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Abstract

Synthetic images rendered by graphics engines are a

promising source for training deep networks. However, it is

challenging to ensure that they can help train a network to

perform well on real images, because a graphics-based gen-

eration pipeline requires numerous design decisions such as

the selection of 3D shapes and the placement of the cam-

era. In this work, we propose a new method that optimizes

the generation of 3D training data based on what we call

“hybrid gradient”. We parametrize the design decisions as

a real vector, and combine the approximate gradient and

the analytical gradient to obtain the hybrid gradient of the

network performance with respect to this vector. We evalu-

ate our approach on the task of estimating surface normal,

depth or intrinsic decomposition from a single image. Ex-

periments on standard benchmarks show that our approach

can outperform the prior state of the art on optimizing the

generation of 3D training data, particularly in terms of

computational efficiency.

1. Introduction

Synthetic images rendered by graphics engines have

emerged as a promising source of training data for deep net-

works, especially for vision and robotics tasks that involve

perceiving 3D structures from RGB pixels [7, 66, 59, 49, 39,

63, 8, 29, 55, 47, 46, 67, 33]. A major appeal of generating

training images from computer graphics is that they have a

virtually unlimited supply and come with high-quality 3D

ground truth for free.

Despite its great promise, however, using synthetic train-

ing images from graphics poses its own challenges. One of

them is ensuring that the synthetic training images are use-

ful for real-world tasks, in the sense that they help train a

network to perform well on real images. Ensuring this is

challenging because a graphics-based generation pipeline

requires numerous design decisions, including the selection

of 3D shapes, the composition of scene layout, the applica-

tion of texture, the configuration of lighting, and the place-

ment of the camera. These design decisions can profoundly

impact the usefulness of the generated training data, but

have largely been made manually by researchers in prior

work, potentially leading to suboptimal results.

In this paper, we address the problem of automatically

optimizing a generation pipeline of synthetic 3D training

data, with the explicit objective of improving the general-

ization performance of a trained deep network on real im-

ages.

One idea is black-box optimization: we try a particular

configuration of the pipeline, use the pipeline to generate

training images, train a deep network on these images, and

evaluate the network on a validation set of real images. We

can treat the performance of the trained network as a black-

box function of the configuration of the generation pipeline,

and apply black-box optimization techniques. Recent works

[65, 50] have explored this exact direction. Yang and Deng

[65] use genetic algorithms to optimize the 3D shapes used

in the generation pipeline. In particular, they start with

a collection of simple primitive shapes such as cubes and

spheres, and evolve them through mutation and combina-

tion into complex shapes, whose fitness is determined by

the generalization performance of a trained network. They

show that the 3D shapes evolved from scratch can provide

more useful training data than manually created 3D CAD

models. Meanwhile, Ruiz et al. [50] use black box rein-

forcement learning algorithms to optimize the parameters

of a simulator, and shows that their approaches converge to

the optimal solution in controlled experiments and can in-

deed discover good sets of parameters.

The advantage of black-box optimization is that it as-

sumes nothing about the function being optimized as long

as it can be evaluated. As a result, it can be applied to any

existing function, including advanced photorealistic render-

ers. On the other hand, black-box optimization is compu-

tationally expensive—knowing nothing else about the func-

tion, it needs many trials to find a reasonable update to the

current solution. In contrast, gradient-based optimization

can be much more efficient by assuming the availability of

the analytical gradient, which can be efficiently computed

and directly correspond to good updates to the current so-

lution, but the downside is that the analytical gradient is
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Figure 1. Our hybrid gradient method. We parametrize the design decisions as a real vector β and optimize the function of performance

L with respect to β. From β to the generated training images and ground truth, we compute the approximate gradient by averaging finite

difference approximations. From training samples X to L, we compute the analytical gradient through backpropagation with unrolled

training steps.

often unavailable, especially for many advanced photoreal-

istic renderers.

In this work, we propose a new method that optimizes

the generation of 3D training data based on what we call

“hybrid gradient”. The basic idea is to make use of the ana-

lytical gradient where they are available, and combine them

with black-box optimization for the rest of the function. We

hypothesize that hybrid gradient will lead to more efficient

optimization than black-box methods because it makes use

of the partially available analytical gradient.

