
Learning to Generalize:
Meta-Learning for Domain Generalization

Da Li, Yongxin Yang, Yi-Zhe Song
Queen Mary University of London

{da.li, yongxin.yang, yizhe.song}@qmul.ac.uk

Timothy M. Hospedales
The University of Edinburgh

t.hospedales@ed.ac.uk

Abstract

Domain shift refers to the well known problem that a model
trained in one source domain performs poorly when applied
to a target domain with different statistics. Domain Gener-
alization (DG) techniques attempt to alleviate this issue by
producing models which by design generalize well to novel
testing domains. We propose a novel meta-learning method
for domain generalization. Rather than designing a specific
model that is robust to domain shift as in most previous
DG work, we propose a model agnostic training procedure
for DG. Our algorithm simulates train/test domain shift dur-
ing training by synthesizing virtual testing domains within
each mini-batch. The meta-optimization objective requires
that steps to improve training domain performance should
also improve testing domain performance. This meta-learning
procedure trains models with good generalization ability to
novel domains. We evaluate our method and achieve state of
the art results on a recent cross-domain image classification
benchmark, as well demonstrating its potential on two classic
reinforcement learning tasks.

Introduction

Humans are adept at solving tasks under many different con-
ditions. This is partly due to fast adaptation, but also to a
lifetime of encountering new task conditions providing the
opportunity to develop of strategies that are robust to dif-
ferent task contexts. If a human discovers that their existing
strategy fails in a new context they do not just adapt, but fur-
ther try to update their strategy to be more context indepen-
dent, so that next time they arrive in a new context they are
more likely to succeed immediately. We would like artificial
learning agents to solve many tasks under different condi-
tions (domains) and similarly solve the second order task of
constructing models that are robust to change of domain and
perform well ‘out of the box’ in new domains. For exam-
ple we might like computer vision systems to recognize ob-
jects immediately and without retraining, when the camera
type is changed (Patel et al. 2015), or reinforcement learn-
ing trained agents to perform well immediately when placed
in a new environment or subjected to changed morphology
(Taylor and Stone 2009) – without waiting for adaptation.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Standard learning approaches tend to break down when
applied in different conditions (i.e. to data with different
statistics) than used for training. This is known as domain
or covariate shift (Storkey and Sugiyama 2007), and seri-
ously affects the usefulness of machine learning models as
we do not always have access to training data that is ex-
actly representative of the intended testing scenario. Ap-
proaches to addressing this issue can be categorized into do-
main adaptation (DA) and domain generalization (DG). DA
is relatively well studied, and addresses using unlabelled or
sparsely labelled data in the target domain to quickly adapt a
model trained in a different source domain (Patel et al. 2015;
Csurka 2017). The less well studied DG addresses build-
ing models that by design function well even in new tar-
get/testing domains. In contrast to DA, a DG model is not
updated after training, and the issue is how well it works
out of the box in a new domain. The few existing DG meth-
ods typically train on multiple source domains and propose
mechanisms to extract some domain agnostic representation
or model that describes common aspects of known domains
(Khosla et al. 2012; Muandet, Balduzzi, and Schölkopf
2013; Ghifary et al. 2015; Li et al. 2017). They assume that
such a common factor among existing source domains will
persist to new testing domains, and thus provide a basis for
generalization. DG is a harder problem than DA in that it
makes fewer assumptions (target data not required) but for
the same reasons, it may be more valuable if solved.

We take a meta learning approach to DG. Rather than
proposing a specific model suited for DG (Khosla et al.
2012; Ghifary et al. 2015; Li et al. 2017), we propose
a model-agnostic training algorithm that trains any given
model to be more robust to domain shift. This is related to
the long standing idea of learning to learn (Thrun and Pratt
1998; Schmidhuber, Zhao, and Wiering 1997), which has
recently seen a resurgence of popularity with applications
to few-shot learning (Finn, Abbeel, and Levine 2017; Ravi
and Larochelle 2017) and learning optimizers (Andrychow-
icz et al. 2016). The most related of these studies to ours is
the MAML approach of (Finn, Abbeel, and Levine 2017).
MAML takes a meta-learning approach to few-shot learn-
ing by training a single model on a set of source tasks
that is only a few gradient descent steps away from a good
task-specific model. This meta-optimization objective trains
models suited for few-shot fine-tuning to new target tasks.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3490

The DG problem is different because we to transfer across
domains rather than tasks, and because DG assumes zero,
rather than few training examples of the target problem.

Our meta-learning domain generalization approach
(MLDG) provides a model agnostic training procedure that
improves the domain generality of a base learner. Specif-
ically, MLDG trains a base learner on a set of source do-
mains by synthesizing virtual training and virtual testing do-
mains within each mini-batch. The meta-optimization ob-
jective is then: to minimize the loss on the training domains,
while also ensuring that the direction taken to achieve this
also leads to an improvement in the (virtual) testing loss.
We present analyses that give various perspectives on this
strategy, including as following an optimization trajectory
where the virtual training and virtual testing gradients are
aligned. Overall our MLDG approach has several key bene-
fits: As a meta-learning procedure, it does not introduce any
new parameters, unlike other model-based DG approaches
that grow parameters linearly in the number of source do-
mains (Khosla et al. 2012; Ghifary et al. 2015; Li et al. 2017;
Bousmalis et al. 2016) resulting in large numbers of to-
tal parameters. Similarly MLDG does not place any con-
straint on the architecture of the base learner and more-
over can be applied to both supervised and reinforcement
learning; where prior DG alternatives (Khosla et al. 2012;
Ghifary et al. 2015; Li et al. 2017) both constrain the model
architecture and address supervised learning.

