the
geometric mean of the word likelihoods, plus a term for the class prior.

T

E Pr(c)nPrK-|c) = Pr(c) H PrK'k)^*^ (12)

T

oc log(?i(c)) + J2
N

(
w

^
d

) log(Pr(u;,-|c)) (13)

log(Pr(c)) , TN(Wi,d)
oc + £^^log(PrMc)) (14)

» £1 n

If we interpret N(wi,d)/n as Pr(wi\d), the right-hand term of this expression is the
negative Cross Entropy [14] between the distribution of words induced by the document
with the distribution of words induced by the class:

log(Pr(c)) +^pr(u>.|<j[) ^(pr^ic)). (is)
n
 »=i

Thus, the second term specifies that the class c with the highest score will be the one with
the lowest Cross Entropy—the class that could "compress" the document most efficiently.

43

This expression results in scores for each class that vary smoothly, without tendencies toward
extreme values.

Cross Entropy in Equation 15 can be intuitively understood as the average number of
bits necessary to encode a word from the document using an encoding that is optimal for the
distribution of words independently drawn from the class. Cross Entropy does not, however,
account for the varying difficulty of encoding different documents—some documents are
more complex, and inherently require more bits on average to encode. We want scores that
can be sensibly compared between documents. A way to account for differences between
documents is to use Kulback-Leibler Divergence—that is, to subtract the average number
of bits it would take to encode the document using its optimal encoding (assuming again,
that the words are independent of one another). This results in an expression that can be
intuitively understood as the average number of extra bits required because we are using
a suboptimal encoding instead of the optimal encoding. We modify the second term of
Equation 15 so that it expresses the KL Divergence score for each class:

M^ + f;prK.wlog(|£l-J|). (16)
n i=1 \PT(wi\d)J

We also normalize the scores across all classes so that they sum to a constant. This nor-
malization also has the effect of increasing our confidence in the classification of documents
with high word entropy. This is intuitively desirable because high-entropy documents have
more unique words, which can be considered as stronger evidence, and more likely to result
in a correct classification.

Note that the modifications to 5 do not change the ordering of class estimates for a given
document. Consequently, the classifications made by Naive Bayes are not affected. These
modifications only serve to provide well-distributed, comparable scores.

Note that none of the changes since straightforward Naive Bayes in Equation 5 has
changed the scored ordering of different classes for the same document—they have not
changed classification that would have resulted from Naive Bayes. They have only served to
provide well-distributed, comparable scores.

44

References

[1] Proceedings of the Fourth Message Understanding Conference (MUC-4), McLean, Vir-
ginia, June 1992. Morgan Kaufmann Publisher, Inc., San Francisco.

[2] Proceedings of the Fifth Message Understanding Conference (MUC-5), Baltimore, Mary-
land, August 1993. Morgan Kaufmann Publisher, Inc., San Francisco.

[3] The Fourth Text Retrieval Cconference. National Technical Information Services,
Springfield, VA, 1995. http://www-nipir.nist.gov/TREC/t4_proceedings.html.

[4] The Fifth Text Retrieval Cconference. National Technical Information Services, Spring-
field, VA,1996. http://www-nlpir.nist.gov/TREC/t5_proceedings.html.

[5] C. Apte, F. Damerau, and S. M. Weiss. Automated learning of decision rules for text
categorization. ACM Transactions on Information Systems, 12(3):233-251, July 1994.

[6] C. Apte, F. Damerau, and S. M. Weiss. Towards language independent automated
learning of text categorization models. Technical report, IBM, 1994. (TR 19481) (also
appeared in SIGIR94).

[7] M. Balabanovic and Y. Shoham. Learning information retrieval agents: Experiments
with automated web browsing. In AAAI Spring Symposium on Information Gathering

from Heterogeneous, Distributed Environments, 1995.

[8] E. Bloedorn, I. Mani, and T. R. MacMillan. Machine learning of user profiles: Repre-
sentational issues. In Proceedings of the Thirteenth National Conference on Artificial

Intelligence, pages 433-438. AAAI/MIT Press, 1996.

[9] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings of the 11th Annual Conference on Computational Learning Theory. ACM,

1998.

[10] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup language (XML)
1.0. Technical Report REC-xml-19980210, World Wide Web Consortium, 1998. http:
//www.w3.org/TR/REC-xml.

[11] M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for in-
formation extraction. In Working Papers of ACL-97 Workshop on Natural Language

Learning, 1997.

[12] B. Cestnik. Estimating probabilities: A crucial task in machine learning. In L. Aiello,
editor, Proceedings of the Ninth European Conference on Artificial Intelligence (ECAI-

90), pages 147-150, Stockholm, Sweden, 1990. Pitman.

[13] W. W. Cohen. Fast effective rule induction. In Proceedings of the Twelfth International

Conference on Machine Learning. Morgan Kaufmann, 1995.

[14] T. H. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and Sons,
Inc., 1991.