Concretely, if we parametrize the design decisions as a

real vector β, the function mapping β to the network perfor-

mance L can decompose into two parts: (1) from the design

parameters β to the generated training images X , and (2)

from the training images X to the network performance L.

The first part often does not have analytical gradient, due

to the use of advanced photorealistic renderers. We instead

compute the approximate gradient by averaging finite dif-

ference approximations along random directions [36]. For

the second part, we compute the analytical gradient through

backpropagation—with SGD training unrolled, the perfor-

mance of the network is a differentiable function of the

training images. Then we combine the approximate gradi-

ent and the analytical gradient to obtain the hybrid gradient

of the network performance L with respect to the parame-

ters β, as illustrated in Fig. 1.

A key ingredient of our approach is representing design

decisions as real vectors of fixed dimensions, including the

selection and composition of shapes. Yang and Deng [65]

represent 3D shapes as a finite set of graphs, one for each

shape. This representation is suitable for a genetic algo-

rithm but is incompatible with our method. Instead, we pro-

pose to represent 3D shapes as random samples generated

by a Probabilistic Context-Free Grammar (PCFG) [21]. To

sample a 3D shape, we start with an initial shape, and re-

peatedly sample a production rule in the grammar to mod-

ify it. The (conditional) probabilities of applying the pro-

duction rules are parametrized as a real vector of a fixed

dimension.

Our approach is novel in multiple aspects. First, to the

best of our knowledge, we are the first to propose the idea

of hybrid gradient, i.e. combining approximate gradient and

analytical gradient, especially in the context of optimizing

the generation of 3D training data. Second, we propose a

novel integration of PCFG-based shape generation and our

hybrid gradient approach.

We evaluate our approach on the task of estimating sur-

face normal, depth and intrinsic components from a single

image. Experiments on standard benchmarks and controlled

settings show that our approach can outperform the prior

state of the art on optimizing the generation of 3D training

data, particularly in terms of computational efficiency.

2. Related Work

Generating 3D training data Synthetic images generated

by computer graphics have been extensively used for train-

ing deep networks for numerous tasks, including single im-

age 3D reconstruction [54, 22, 39, 23, 65, 9], optical flow

estimation [38, 7, 19], human pose estimation [59, 11], ac-

tion recognition [48], visual question answering [25], and

many others [45, 37, 63, 58, 46, 47, 62]. The success of

these works has demonstrated the effectiveness of synthetic

images.

To ensure the relevance of the generated training data to

real-world tasks, a large amount of manual effort has been

necessary, particularly in acquiring 3D assets such as shapes

and scenes [9, 23, 13, 64, 22, 39, 55]. To reduce manual

labor, some heuristics have been proposed to generate 3D

configurations automatically. For example, Zhang et al. [67]

design an approach to use the entropy of object masks and

color distribution of the rendered images to select sampled

camera poses. McCormac et al. [39] simulate gravity for

physically plausible object configurations inside a room.

Apart from simple heuristics, prior work has also per-

formed automatic optimization of 3D configurations to-

wards an explicit objective. For example, Yeh et al.

[66] synthesize layouts with the target of satisfying con-

straints such as non-overlapping and occupation. Jiang
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et al. [24] learn a probabilistic grammar model for indoor

scene generation, with parameters learned using maximum

likelihood estimation on the existing 3D configurations in

SUNCG [55]. Similarly, Veeravasarapu et al. [60] tune the

parameters for stochastic scene generation using generative

adversarial networks, targeting at making synthetic images

indistinguishable from real images. Qi et al. [44] synthesize

3D room layouts based on human-centric relations among

furniture, to achieve visual realism, functionality and natu-

ralness of the scenes. However, these optimization objec-

tives are different from ours, which is the generalization

performance of a trained network on real images.

In terms of generating 3D training data, the closest prior

works to ours are those of [65, 26, 50]. Specifically, Yang

and Deng [65] use a genetic algorithm to optimize the 3D

shapes used for rendering synthetic training images. Their

optimization objective is the same as ours except that their

optimization method is different: they leverage evolution-

based approach as apposed to using gradient information.