To summarize our contributions: We develop a gradient-
based meta-learning algorithm that trains models for im-
proved domain generalization ability. Our algorithm can
train any type of base network and applies to both super-
vised and reinforcement learning settings. We evaluate our
approach on a very recent cross domain image recognition
benchmark and achieve state of the art results, as well as
demonstrating its promising applicability to two classic re-
inforcement learning tasks.

Related Work

Multi-Domain Learning (MDL) MDL addresses train-
ing a single model that is effective for multiple known
domains (Daumé 2007; Yang and Hospedales 2015; Re-
buff, Bilen, and Vedaldi 2017; Bilen and Vedaldi 2017;
Zhao et al. 2017). Domain generalization often starts with
MDL on some source domains but addresses training a
model that generalizes well to held out unknown domains.

Domain Generalization Despite the variety of the dif-
ferent methodological tools, most existing DG methods are
built on three main strategies. The simplest approach is to
train a model for each source domain. When a testing do-
main comes, estimate the most relevant source domain and
use that classifier (Xu et al. 2014). A second approach is
to presume that any domain is composed of an underlying
globally shared factor and a domain specific component.
By factoring out the domain specific and domain-agnostic
component during training on source domains, the domain-
agnostic component can be extracted and transferred as a
model that is likely to work on a new source domain (Khosla
et al. 2012; Li et al. 2017). Finally, there is learning a

domain-invariant feature representation. If a feature repre-
sentation can be learned that minimizes the gap between
multiple source domains, it should provide a domain in-
dependent representation that performs well on a new tar-
get domain. This has been achieved with multi-view au-
toencoders (Ghifary et al. 2015) and mean map embedding-
based techniques (Muandet, Balduzzi, and Schölkopf 2013).
It has also been achieved based on gradient reversal domain
confusion losses in deep networks (Ganin and Lempitsky
2015; Bousmalis et al. 2016). Here multiple source domains
are trained with an additional multi-task loss that prefers a
shared representation for which domains are indistinguish-
able. Although initially proposed for DA rather than DG,
these approaches can be adapted to the DG setting (Li et al.
2017). In contrast to these studies, ours is the first to ad-
dresses domain generalization via meta-learning.

Neural Network Meta-Learning Meta-learning for neu-
ral networks has a long history (Thrun and Pratt 1998;
Schmidhuber, Zhao, and Wiering 1997), but have resurged
in popularity recently. Recent meta-learning studies have fo-
cused on learning good weight initializations for few-shot
learning (Finn, Abbeel, and Levine 2017; Parisotto, Ba, and
Salakhutdinov 2016), meta-models that generate the param-
eters of other models (Vinyals et al. 2016; Li et al. 2017), or
learning transferable optimizers (Ravi and Larochelle 2017;
Andrychowicz et al. 2016). Our approach is most related to
those that learn transferable weight initializations, notably
MAML (Finn, Abbeel, and Levine 2017). In MAML a single
shared source model shared is trained using multiple source
tasks. The meta-learning process simulates transfer learning
by fine-tuning, so the global model is updated to solve each
source task in turn based on a few examples and a few gra-
dient descent steps. By training the source model such that
all simulated testing tasks fine-tune well, meta-learning pro-
duces a source model that is easy to adapt. Both MAML and
our MLDG are model agnostic in that they apply to any base
architecture and both supervised and to reinforcement learn-
ing settings. However, MAML addresses few-shot transfer
to new tasks, rather than zero-shot transfer to new domains.
In our case a different meta-learning objective is necessary
because in DG we will not have access to target examples for
fine-tuning during the actual testing. Therefore we propose
a new meta-learning objective based around simulating do-
main shift and training such that steps to improve the source
domain also improve the simulated testing domains.

Methodology

Meta-Learning Domain Generalization

In the DG setting, we assume there are S source domains
S and T target domains T . All of them contain the same
task (same label space, and input feature space) but have
different statistics. We define a single model parametrized
as Θ to solve the specified task. DG aims for training Θ on
the source domains, such that it generalizes to the target do-
mains. To achieve this, at each learning iteration we split the
original S source domains S into S−V meta-train domains

S̄ and V meta-test domains S̆ (virtual-test domain). This is
to mimic real train-test domain-shifts so that over many iter-

3491

Algorithm 1 Meta-Learning Domain Generalization

1: procedure MLDG
2: Input: Domains S
3: Init: Model parameters Θ. Hyperparameters α, β, γ.
4: for ite in iterations do
5: Split: S̄ and S̆ ← S
6: Meta-train: Gradients ∇Θ = F ′

Θ(S̄; Θ)
7: Updated parameters Θ′ = Θ− α∇Θ

8: Meta-test: Loss is G(S̆; Θ′).
9: Meta-optimization: Update Θ

Θ = Θ− γ
∂(F(S̄; Θ) + βG(S̆; Θ− α∇Θ))

