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Abstract. 2D intensity images and 3D shape models are both useful for face
recognition, but in different ways. While algorithms have long been developed
using 2D or 3D data, recently has seen work on combining both into multi-modal
face biometrics to achieve higher performance. However, the fusion of the two
modalities has mostly been at the decision level, based on scores obtained from
independent 2D and 3D matchers.

In this paper, we propose a systematic framework for fusing 2D and 3D face
recognition at both feature and decision levels, by exploring synergies of the two
modalities at these levels. The novelties are the following. First, we propose to
use Local Binary Pattern (LBP) features to represent 3D faces and present a sta-
tistical learning procedure for feature selection and classifier learning. This leads
to a matching engine for 3D face recognition. Second, we propose a statistical
learning approach for fusing 2D and 3D based face recognition at both feature
and decision levels. Experiments show that the fusion at both levels yields signif-
icantly better performance than fusion at the decision level.

1 Introduction

Face recognition has attracted much attention due to its potential values for appli-
cations as well as theoretical challenges. Many representation approaches have been
introduced. Principal Component Analysis (PCA) [1] computes a reduced set of or-
thogonal basis vector or eigenfaces of training face images. A new face image can be
approximated by weighted sum of these eigenfaces. PCA provides an optimal linear
transformation from the original image space to an orthogonal eigenspace with reduced
dimensionality in the sense of the least mean square reconstruction error. , Linear Dis-
criminant Analysis (LDA) [2] seeks to find a linear transformation by maximizing the
between-class variance and minimizing the within-class variance. Independent compo-
nent analysis(ICA) [3] uses high-order statistics to generate image bases. Elastic bunch
graph matching (EBGM) [4,5] uses Gabor wavelets to capture the local structure corre-
sponding to spatial frequency (scale), spatial localization, and orientation selectivity.

Local Binary Pattern (LBP), originally proposed as a descriptor for textures [6],
provides a simple yet effective way to represent faces [7,8]. There, the face image is
equally divided into small blocks and LBP features are extracted for each blocks to
represent the texture of a face locally and globally. Weighted Chi square distance of
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these LBP histograms is used as a dissimilarity measure for comparing the two images.
The above works have shown that LBP based methods can produces good results for
face recognition in 2D images.

Boosting learning with local features have recently been proposed as a promis-
ing approach. Jones and Viola [9] propose a general idea of boosting local features
and training a classifier on difference between two face image feature vectors (Haar
wavelets). Zhang et al. present an LBP-based boosting learning algorithm [10]. Such
works are for 2D face recognition.

While using 2D intensity images to recognize a face has long history of research
[11], recent advances in 3D range sensor has made it possible to overcome some lim-
itations in 2D based face recognition methods such as illumination and pose changes.
Early work on 3D face recognition was based on curvature features [12], following this
type of work in 3D range image understanding starting from mid-1980’s [13]. Later
developments in 2D face recognition have influenced 3D face recognition [14].

It may be advantageous to combine information contained in both 2D and 3D data
to overcome limitations in 2D or 3D based methods while 2D and 3D images encodes
different information. Methods have been proposed to combine information in both
modalities into multi-model face biometrics to achieve higher performance [14]. For
example, in [15,16], the weighted sum rule is applied to combine the two matching
scores. A recent performance evaluation on the 2D and 3D modalities and their fusion
has shown that multi-modal 3D+2D face recognition performs significantly better than
using either 3D or 2D alone [17].

So far, the fusion of 3D+2D modalities has been at the decision level, using scores
from 2D and 3D matchers. The 3D recognition result and the 2D recognition result
are each produced without reference to the other modality. It is desirable to explore
synergies of the two modalities at the feature level as well [14]. The work presented
here explores such synergies in the proposed framework of AdaBoost learning (with
LBP feature). This is new for solving the problem of 3D+2D face fusion.

In this paper, we propose a systematic framework for fusing 2D and 3D informa-
tion at both feature and decision levels. The main contributions are the following: First,
we propose to use LBP features as a representation of faces in 3D data. An AdaBoost
learning procedure [18,19,20] is then applied for feature selection and classifier learn-
ing. Second, with LBP as a unified representation of faces in both 2D and 3D images,
we propose to use AdaBoost learning to fuse 2D and 3D information at both feature and
decision levels. The same AdaBoost learning procedure as used for 3D face recognition
is used for 3D+2D fusion. 3D and 2D LBP histograms are computed, respectively, and
then combined into a 3D+2D feature set. AdaBoost is applied to select effective feature
from a 3D+2D feature pool, construct weak classifiers based on the selected features,
and then combine the weak classifiers into a strong one. Thus, the learning procedure
fuses the 3D and 2D modalities at both feature and decision levels. Experiments show
that the AdaBoost learning method produces significantly better results than the base-
line PCA method. AdaBoost learning based fusion performs significantly better than
fusion of PCA based scores. Experimental results clearly demonstrate the advantages
of the two level fusion over the exiting decision level fusion such as presented in a
recent PAMI paper [17].
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The rest of this paper is organized as follows: In section 2, the LBP representa-
tion is described. In section 3, we propose an AdaBoost learning method for 3D face
recognition. In section 4, we propose the boosting based fusion of 3D+2D modalities.
Experimental results are presented in section 5.