Similarly, Meta-Sim [26] also tries to optimize 3D param-

eters with REINFORCE towards better task generalization

performance, and Ruiz et al. [50] learn a policy for simu-

lator parameters also using REINFORCE. However, they

do not backpropagate analytical gradient from the meta-

objective, so their algorithms can be considered as black-

box estimation by multiple trials, with an improved ef-

ficient sampling strategy (REINFORCE). In our experi-

ments, we compared to an algorithm that has been shown

competitive to REINFORCE in training deep policy net-

works [36, 51, 56].

Unrolling and backpropagating through network train-

ing One component of our approach is unrolling and back-

propagating through the training iterations of a deep net-

work. This is a technique that has often been used by ex-

isting work in other contexts, including hyperparameter op-

timization [35], meta-learning [1, 20, 40, 31, 16] and oth-

ers [68, 12]. Our work is different in that we apply this

technique in a novel context: it is used to optimize the gen-

eration of 3D training data, and the gradient with respect to

the input images is integrated with approximate gradient to

form hybrid gradient.

Hyperparameter optimization Our method is connected

to hyperparameter optimization in the sense that we can

treat the design decisions of the 3D generation pipeline as

hyperparameters of the training procedure.

Hyperparameter optimization of deep networks is typ-

ically approached as black-box optimization [5, 4, 30, 6].

While Klatzer and Pock [28] propose a bi-level gradient-

based approach for continuous hyperparameter optimiza-

tion of Support Vector Machines, but it has not been applied

to deep networks and 3D generation. Since black-box op-

timization does not make assumption of the function being

optimized, it requires repeated evaluation of the function,

which is expensive in this case because it contains the pro-

cess of training and evaluating a deep network. In contrast,

we combine the analytical gradient from backpropagation

and the approximate gradient from generalized finite differ-

ence for more efficient optimization.

Domain Adaptation Researchers have also applied domain

adaptation techniques to transfer the knowledge learned

from synthetic data to real data. Like domain adaptation,

our method involves data from two domains: synthetic and

real. However, our setting is different: in domain adapta-

tion, the distribution of training data is fixed; in our setting,

we are concerned about generating and changing the distri-

bution of training data in the source domain.

Differentiable Rendering Researchers have also explored

differentiable rendering engines to obtain the gradient with

respect to the input 3D content such as mesh vertices, light-

ing intensity etc. [34, 27, 61, 32, 10]. Generally, they ob-

tain the gradient through backpropagation [27, 34] or sam-

pling [61, 32, 10]. The differentiable renderers often as-

sume simple surface reflectance and illumination model,

and they are typically developed for a specific 3D input for-

mat (such as triangle meshes and directional lighting) or a

specific rendering algorithm (such as path tracing). In fact,

we are not aware of any photorealistic differentiable ren-

derer that is differentiable over a shape parametrization that

allows not only continuous deformation but also topology

change. In our method, we assume nothing about the ren-

dering engine and obtain the gradient with respect to the de-

cision vector by approximation, bypassing the surface and

illumination model or any rendering algorithms. So our

method is flexible and not limited by choices of graphics

engines of any kind.

3. Problem Setup

Suppose we have a probabilistic generative pipeline. We

use a deterministic function, f(β, r) to represent the sam-

pling operation. This function f takes the real vector β and

the random seed r as input. An image and its 3D ground

truth are computed by evaluating the function f(β, r). By

choosing n different random seeds r, we obtain a dataset of

size n for training:

X = (f(β, r(1)), f(β, r(2)), · · · , f(β, r(n))) (1)

Then, a deep neural network with initialized weights

w0 is trained on the training data X , with the function

train(w0, X) representing the optimization process and

generating the weights of the trained network.

The network is then evaluated on real data X̂ with a val-

idation loss leval to obtain a generalization performance L:

L = leval(train(w0, X), X̂) (2)
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Combining the above two functions, L is a function of β,

and the task is to optimize this value L with respect to the

parameters β.

As we mentioned in the previous section, black-box al-

gorithms typically need repetitive evaluations of this func-

tion, which is expensive.

4. Approach

4.1. Generative Modeling of Synthetic Training
Data

We decompose the function f(β, r) into two parts: 3D

composition and rendering.

3D composition Context-free grammars have been used in

scene generation [24, 44] and in the parsing of the Con-

structive Solid Geometry (CSG) shapes [52] because they

can represent shapes and scenes in a flexible and compos-

able manner. Here, we design a probabilistic context-free

grammar (PCFG) [21] to control the random generation of

unlimited shapes [18].