∂Θ

10: end for
11: end procedure

Algorithm 2 MLDG for Reinforcement Learning

1: procedure MLDG-RL
2: Input: Environment domains S
3: Init: Policy params Θ, Hyperparameters α, β, γ.
4: for ite in iterations do
5: Split: S̄ and S̆ ← S
6: Meta-train:
7: Collect trajectories τ̄ applying policy Θ in S̄ .
8: Loss: F(τ̄ ,Θ).
9: Gradient: ∇Θ = F ′

Θ(τ̄ ,Θ).
10: Updated parameters: Θ′ = Θ− α∇Θ.
11: Meta-test:
12: Collect trajectories τ̆ applying policy Θ

′

in S̆ .
13: Loss G(τ̆ ,Θ− α∇Θ).
14: Meta-optimization:

Θ = Θ− γ
∂(F(τ̄ ,Θ) + βG(τ̆ ,Θ− αF ′(τ̄ ,Θ)))

∂Θ

15: end for
16: end procedure

ations we can train a model to achieve good generalization
in the final-test evaluated on target domains T . The over-
all methodological flow is illustrated schematically in Fig. 1
and summarized in Algorithm 1. This model-agnostic ap-
proach can be flexibly applied to both supervised and rein-
forcement learning as elaborated in the following sections.

Supervised Learning

We first describe how to apply our method to supervised
learning. We assume a loss function l(ŷ, y) between the pre-
dicted and true labels ŷ and y. For example in multi-class
classification the cross-entropy loss: l(ŷ, y) = −ŷ log(y).
The process is outlined in the steps below.
Meta-Train The model is updated on all the S−V meta-
train domains S̄ in aggregate, and the loss function is,

F(·) =
1

S − V

S−V∑

i=1

1

Ni

Ni∑

j=1

ℓΘ(ŷ
(i)
j , y

(i)
j) (1)

Figure 1: Illustration of our Meta-Learning Domain Gener-
alization method. Symbols represent different data domains.

where y
(i)
j indicates the jth point among Ni in the ith do-

main. The model is parametrized by Θ, so the gradient of Θ
calculated respect to this loss function is ∇Θ, and optimiza-

tion will update the model as Θ
′

= Θ− α∇Θ.
Meta-Test In each mini-batch the model is also virtu-
ally evaluated on the V meta-test domains S̆ . This meta-test
evaluation simulates testing on new domains with different
statistics, in order to allow learning to generalize across do-
mains. The loss for the adapted parameters calculated on the
meta-test domains is as below,

G(·) =
1

V

V∑

i=1

1

Ni

Ni∑

j=1

ℓΘ′ (ŷ
(i)
j , y

(i)
j) (2)

where, Ni is the number samples of the ith meta-test do-
main, and the loss on the meta-test domain is calculated us-
ing the updated parameters Θ

′

from meta-train. This means
that for optimization with respect to G we will need the sec-
ond derivative with respect to Θ.
Summary The meta-train and meta-test are optimized si-
multaneously, so the final objective is:

argmin
Θ

F(Θ) + βG(Θ− αF ′(Θ)) (3)

where α is the meta-train step size and β weights meta-train
and meta-test. Objective (Eq. 3) is itself trained by gradient
descent (Alg. 1).
Final-Test After Eq. 3 is optimized to convergence on the
source domains, we deploy the final model Θ on the truly
held-out target domain(s).

Reinforcement Learning

In application to the reinforcement learning (RL) setting, we
now assume an agent with a policy π that inputs states x
and produces actions a in a sequential decision making task:
at = πΘ(xt). The agent operates in an environment defined
by a Markov decision process (MDP) q(xt+1|xt, at) and its
goal is to maximize its return, the (potentially discounted)
sum of rewards R =

∑
t δ

tRt(xt, at).
While tasks in a supervised learning setting map to reward

functions in an RL setting (Finn, Abbeel, and Levine 2017),
domains map to solving the same task (reward function)
with differences in the environment (MDP or observation

3492

function). Thus DG is to achieve an agent with improved
generalization ability in the sense of maintaining ability to
maximize reward when subject to changes in its operating
environment (MDP) – without being allowed any rewarded
(≈ supervised domain adaptation (Finn, Abbeel, and Levine
2017; Ammar et al. 2014; Zhao et al. 2017)), or un-rewarded
(≈ unsupervised domain adaptation (Finn et al. 2017; Am-
mar et al. 2015)) trials in the target environment for adapta-
tion. The key idea is still to achieve DG by simulating train-
test domain shift during training. Meta-optimization then
trains for generalization across environmental conditions.
The overall process is summarized in Algorithm 2 and elu-
cidated in the steps below. Note that the MLDG strategy can
be straightforwardly applied on-policy with policy-gradient
(PG) (Williams 1992), or off-policy with Q-learning (Mnih
et al. 2015). For simplicity we describe the PG variant.
Meta-train: In meta-training, the loss function F(·) now
corresponds to the negative return R of policy πΘ, aver-
aged over all the meta-training environments in S̄ . Update
of the policy parameters Θ is performed by REINFORCE
(Williams 1992) (or Q-learning (Mnih et al. 2015)), leading

to updated parameters Θ
′

.
Meta-test: Similarly to the SL approach, we now evaluate

the model on V meta-test domains S̆. The meta-test loss G is
again the average negative return on meta-test environments.
For RL calculating this loss requires rolling out the meta-

train updated policy Θ
′

in the meta-test domains to collect
new trajectories and rewards.