45

[15] H.C.M. de Kroon, T.M. Mitchell, and E.J.H Kerckhoffs. Improving learning accuracy
in information filtering. In International Conference on Machine Learning - Workshop

on Machine Learning Meets HCI (ICML-96), 1996.

[16] D. DiPasquo. Using HTML formatting to aid in natural language processing on the
World Wide Web, June 1998. Senior thesis, Computer Science Department, Carnegie
Mellon University (http: //www. cs. emu.edu/~WebKB/danthesis.ps.gz).

[17] P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under
zero-one loss. Machine Learning, 29:103-130, 1997.

[18] R. Doorenbos, 0. Etzioni, and D. S. Weld. A scalable comparison-shopping agent for
the world-wide web. In Proceedings of the 1st International Conference on Autonomous

Agents. ACM, 1997.

[19] S. Dzeroski and I. Bratko. Handling noise in inductive logic programming. In S.H. Mug-
gleton and K. Furukawa, editors, Proceedings of the Second International Workshop on

Inductive Logic Programming (ILP-92), number TM-1182 in ICOT Technical Memo-
randum, pages 109-125, Tokyo, Japan, 1992. Institute for New Generation Computer
Technology.

[20] D. Freitag. Using grammatical inference to improve precision in information extraction.
In ICML-97 Workshop on Automation Induction, Grammatical Inference, and Language

Acquisition, Nashville, TN, 1997. Morgan Kaufmann.

[21] D. Freitag. Information extraction from HTML: Application of a general learning ap-
proach. In Proceedings of the Fifteenth National Conference on Artificial Intelligence,

Madison, WI, 1998. AAAI Press.

[22] D. Freitag. Multistrategy learning for information extraction. In Proceedings of the

15th International Conference on Machine Learning, pages 161-169. Morgan Kaufmann
1998.

[23] D. Freitag. Toward general-purpose learning for information extraction. In Proceedings

of COLING/ACL-98, 1998.

[24] J. Fuernkranz, T. Mitchell, and E. Riloff. A case study in using linguistic phrases for text
categorization of the www. In Working Notes of the AAAI/ICML Workshop on Learn-

ing for Text Categorization, 1998. http://www.cs.cmu.edu/~WebKB/aaai-ws-aslog.
ps.gz.

[25] T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text
categorization. In Proceedings of the Fourteenth International Conference on Machine

Learning, pages 143-151, Nashville, TN, 1997. Morgan Kaufmann.

[26] T. Joachims, D. Freitag, and T. Mitchell. Webwatcher: A tour guide for the World
Wide Web. In Proceedings of the Fifteenth International Joint Conference on Artificial

Intelligence, pages 770-775, Nagoya, Japan, 1997. Morgan Kaufmann.

46

[27] B. Katz. From sentence processing to information access on the World Wide Web. In
Proceedings of the AAAI Spring Symposium on Natural Language Processing for the

World Wide Web, 1997.

[28] J.-T. Kim and D. I. Moldovan. Acquisition of linguistic patterns for knowledge-based
information extraction. IEEE Transactions on Knowledge and Data Engineering, 1995.

[29] D. Koller and M. Sahami. Toward optimal feature selection. In Proceedings of Thir-

teenth International Conference on Machine Learning. Morgan Kaufmann, 1996.

[30] D. Koller and M. Sahami. Hierarchically classifying documents using very few words.
In Proceedings of the Fourteenth International Conference on Machine Learning, pages
170-178, Nashville, TN, 1997. Morgan Kaufmann.

[31] N. Kushmerick. Wrapper Induction for Information Extraction. PhD thesis, University
of Washington, 1997. Tech Report UW-CSE-97-11-04.

[32] K. Lang. NewsWeeder: Learning to filter Netnews. In Proceedings of the Twelfth

International Conference on Machine Learning. Morgan Kaufmann, 1995.

[33] D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In Pro-

ceedings of the Seventeenth Annual International ACM SIGIR Conference on Research

and Development in Inforamtion Retrieval (SIGIR94), 1994.

[34] D. Lewis, R. E. Shapire, J. P. Callan, and R. Papka. Training algorithms for linear
text classifiers. In Proceedings of the Nineteenth Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 298-306,

1996.

[35] D. D. Lewis and M. Ringuette. A comparison of two learning algorithms for text
categorization. In Third Annual Symposium on Document Analysis and Information

Retrieval, pages 81-93, 1994.

[36] H. Lieberman. Letizia: An agent that assists Web browsing. In Proceedings of the

Fourteenth International Joint Conference on Artificial Intelligence, pages 924-929.
Morgan Kaufmann, 1995.

[37] S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based Web agents. In W. L.
Johnson, editor, Proceedings of the 1st International Conference on Autonomous Agents,

pages 59-66. ACM, 1997.

[38] B. Masand, G. Linoff, and D. Waltz. Classifying news stories using memory based
reasoning. In Proceedings of the Fifteenth Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR92), pages 59-65, 1992.