In a PCFG, a tree is randomly sampled given a set of

probabilities. Starting from a root node, the nodes are ex-

panded by randomly sampling probabilistic rules repeatedly

until all the leaf nodes cannot expand. Since multiple rules

may apply, the parameters in a PCFG define the probability

distribution of applying different rules.

In our PCFG, a shape is constructed by composing two

other shapes through union and difference; this construction

is recursively applied until all leaf nodes are a predefined set

of concrete primitive shapes (terminals). The parameters

include the parameters of primitive shapes as well as the

probability of either expanding the node or replacing it with

a terminal.

Given our PCFG model with the probability parameters

βS , a 3D shape S can be composed by computing a deter-

ministic function fS given βS and a random string rS as the

input:

S = fS(βS , rS) (3)

Rendering training images we use a graphics renderer R
to render the composed shape S. The rendering configura-

tions P (e.g. camera poses), are also sampled from a distri-

bution controlled by a set of parameters βR (with a random

string rR):

P = fR(βR, rR) (4)

Now that we have Eq. 3 and 4, The full function for train-

ing data generation can be represented as follows:

f(β, r) = R(S, P ) = R(fS(βS , rS), fR(βR, rR)) (5)

where β = (βR, βS) and r = (rR, rS).
By sampling different random strings r, we obtain a set

of training images and their 3D ground truth X .

4.2. Hybrid Gradient

After training deep network on synthetic training data X ,

the network is evaluated on a set of validation images X̂ to

obtain the generalization loss L.

Recall that to compute the hybrid gradient ∂L
∂β to opti-

mize β, we multiply two types of gradient: the gradient of

network training ∂Lt

∂X and the gradient of image generation
∂X
∂β , as is shown in Fig. 2.

Analytical gradient from backpropagation We assume
the network is trained on a set of previously generated train-

ing images X(1), X(2), · · · , X(n). Without loss of gen-
erality, we assume mini-batch stochastic gradient descent
(SGD) with a batch size of 1 is used for weight update. Let
function g denote the SGD step and let ltrain denote the
training loss:

w
(k+1) = w

(k)
− η

∂ltrain(w
(k), X(k))

∂w(k)

= g(w(k)
, X

(k); ltrain, η)

(6)

Note that the SGD step g is differentiable with respect to

the network weights w(k) as well as the training batch X(k),

if our training loss ltrain is twice (sub-)differentiable. This

requirement is satisfied in most practical cases. To sim-

plify the equation, we assume the training loss ltrain and

the learning rate η do not change during one update step of

β, so the variables can be safely discarded in the equation.

Therefore, the gradient from the generalization loss L to

each sample X(k) can be computed through backpropaga-

tion. Given Eq. 6:

∂L

∂X(k)
=

∂L

∂w(k+1)
·

∂w(k+1)

∂X(k)
=

∂L

∂w(k+1)
· g

′

2(w
(k)

, X
(k))

∂L

∂w(k)
=

∂L

∂w(k+1)
·

∂w(k+1)

∂w(k)
=

∂L

∂w(k+1)
· g

′

1(w
(k)

, X
(k))

(7)

with the initial value ∂L
∂w(n+1) computed from the validation

loss leval:
∂L

∂w(n+1)
= l′eval(w

(k+1), X̂) (8)

Approximate gradient from finite difference For the for-

mulation in Eq. 5, the graphics renderer can be a gen-

eral black box and non-differentiable. We can approxi-

mate the gradient of each rendered image with ground truth

X(1), X(2), · · · with respect to the generation parameters β
using generalized finite difference. We adopt the form of

[36] because this gradient approximation algorithm in Ran-

dom Search has been shown effective for training deep pol-

icy networks [36, 51, 56]. Concretely, we sample a set of

noise from an uncorrelated multivariate Gaussian distribu-

tion:

δ1, δ2, · · · , δm ∼ N (0, σI) (9)
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backpropagating through unrolled training steps (colored in orange). The numerical gradient is computed using finite difference approxi-

mation by sampling in a neighborhood of βt (colored in cyan). Then βt is updated using hybrid gradient, and the trained network weights

are retained for the next timestamp t+ 1.