Analysis of MLDG

We provide some analysis to help better understand the pro-
posed method and its motivation. The MLDG objective is:

argmin
Θ

F(Θ) + βG(Θ− αF ′(Θ)) (4)

where F(.) is the loss from the aggregated meta-train do-
mains (Eq. 1), G(.) is the loss from the aggregated meta-test
domains (Eq. 2), and F ′(Θ) is the gradient of the training
loss F(Θ) w.r.t ‘Θ’. This can be understood as: “tune such
that after updating the meta-train domains, performance is
also good on the meta-test domains”.

For another perspective on the MLDG objective, we can
do the first order Taylor expansion for the second term, i.e.

G(x) = G(ẋ) + G′(ẋ)× (x− ẋ) (5)

where ẋ is an arbitrary point that is close to x. The multi-
variable form x is a vector and G(x) is a scalar.

Assume we have x = Θ− αF ′(Θ), and we choose the ẋ
to be Θ. Then, we have

G(Θ− αF ′(Θ)) = G(Θ) + G′(Θ) · (−αF ′(Θ)) (6)

and the objective function becomes

argmin
Θ

F(Θ) + βG(Θ)− βα(G′(Θ) · F ′(Θ)). (7)

This reveals that we want to: (i) minimize the loss on
both meta-train and meta-test domains, and (ii) maximize
the dot product of G′(Θ) and F ′(Θ). Minimizing the loss

on both domains (i) is intuitive. To understand (ii), recall
the dot operation computes the similarity of two vectors:
a · b = ||a||2||b||2 cos(δ), where δ is the angle between vec-
tors a and b. If a and b are unit normalized, this computes
cosine similarity exactly. Though G′(Θ) and F ′(Θ) are not
normalized, the dot product is still larger if these vectors are
in a similar direction.

Since G′(Θ) and F ′(Θ) are loss gradients in two sets
of domains, then ‘similar direction’ means the direction of
improvement in each set of domains is similar. Thus the
overall objective can be seen as: “tune such that both do-
mains’ losses are minimized, and also such that they de-
scend in a coordinated way”. In a conventional optimiza-
tion of argminΘ F(Θ) + G(Θ), there is no such constraint
on coordination. The optimizer will happily tune asymmet-
rically, e.g., focusing on which ever domain is easier to min-
imize. The regularization provided by the third term in Eq. 7
prefers updates to weights where the two optimization sur-
faces agree on the gradient. It reduces overfitting to a single
domain by finding a route to minimization where both sub-
problems agree on the direction at all points along the route.

Alternative Variants of MLDG

Based on the discussion above, we propose some variants
inspired by the vanilla MLDG method. Variant MLDG-GC
in Eq. 8 is based on the Taylor expansion and gradient align-
ment intuition discussed earlier – with the regulariser up-
dated to normalize the gradients so that it indeed computes
cosine similarity.

argmin
Θ

F(Θ) + βG(Θ)− βα
F ′(Θ) · G′(Θ)

‖F ′(Θ)‖2‖G′(Θ)‖2
(8)

Another perspective on ‘similar direction’ gradients is that
once meta-train has converged, you also no longer need to
update the parameters on the meta-test domains. I.e., at a
good solution, meta-test gradients are close to zero. With
this intuition variant MLDG-GN is proposed in Eq. 9.

argmin
Θ

F(Θ) + β‖G′(Θ− αF ′(Θ))‖22 (9)

Clearly MLDG-GN needs a good initialization to be reason-
able, so we initialize MLDG-GN with the domain aggrega-
tion baseline. In the experiments section we will compare
these alternative variants to the initially proposed MLDG.
Related Methods Related to MLDG-GN, squared gradi-
ent magnitude loss (SGM) was concurrently proposed in
(Hariharan and Girshick 2017) for few-shot recognition. The
objective function with SGM loss has the form F(Θ) +
β‖G′(Θ)‖22. This similar to Eq. 9 when α = 0, but the dif-
ference is that, F and G are classification losses for a large
dataset and a small dataset respectively (to simulate the few-
shot learning scenario), and there is no domain (distribution)
shift between these two datasets, though the small one is in-
adequate to fit the classifier well. These methods are similar
in that they are both looking for matched classifiers (between
large and small datasets v.s. between meta-train and meta-
test datasets), but their motivations are different: to reduce
the required training data v.s. to make the model domain in-
variant.

3493

(a) Synthetic training domains for binary classification

(b) Learned decision boundaries. From left to right: MLP-All;
MLDG; MLDG-GC; MLDG-GN.

Figure 2: Synthetic experiment illustrating MLDG.

Experiments

To evaluate our method, we compare it with various alter-
natives on four different problems, including an illustrative
synthetic experiment, a challenging recent computer vision
benchmark for multi-class classification across different do-
mains, and two classic reinforcement learning problems,
Cart-Pole and Mountain Car. In each case we compare to
the baseline of aggregating the data from all source domains
to train a single model that ignores domains entirely, as well
as various alternative DG methods. As shown in (Li et al.
2017), the former simple baseline can be very effective and
outperform many purpose designed DG models.