2 Feature Representation

Face images are preprocessed so that they are aligned in a predefined way. For 2D data,
the alignment and cropping is done according to the eye centers. For 3D data, the face
is rotated about the vertical axis so that the nose tip becomes the closest point and then
cropped; after that, a median filter is applied to remove high noise; this is followed
by hole-filling. Fig.1 shows some examples. LBP features are then extracted from the
cropped and preprocessed images.

Fig. 1. 3D (top) and 2D (bottom) face images of a person before (left) and after (right) alignment
and cropping

2.1 Local Binary Pattern

The LBP operator was originally introduced by Ojala [6] as texture description. LBP
features have performed very well in various applications, including texture classifica-
tion and segmentation. The basic form of an LBP operator labels the pixels of an image
by thresholding the 3× 3-neighborhood of each pixel with the center value and consid-
ering the result as a binary number. An illustration of the basic LBP operator is shown
in Fig.2. Note that the binary LBP code is circular.
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Fig. 2. Calculation of LBP code from 3x3 subwindow (from [8])

The major limitation of the basic LBP operator is its small spatial support area.
Features calculated in a local 3 × 3 neighborhood cannot capture large scale structure
that may be the dominant features of some textures. The LBP operator can be extended
to use neighborhoods of different size [6]. Another extension to the original operator is
to use so called uniform patterns [6]. An LBP is called uniform if it contains at most
two bitwise 0-1 or 1-0 transitions. There are 58 uniform LBP code patterns for 8-bits
LBP code, and 256-58=198 non-uniform LBP patterns.

2.2 Local Histograms of LBP Code

LBP histograms over local regions provides a more reliable description when the pattern
is subject to alignment errors. Considering the uniform LBP scheme, and denoting all the
non-uniform LBP patterns with a single bin, then there are a set of L + 1 = 59 possible
LBP code types for the 8-bit LBP code. Let us denote this set byL = {0, 1, . . . , L} such
that LBP (x, y) ∈ L, and the local LBP histogram over a block S(x,y) centered at (x, y)
by H(x,y) = (H(x,y)(0), H(x,y)(1), . . . , H(x,y)(L)). The histgram can be defined as

H(x,y)(�) =
∑

(x′,y′)∈S(x,y)

I{LBP (x′, y′) = �}, � ∈ L (1)

where I(·) ∈ {0, 1} is an indication function of a boolean condition, and S(x, y) is a
local region centered at (x, y) which in our case is a 20x15 block.

The histogram H(x,y) contains information about the distribution of the local micro-
patterns, such as edges, spots and flat areas, over the block S(x,y). It effectively gives
a description of the face at two different levels of locality: individual LBP labels con-
tain information about the patterns at the pixel-level, whereas the frequencies of the
labels in the histogram produce information on regional level [7]. The collection of the
histograms at all possible pixels {H(x,y) | ∀(x, y)}, called the global LBP histogram,
provides the global level description.

In [7], the face image is partitioned into a number (49) of blocks and a weight is
empirically assigned to each block. Denote the corresponding histograms between the
probe and a gallery by HP

(x,y) and HG
(x,y), respectively. Several possible dissimilarity

measures are available to compare local two histograms. The following Chi square dis-
tance is reported to work better for small sample size [7]:

χ2(HP
(x,y), H

G
(x,y)) =

∑

�∈L

(HP
(x,y)(�) − HG

(x,y)(�))
2

(HP
(x,y)(�) + HG

(x,y)(�))
(2)
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A possible scheme for matching between two images is based on a weighted sum of χ2

distances [7].

3 Learning for 3D Face Recognition

In this section, we describe a method which uses LBP features and AdaBoost learning
for 3D face recognition with the LBP features. While in [7], a face image is partitioned
into blocks, We consider every block centered at each pixel location. This yields a
large number of possible blocks, and hence a large number of local histograms H(x,y).
Instead of assigning a weight to each block, we derive the weights using an AdaBoost
learning method. As a result of the learning, those blocks which are more discriminative
for classification will be assigned larger weights and those which are useless or give
conflict information will be assigned near-zero weights. The learning also produces the
final classifier.