[39] A. McCallum and K. Nigam. Employing EM in pool-based active learning for text
classification. In Proceedings of the 15th International Conference on Machine Learning,

pages 350-358. Morgan Kaufmann, 1998.

47

[40] A. McCallum, R. Rosenfeld, T. Mitchell, and A. Ng. Improving text clasification by
shrinkage in a hierarchy of classes. In Proceedings of the 15th International Conference

on Machine Learning, pages 359-367. Morgan Kaufmann, 1998.

[41] A. K. McCallum and K. Nigam. A comparison of event models for naive bayes text
classification. In Working Notes of the ICML/AAAI Workshop on Learning for Text

Categorization, 1998. http://www.cs.cmu.edu/~mccallum.

[42] A. E. Monge and C. P. Elkan. The WEBFIND tool for finding scientific papers over
the Worldwide Web. In Proceedings of the Third International Congress on Computer

Science Research, Tijuana, Mexico, 1996.

[43] I. Moulinier and J.-G. Ganascia. Applying an existing machine learning algorithm to
text categorization. In S. Wermter, E. Riloff, and G. Scheler, editors, Connection-

ist, Statistical, and Symbolic Approaches to Learning for Natural Language Processing.

Springer-Verlag, March 1996.

[44] I. Moulinier, G. Raskinis, and J.-G. Ganascia. Text categorization: a symbolic ap-
proach. In SDAIR, 1996.

[45] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to classify text from
labeled and unlabeled documents. In Proceedings of the Fifteenth National Conference

on Artificial Intelligence. AAAI Press, 1998.

[46] M. J. Pazzani, J. Muramatsu, and D. Billsus. Syskill & Webert: Identifying inter-
esting Web sites. In Proceedings of the Thirteenth National Conference on Artificial

Intelligence, pages 54-59, Portland, OR, 1996. AAAI/MIT Press.

[47] M. Perkowitz and O. Etzioni. Category translation: learning to understand information
on the Internet. In Proceedings of the 15th International Joint Conference on Artificial

Intelligence, pages 930-936. Morgan Kaufmann, 1995.

[48] P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow's ear: Extracting usable struc-
tures from the Web. In Human Factors in Computing Systems: CHI '96 Conference

Proceedings, pages 118-125, New York, NY, 1996.

[49] J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239-
2666, 1990.

[50] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In Proceedings of

the European Conference on Machine Learning, pages 3-20, Vienna, Austria, 1993.

[51] L. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition. Prentice Hall Signal
Processing Series, 1993.

[52] B. L. Richards and R. J. Mooney. Learning relations by pathfinding. In Proceedings

of the Tenth National Conference on Artificial Intelligence, pages 50-55, San Jose CA
1992. AAAI/MIT Press.

48

[53] E. Riloff. Automatically generating extraction patterns from untagged text. In Proceed-

ings of the Thirteenth National Conference on Artificial Intelligence, pages 1044-1049.

AAAI/MIT Press, 1996.

[54] E. Riloff. An empirical study of automated dictionary construction for information
extraction in three domains. Arificial Intelligence, 85:101-134, 1996.

[55] H. Schütze, D. A. Hull, and J. 0. Pedersen. A comparison of classifiers and document
representations for the routing problem. In Proceedings of the 18th Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR95), pages 229-237, 1995.

[56] M.' Shakes, J. Langheinrich and 0. Etzioni. Dynamic reference sifting: a case study in
the homepage domain. In Proceedings of Sixth International World. Wide Web Confer-

ence, Santa Clara, CA, 1996.

[57] S. Slattery and M. Craven. Combining statistical and relational methods for learning
in hypertext domains. In Proceedings of the 8th International Conference on Inductive

Logic Programming. Springer Verlag, 1998.

[58] S. Soderland. Learning Text Analysis Rules for Domain-specific Natural Language Pro-

cessing. PhD thesis, University of Massachusetts, 1996. Available as Department of

Computer Science Technical Report 96-087.

[59] S. Soderland. Learning to extract text-based information from the World Wide Web.
In Proceedings of the 3rd International Conference on Knowledge Discovery and Data

Mining, 1997.

[60] E. Spertus. ParaSite: Mining structural information on the Web. In Proceedings of the

Sixth International World Wide Web Conference, Santa Clara, CA, 1997.

[61] S. M. Weiss and N. Indurkhya. Optimized rule induction. IEEE Expert, pages 61-69,
December 1993.

[62] I. H. Witten and T. C. Bell. The zero-frequence problem: Estimating the probabilities of
novel events in adaptive text compression. IEEE Transactions on Information Theory,

37(4), July 1991.

[63] Y. Yang and J. Pederson. Feature selection in statistical learning of text categorization.
In Proceedings of the Fourteenth International Conference on Machine Learning, pages

412-420, Nashville, TN, 1997. Morgan Kaufmann.

49

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

L