Experiment I: Illustrative Synthetic Experiment

To illustrate our approach, we construct a synthetic binary
classification experiment. We synthesize nine domains by
sampling curved deviations from a diagonal line classifier.
We treat eight of these as sources for meta-learning and hold
out the last for final-test. Fig. 2a shows the nine synthetic do-
mains which are related in form but differ in the details of
their decision boundary. A one-hidden layer MLP (50 hid-
den neurons, RELU activation) is used as the base classifier.
Baselines: MLP-All: Simple baseline of aggregating all
source domains for training. MLDG: Our main proposed
MLDG method (Eq. 4). MLDG-GC and MLDG-GN: vari-
ants of our method in Eq. 8 and Eq. 9 respectively.
Results: From the results Fig. 2 we can see that the base-
line MLP-ALL over-fits on the training domains. Despite
aggregating eight sources, it fits a curve in the bottom left
corner rather than the underlying diagonal line. Our methods

all draw nearly straight lines. These results illustrate that the
MLDG approach helps to avoid overfitting to specific source
domains and learn a more generalizable model.

Experiment II: Object Recognition

We next evaluate the efficacy of MLDG on a recent challeng-
ing object recognition DG task in computer vision. Specif-
ically, we used the PACS multi-domain recognition bench-
mark, a new dataset designed for the cross-domain recogni-
tion problems (Li et al. 2017)1. This dataset has 9991 im-
ages in total across 7 categories (‘dog’, ‘elephant’, ‘giraffe’,
‘guitar’, ‘house’, ‘horse’ and ‘person’) and 4 domains of dif-
ferent stylistic depictions (‘Photo’, ‘Art painting’, ‘Cartoon’
and ‘Sketch’). The diverse depiction styles provide a signif-
icant domain gap. The goal is to train in set of domains and
recognize objects in a disjoint domain. E.g., recognize pho-
tos given only various artistic depictions for training.
Baselines: We use the ImageNet pre-trained AlexNet
CNN (Krizhevsky, Sutskever, and Hinton 2012) as the base
network in each competitor for fair comparison, and com-
pare the following models: D-MTAE: a multi-task auto en-
coder designed for the DG problems (Ghifary et al. 2015).
Deep-All: Vanilla AlexNet trained on the aggregation of
data from all source domains. This baseline that outper-
forms many prior DG methods as presented in (Li et al.
2017). DSN: The domain separation network learns specific
and shared representation components for the source and
target domains (Bousmalis et al. 2016). We re-purpose the
original DSN from the domain adaptation to the DG task.
AlexNet+TF: the low-rank parametrized network provides
prior state of the art on this benchmark (Li et al. 2017).
Settings: We implement MLDG in Tensorflow. We use
SGD optimizer with learning rate 5e− 4 (exponential decay
is used with decay step 15k and decay rate 0.96) and mini-
batch 64. Meanwhile, parameters α, β, γ are set to 5e−4, 1.0
and 5e− 4. For final-test, we use the best performing model
on the validation set after 45k iterations.
Results: The comparison with state of the art on the PACS
benchmark is shown in Table 1. From the results, we can see
that MLDG surpasses the other baselines including the best
prior method AlexNet+TF (Li et al. 2017). We note that this
good performance is achieved without any special architec-
ture design and without growing the size of the model in
proportion to the number of domains (both of which are re-
quired in each of D-MTAE, DSN, and AlexNet+TF). This
illustrates the flexibility of MLDG, and also highlights that
its scalability compared to alternatives. AlexNet+TF for ex-
ample requires approximately 2GB of memory per domain
with batch size 64, meaning that it cannot be applied to more
than 5 source domains on a contemporary GPU.
Analysis of MLDG learning: We next perform some ab-
lation experiments to understand: (i) whether it is important
to use MLDG end-to-end way within a CNN, and (ii) verify
the impact of the meta-optimization strategy specifically.

To answer the first question of where it is important to em-
ploy MLDG learning, we compare the variant MLDG (FC):
Only apply MLDG learning on the FC layers of AlexNet.

1http://sketchx.eecs.qmul.ac.uk

3494

Table 1: Cross-domain recognition accuracy (Multi-class accuracy) on the PACS dataset. Best performance in bold.

D-MTAE (Ghifary et al. 2015) Deep-all DSN (Bousmalis et al. 2016) AlexNet+TF (Li et al. 2017) MLDG (CNN)

art painting 60.27 64.91 61.13 62.86 66.23
cartoon 58.65 64.28 66.54 66.97 66.88
photo 91.12 86.67 83.25 89.50 88.00
sketch 47.86 53.08 58.58 57.51 58.96

Ave. 64.48 67.24 67.37 69.21 70.01

Table 2: PACS benchmark: Ablation study of MLDG.

Deep-All MLDG (α = 0) MLDG (FC) MLDG (CNN)

art painting 64.91 64.37 65.54 66.23
cartoon 64.28 65.39 66.37 66.88
photo 86.67 86.67 88.30 88.00
sketch 53.08 55.29 55.34 58.96

Ave. 67.24 67.93 68.89 70.01

Table 3: PACS benchmark: Evaluation of MLDG variants.