Face recognition is a multi-class problem. To dispense the need for a training pro-
cess for faces of a newly added person, we use a large training set describing intra-
personal or extra-personal variations [21], and train a “universal” two-class classifier.
An ideal intra-personal difference should be an image with all pixel values being zero,
whereas an extra-personal difference image should generally have much larger pixel
values. However, instead of deriving the intra-personal or extra-personal variations us-
ing difference images as in [21], the training examples to our learning algorithm is the
set of differences between each pair of local histograms H(x,y) at the corresponding lo-
cations. The positive examples are derived from pairs of intra-personal differences and
the negative from pairs of inter-personal differences.

With the two-class scheme, the face matching procedure will work in the following
way: It takes the probe face image and a gallery face image as the input; computes a
difference-based feature vector from the two images; and then calculated a similarity
score for the feature vector using some matching function. A decision is made based on
the score, to classify the feature vector into the positive class (coming from the same
person) or the negative class (different persons). The following presents an AdaBoost
learning algorithm for training such a two-class classifier using the positive and negative
examples of the 2D or 3D face data.

In AdaBoost learning, we are given a training set of N labeled examples from two
classes, S = (x1, y1), . . . , (xN , yN), where xi is the data yi ∈ {+1,−1} is the class
label. Associated with the training examples is a distribution wt = (wt,1, . . . , wt,N )
which is updated after each learning iteration t. An AdaBoost procedure adjust the
distribution in such a way that more difficult examples will receive higher weights. It
learns a sequence of T weak classifiers ht(x) ∈ {−1, +1} and linearly combines it in
an optimal way into a stronger classifier

H(x) = sign

(
T∑

t=1

αtht(x)

)
(3)

where αt ∈ R are the combining weights. We can consider the real-valued num-
ber

∑T
t=1 αtht(x) as the score, and make a decision by comparing the score with a

threshold.
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An AdaBoost learning procedure, shown in Fig. 3, is aimed to derive αt and ht(x).
The AdaBoost learning procedure in effect solves the following three fundamental prob-
lems: (1) learning effective features from the candidate feature set (step 3), (2) con-
structing weak classifiers each of which is based on one of the selected features (step
1-3), and (3) combining the learned weak classifiers into a stronger classifier (the output
step).

Input: Given labeled examples S;
Set the initial w1 to the uniform distribution;
For t = 1, . . . , T :

1. Train a weak classifier hj : x→ {−1, +1};
2. Calculate wt-weighted error

ej = P [hj(xi) �= yi | wt];
3. Choose hk(x), such that ek < ej ,∀j �= k;
4. Let et = ek.

5. Choose αt = 1
2

log
(

1−et
et

)
;

6. Update wt+1,i ← wt,i exp(−αtyihi(xi));
7. Normalize wt+1 to

∑
i wt+1,i = 1;

Output H(x) as in Equ.(3).

Fig. 3. The AdaBoost learning procedure

In our system, a weak classifier is defined based on a single feature (i.e. an LBP
histogram bin value). A weak classifier gives an output of +1 or -1, by thresholding the
feature, at an appropriate threshold value learned with a weak learner procedure. This
is unlike the Chi square distance based weak classifiers used in [10]. We find that the
bin based weak classifiers can do a better job in both training and testing.

4 Learning to Fuse 2D and 3D

Now we present a method for fusing 2D and 3D information at both feature and decision
levels. In the fusion of the 2D and 3D information, we do not make assumptions on
how the information is correlated between 2D and 3D nor do we require that there
are correspondences between 2D and 3D images. The only requirement is that faces
in 2D and 3D images are properly aligned and normalized, respectively, as a result of
pre-processing. Then, everything is learned automatically. We use the same AdaBoost
learning procedure as above for the 3D+2D fusion as follows:

For every pixel location in an image (2D or 3D), an LBP code is computed. There
are L + 1 = 59 possible LBP code types. A histogram of 59 bins is calculated, over a
local sub-window centered at the pixel, to account for the distributions of the 59 types
of features in the sub-window. For each intra-pair or inter-pair of 2D or 3D images, the
Chi square distance is computed, according to Eq.(2), to account for the differences of
the two corresponding local LBP histograms, and will be used as the feature to measure
the dissimilarity between the two local image patches. The distributions of that Chi
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distances for the positive and negative examples at the local patch are then analyzed by
considering all the intra-pairs or inter-pairs. Such statistics are computed over all the
image locations and for both 2D and 3D images.

AdaBoost is applied to select most effective features from the complete 3D+2D
difference feature set. At each iteration, the best LBP feature is selected, among all the
locations for the 2D and 3D images, according to the distributions of the Chi square
distances of the LBP histograms, such that the feature provides the best discriminative
power. A weak classifier is then constructed by thresholding the Chi square distance.
The weak classifiers are then combined into a strong one. This way, the AdaBoost
based procedure provides a systematic approach for 3D+2D fusion at both feature and
decision levels.

5 Experimental Results

The purpose of the experiments presented below is to compare the proposed boosting
learning methods with the baseline PCA methods in their performance for 3D, 2D and
3D+2D face recognition.

5.1 Data Description

A large 3D+2D database is created for the experiments using a Minolta 3D digitizer,
which produces a range image and the corresponding color image. The images are taken
near-frontal but with varying pose, expression, and lighting changes. The database is
composed of 2305 images of persons. It is divided into three sets. The composition of
the data for the training, gallery and probe sets is summarized in Table 1. The images
are preprocessed and cropped into 138x118 pixels. Figure 4 gives some examples of the
preprocessed imaged.

Table 1. Data Composition

3D Data Num. of Images Num. of Persons
Train 945 246

Gallery 252 252
Probe 1108 252

2D Data Num. of Images Num. of Persons
Train 945 246

Gallery 252 252
Probe 1108 252

Before PCA the pixel vectors are first scaled such that the mean value of the vectors
is zero and the standard deviation is one. We choose the top 99 percent of the energy
and distance metric is L2. By computing the distance between the images in 2D and
3D set, respectively, we can get two similarity scores matrix. But the performance of
the PCA on 2D or 3D is not good enough. Therefore, we fuse the scores to improve the
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Fig. 4. Examples of 3D images and the corresponding 2D images of a person

Fig. 5. The first 5 features for 3D (top) and for 2D (bottom) learned by AdaBoost

Fig. 6. Cumulative Match Curves for 3D and 2D

classifying performance. Before fusing the scores from each modality, the scores are
normalized to [0, 100] and then fused by the sum rule. The weight is computed accord-
ing to the method being mentioned in [6]. By fusing at decision levels, the performances
are improved significantly.
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Fig. 7. The first 10 LBP features learned by boosted fusion of 3D+2D, ranked 1 to 10 from left to
right, from top to bottom. Among these top 10, 7 features are from 3D data and 3 from 2D.

Fig. 8. Cumulative Match Curves for 3D+2D fusion

5.2 Boosted 3D and 2D Face Recognition

An AdaBoost classifier is trained for 3D faces and another trained for 2D faces recogni-
tion, separately. The 3D model 83 weak classifiers whereas the 2D model has 170 weak
classifiers. Fig.5 shows the first 5 features for 3D and the first 5 for 2D. The comparative
results are shown in Fig.6 in terms of cumulative match curves (CMC). From the CMC
curves we conclude that the boosting learning method is superior to the PCA method.

5.3 Boosted Fusion of 3D+2D Face Recognition

For 3D+2D fusion, we trained a boosted model selected 97 most significant features.
Of the 97 features, 59 are from 3D and 38 from 2D. Fig.7 shows the first 10 features
for the 3D+2D fusion. We notice that the first 2 features in the AdaBoost 3D+2D fusion
model (Fig.7) correspond to the first 2 features of 3D only model (Fig.5); and that there
are more 3D features than 2D ones.
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To contrast with the proposed AdaBoost learning fusion scheme, two non-boosting
fusion schemes are included: The first is the PCA-based 3D+2D fusion (called “CBF’
score fusion, described at the end of Section 3 of [17]), which is the baseline fusion
performance. The second uses a sum rule to fuse the two AdaBoost classification scores.
The comparative results are shown in Fig.8 in terms of cumulative match curves (CMC).
From the CMC curves we conclude that fusing AdaBoost scores performs better than
fusing PCA scores; and that fusion at both feature and decision levels by the proposed
AdaBoost learning achieves the best performance of the three compared schemes.

6 Conclusion

In this paper, we explore synergies of 3D and 2D modalities by proposing a systematic
framework for fusing 2D and 3D face recognition at both feature and decision levels.
To our knowledge, this is the first work of this kind and is the main contribution of
the paper. Another contribution is the novel LBP+AdaBoost learning method for 3D
face recognition. We have demonstrated by experiments the effectiveness of the two
contributions in 3D face recognition and in 3D+2D fusion. The successful fusion of
3D+2D at both feature and decision level has verified a conjecture made in [14] that “it
is at least potentially more powerful to exploit possible synergies between the the two
modalities in the interpretation of the data.”
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