Deep-All MLDG-GC (Eq. 8) MLDG-GN (Eq. 9)

art painting 64.91 64.71 63.64
cartoon 64.28 65.30 63.47
photo 86.67 86.79 87.88
sketch 53.08 56.92 54.94

Ave. 67.24 68.43 67.48

This is in contrast to our full model MLDG (CNN) , which
applies learning to all layers of AlexNet. Comparing MLDG
(FC) to vanilla Deep-All AlexNet in Table 2, we see a benefit
of ≈ 1.6% is obtained by MLDG learning on the FC layers.
Comparing full MLDG we see that a further ≈ 1.1% benefit
is obtained by applying MLDG learning to the convolutional
layers, for a total of ≈ 2.7% margin over Deep-All.

To verify the impact of the meta-optimization strategy, we
apply MLDG with setting α = 0, in which case the objective
is merely the sum of the training and validation (meta-test)
domains’ losses. From the results in Table 2, we see that it
performs comparably with Deep-All. Thus the key benefit of
MLDG is indeed in the meta-optimization step.
Analysis of MLDG variants: In the Table 3, the orig-
inal MLDG method is compared to the two variants also
proposed in the methodology. In this experiment we found
that while the MLDG-GC (cosine) and MLDG-GN (gradient
norm) variants provide some benefit compared to Deep-All,
the vanilla MLDG performs best.

Experiment III: Cart-Pole

We next demonstrate that MLDG also applies to RL prob-
lems. First we study the classic Cart Pole problem (Brock-
man et al. 2016). The objective is to balance a pole upright
by moving a cart. The action space is discrete – left or right.
The state it has four elements: the position and velocity of
cart and angular position and velocity of the pole.
Settings: We perform two sub-experiments by modifying
the OpenAI Gym simulator to provide environments with
different properties. In the first we vary one domain factor
by changing the pole length. We simulate 9 domains with
pole lengths [0.5, 1.0, . . . , 4.5]. In the second we vary multi-
ple domain factors – pole length [0.5, 2.5, 4.5] and cart mass
[1, 2, 3]. In both experiments we randomly choose 6 source

Table 4: Cart-Pole RL. Domain generalization performance
across pole length. Average reward testing on 3 held out do-
mains with random lengths. Upper bound: 200.

Method RL-Random-Source RL-All RL-Undobias
Return 133.74± 6.79 97.39± 73.49 113.52± 11.65
Method RL-MLDG RL-MLDG-GC RL-MLDG-GN
Return 165.34± 3.38 129.56± 2.51 175.25± 3.16

Table 5: Cart-Pole RL. Generalization performance across
both pole length and cart mass. Return testing on 3 held out
domains with random length and mass. Upper bound: 200.

Method RL-Random-Source RL-All RL-Undobias
Return 98.22± 20.35 144.21± 9.23 150.46± 17.59
Method RL-MLDG RL-MLDG-GC RL-MLDG-GN
Return 170.81± 9.90 147.76± 4.41 164.97± 8.45

domains for training and hold out 3 domains for (true) test-
ing. Since the game can last forever if the pole does not fall,
we cap the maximum steps to 200. We train on the observed
domains for 500 games per domain. Then, for each held-out
domain, we play 500 games, and report the average reward.
For fair comparison, the policy architecture for all models is
a 1-hidden layer neural network with 50 hidden units. The
reward structure is +1 for each time-step the pole is success-
fully balanced, so the maximum reward is 200. All meth-
ods are trained with vanilla REINFORCE policy gradient
(Williams 1992).
Baselines: We compare the following alternative ap-
proaches: RL-All: The reinforcement-learning analogy to
‘Deep-ALL’ in the recognition experiment. Trains a sin-
gle policy by aggregating the reward from all six source
domains. RL-Random-Source: Different from RL-All, it
trains on a single randomly selected source domain. Total
training trials are controlled so it gets the same number of
trials in one domain as RL-All gets in multiple domains.
RL-Undobias: Adaptation of the (linear) undo-bias model
of (Khosla et al. 2012) updated to non-linear multi-layer net-
work as per (Li et al. 2017). The neural network is trained to
factor domain-specific and a single domain-agnostic compo-
nents on six source domains. The domain agnostic compo-
nent is then transferred for testing on held out final-testing
domains. RL-MLDG: Our MLDG. RL-MLDG-GC: Our
MLDG variant. RL-MLDG-GN: Our MLDG variant. In
each mini-batch, we split the S = 6 source domains into
V = 2 meta-test and S − V = 4 meta-train domains.
Results: All experiments are repeated 10 times to re-
duce the impact of specific observed/held-out domain sam-
pling. From the results in Tables 4 and 5, we see the im-
pact of domain shift. No methods reach 200 (upper bound

3495

Table 6: Domain generalization performance for mountain
car. Failure rate (↓) and reward (↑) on held out testing do-
mains with random mountain heights.

Mountain Car RL-Random-Source RL-All RL-Undobias

Avg. F Rate 0.55± 0.07 0.05± 0.02 0.08± 0.04
Avg. Return −191.07± 3.01 −141.35± 2.64 −124.48± 3.22

Mountain Car RL-MLDG RL-MLDG-GC RL-MLDG-GN

Avg. F Rate 0.05± 0.02 0.0± 0.0 1.0± 0.0
Avg. Return −125.73± 2.76 −311.80± 3.92 -

given the length cap) for unseen domains reliably. However,
the proposed MLDG provides the best domain generaliza-
tion and significantly outperform the baselines. It is inter-
esting to note that RL-Random-Source outperforms RL-All
in Table 4, which is different than in vision problems where
simply aggregating more domains is usually a reasonable
strategy. Although RL-All is exposed to more diverse data,
learning a single policy by naively ‘averaging’ over rewards
for multiple distinct problems can sometimes be detrimental
(Sung et al. 2017),

Analysis of MLDG variants: Comparing MLDG with its
variants MLDG-GC and MLDG-GN we found that MLDG-
GN is comparable to vanilla MLDG on this problem, while
MLDG-GC is slightly worse.

Experiment IV: Mountain Car

Our second RL experiment is the classic mountain car prob-
lem (Brockman et al. 2016). The car is positioned between
two mountains, and the agent needs to drive the car (back or
forth) so that it can hit the peak of the right mountain. The
difficulty of this problem is that the car engine is not strong
enough to drive up the right mountain directly. The agent has
to figure out a solution of driving up the left mountain to first
generate momentum before driving up the right mountain.
The state observation in this game consists two elements:
the position and velocity of the car. There are three available
actions: drive left, do nothing, and drive right.

Settings: We simulate domain bias by randomly draw-
ing the height of the mountains in each domain. Similar to
Cart-Pole, we simulate 9 domains in total, and 3 domains
are held-out. In contrast to Cart-Pole, it is very difficult for a
random policy to finish a full game, as it is likely to be stuck
forever. Thus instead of policy gradient, we use Q learning
(Watkins and Dayan 1992) for this problem as the base RL
algorithm, more specially DQNs (Mnih et al. 2015). For held
out domains we play 100 games each without updating. The
reward structure is -1 each time step before reaching the tar-
get. The Q-network is again a 1 hidden layer MLP.

Baselines: We evaluate the following alternatives RL-
Random-Source: Trains a single policy on one random
source domain. RL-All: Trains a single policy on 6 source
domains in aggregation. RL-Undobias: DG parametrized
Q-network adaptation of (Khosla et al. 2012; Li et al. 2017)
as per cart-pole. RL-MLDG: Our MLDG. And its variants
RL-MLDG-GC and RL-MLDG-GN. In each mini-batch,
we split the S = 6 source domains into V = 2 meta-test
domains, and S − V = 4 meta-train domains.

Results: All experiments are repeated 10 times to reduce

the impact of random observed/held-out domain splits. From
the results in Table 6, we again observe the performance
drops from observed domains and held-out domains. In this
benchmark, succeeding within 110 steps is a good outcome.
So a reward of -110 is a good score for within domain eval-
uation. I.e., in the absence of domain shift. Since it is possi-
ble for an agent to never succeed on this benchmark, par-
ticularly when testing in a distinct domain from training,
we apply a limit of 20, 000 steps maximum. For DG test-
ing, most methods have some failed trials (> 20, 000 steps)
in final-test. The average reward is calculated by ignoring
those failed cases. Therefore we report both failure rate and
the average reward (negative time to success) in the success-
ful cases. The results show that our vanilla MLDG method
outperforms the alternatives: (i) Its average reward is better
than RL-All and similar to RL-UndoBias. However (ii) its
fail rate is lower than RL-UndoBias. Unlike Cart-Pole here
RL-All is more effective than Random-Source.

Analysis of MLDG variants: Only vanilla MLDG per-
formed well here. MLDG-GC had low failure rate but low
return, while MLDG-GN had very high failure rate.

Discussion

The experiments show that MLDG-based meta-learning can
effectively alleviate domain-shift in diverse problems in-
cluding supervised and re-reinforcement learning scenarios.
Whether training on the aggregate of multiple source do-
mains was a good strategy turned out to be problem de-
pendent (yes for PACS vision benchmark and mountain car,
but not for cart pole). The extended variants of the MLDG
model MLDG-GC (explicit gradient direction alignment)
and MLDG-GN (gradient norm) also had mixed results with
MLDG-GC performing second best on PACS, but MLDG-
GN performing best on Cart-Pole. Nevertheless the core
MLDG strategy was highly effective across all problems and
always outperformed prior alternatives.

We note that studies have used the terms ‘domain’ and
‘task’ in different ways (Csurka 2017). Some problems we
solved here (e.g., poles of different length) have been termed
‘tasks’ in other studies (Ammar et al. 2014; Zhao et al.
2017), which would use ‘domain’ to refer to Cart-Pole ver-
sus Mountain Car. We use the term domain in the sense
of the pattern recognition community (Csurka 2017), where
one can learn a model with better ‘cross domain generaliza-
tion’. E.g. a recognition model that is robust to recognizing
photos vs sketches; or a policy that is more robust being de-
ployed with poles of a different length than it was trained
on. Note that if parameters like pole-length were observed,
this would be a ‘parametrized’ or ‘contextual’ policy situa-
tion - for which methods already exist (Kupcsik et al. 2013).
But in our case what meta-learning has achieved is to learn a
policy that is robust to (i.e., obtains high reward despite of)
hidden changes in the underlying MDP. For example balanc-
ing poles of diverse but unknown lengths.

Conclusion

We proposed a meta-learning algorithm for domain gen-
eralization. Our method trains for domain generalization

3496

by meta-optimization on simulated train/test splits with
domain-shift. Unlike prior model-based domain generaliza-
tion approaches, it scales well with number of domains. It
is model agnostic so can be applied to different base net-
work types, and both to supervised and reinforcement learn-
ing problems. Experimental evaluation shows state of the art
results on a recent challenging visual recognition benchmark
and promising results on multiple classic RL problems.
Acknowledgements This work was supported by EPSRC
(EP/R026173/1) and the European Union’s Horizon 2020
research and innovation program under grant agreement No
640891.

References

Ammar, H. B.; Eaton, E.; Ruvolo, P.; and Taylor, M. 2014.
Online multi-task learning for policy gradient methods. In
ICML.

Ammar, H. B.; Eaton, E.; Ruvolo, P.; and Taylor, M. E. 2015.
Unsupervised cross-domain transfer in policy gradient rein-
forcement learning via manifold alignment. In AAAI.

Andrychowicz, M.; Denil, M.; Gomez, S.; Hoffman, M. W.;
Pfau, D.; Schaul, T.; and de Freitas, N. 2016. Learning to
learn by gradient descent by gradient descent. In NIPS.

Bilen, H., and Vedaldi, A. 2017. Universal representa-
tions: The missing link between faces, text, planktons, and
cat breeds. In arXiv 1701.07275.

Bousmalis, K.; Trigeorgis, G.; Silberman, N.; Krishnan, D.;
and Erhan, D. 2016. Domain separation networks. In NIPS.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym.

Csurka, G. 2017. Domain Adaptation in Computer Vision
Applications. Springer.

Daumé, H. 2007. Frustratingly easy domain adaptation. In
ACL.

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In
ICML.

Finn, C.; Yu, T.; Fu, J.; Abbeel, P.; and Levine, S. 2017. Gen-
eralizing skills with semi-supervised reinforcement learn-
ing. In ICLR.

Ganin, Y., and Lempitsky, V. 2015. Unsupervised domain
adaptation by backpropagation. In ICML.

Ghifary, M.; Bastiaan Kleijn, W.; Zhang, M.; and Balduzzi,
D. 2015. Domain generalization for object recognition with
multi-task autoencoders. In ICCV.

Hariharan, B., and Girshick, R. 2017. Low-shot visual
recognition by shrinking and hallucinating features. In
ICCV.

Khosla, A.; Zhou, T.; Malisiewicz, T.; Efros, A. A.; and Tor-
ralba, A. 2012. Undoing the damage of dataset bias. In
ECCV.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS.

Kupcsik, A. G.; Deisenroth, M. P.; Peters, J.; and Neumann,
G. 2013. Data-efficient generalization of robot skills with
contextual policy search. In AAAI.

Li, D.; Yang, Y.; Song, Y.-Z.; and Hospedales, T. M. 2017.
Deeper, broader and artier domain generalization. In ICCV.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature.

Muandet, K.; Balduzzi, D.; and Schölkopf, B. 2013. Domain
generalization via invariant feature representation. In ICML.

Parisotto, E.; Ba, J. L.; and Salakhutdinov, R. 2016. Actor-
mimic: Deep multitask and transfer reinforcement learning.
In ICLR.

Patel, V.; Gopalan, R.; Li, R.; and Chellappa, R. 2015. Vi-
sual domain adaptation: A survey of recent advances. Signal
Processing Magazine.

Ravi, S., and Larochelle, H. 2017. Optimization as a model
for few-shot learning. In ICLR.

Rebuff, S.-A.; Bilen, H.; and Vedaldi, A. 2017. Learning
multiple visual domains with residual adapters. In NIPS.

Schmidhuber, J.; Zhao, J.; and Wiering, M. 1997. Shifting
inductive bias with success-story algorithm, adaptive levin
search, and incremental self-improvement. Machine Learn-
ing.

Storkey, A. J., and Sugiyama, M. 2007. Mixture regression
for covariate shift. In NIPS.

Sung, F.; Zhang, L.; Xiang, T.; Hospedales, T.; and Yang,
Y. 2017. Learning to learn: Meta-critic networks for sample
efficient learning. In arXiv 1706.09529.

Taylor, M. E., and Stone, P. 2009. Transfer learning for
reinforcement learning domains: A survey. JMLR.

Thrun, S., and Pratt, L. 1998. Learning to Learn. Springer.

Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.;
and Wierstra, D. 2016. Matching networks for one shot
learning. In NIPS.

Watkins, C., and Dayan, P. 1992. Q-learning. Machine
Learning.

Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning.

Xu, Z.; Li, W.; Niu, L.; and Xu, D. 2014. Exploiting low-
rank structure from latent domains for domain generaliza-
tion. In ECCV.

Yang, Y., and Hospedales, T. 2015. A unified perspective on
multi-domain and multi-task learning. In ICLR.

Zhao, C.; Hospedales, T.; Stulp, F.; and Sigaud, O. 2017.
Tensor based knowledge transfer across skill categories for
robot control. In IJCAI.

3497