Next, we approximate the Jacobian for each sample (⊗ de-

notes cross product):

∂X(i)

∂β
≈

1

m

m∑

j=1

fD(β + δj , ri)− fD(β − δj , ri)

2‖δj‖
⊗

δj
‖δj‖

(10)

Incremental training Following Yang and Deng [65], we

incrementally train the network w along with the update of

β, instead of initializing w(1) from scratch each time. At

timestamp t, we update βt with the hybrid gradient; for net-

work weights, we keep the trained network in timestamp t
for initialization in the next timestamp t+ 1:

βt+1 = βt − γ
∂Lt

∂βt

= βt − γ

n∑

i=1

∂Lt

∂X
(i)
t

·

∂X
(i)
t

∂βt

w
(1)
t+1 = w

(n+1)
t

(11)

5. Experiments

Datasets We evaluate our algorithm on four different

datasets, and three standard prediction tasks for single-

image 3D. The input is an RGB image and the output is

pixel-wise surface normal, depth, or albedo shading map.

Specifically, we experiment on the task of surface nor-

mal estimation on two real datasets: MIT-Berkeley Intrinsic

Images Dataset (MBII) [3], which focuses on images of sin-

gle objects and NYU Depth [53], which focuses on indoor

scenes. For the other two datasets, we illustrate that our

method can easily extend to other 3D setups. We experi-

ment on the task of depth estimation on the renderings of the

scanned human faces in the Basel Face Model dataset [43],

and on the task of intrinsic image decomposition and evalu-

ate on the renderings of ShapeNet [9] shapes.

Baselines For comparison, we implemented a black-box

optimization method. Random search [2] has been exten-

sively explored [17, 41, 36] as a derivative-free optimiza-

tion method, and Mania et al. [36] have shown that their

simple version, Basic Random Search, has comparable per-

formance compared to typical reinforcement learning algo-

rithms. Therefore, we re-implemented their Basic Random

Search such that this baseline has the same setting as in our

method, while the only difference is that the gradient from

the validation loss is obtained through sampling instead of

hybrid gradient. We also compare against baselines with a

random β baseline in the following experiments. In these

baselines, the networks are trained on a dataset generated

using multiple random but fixed β, and the weight snapshots

with the best validation performance are used to evaluate on

the test set.

These two baselines, along with our hybrid gradient

method, all use information from the validation set but in a

different way: hybrid gradient backpropagates the gradient

of the validation performance to update β; random search

samples β to get the gradient from the validation perfor-

mance; the random β baseline fixes the dataset and uses the

validation performance to select the best network snapshot.

In all of our experiments, the network weights are up-

dated using only synthetic images in the training iterations,

and the generalization loss is computed only on the vali-

dation split of the datasets mentioned above. The decision

vector β is updated using RMSprop [57] for hybrid gradi-

ent.

For MBII, we use pure synthetic shapes [65] to render

training images. We first compare our method with abla-

tion baselines, then show that our algorithm is better than

the previous state of the art on MBII. For NYU Depth, we
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base our generative model on SUNCG [55] and augment the

original 3D configurations in Zhang et al. [67]. For Basel

Face Model, we sample synthetic faces from a morphable

model and evaluate on the renderings of scanned faces. For

the intrinsic image decomposition task, we sample textures

from a simple procedural pipeline and attach the synthetic

textures to SUNCG shapes [55], and evaluate on renderings

of ShapeNet shapes [9].

5.1. Normal Estimation on MIT­Berkeley Intrinsic
Images

Following the work of Yang and Deng [65], we recover

the surface normals of an object from a single image.

Synthetic shape generation In Yang and Deng [65], a pop-
ulation of primitive shapes such as cylinders, spheres and
cubes are evolved and rendered to train deep networks. The
evolution operators include transformations of individual
shapes and the boolean operations of shapes in Construc-
tive Solid Geometry (CSG) [18]. In our algorithm, we also
use the CSG grammar for our PCFG:

S => E

E => C(E, T(E)) | P

C => union | subtract

P => sphere | cube | truncated_cone | tetrahedron

T => attach * rand_transl * rand_rotate * rand_scale

In this PCFG, the final shape S is generated by recur-

sively composing (C) other shapes E with transformations

T, until primitives P are sampled at all E nodes. The pa-

rameter vector β consists of three parts: (1) The probability

of the different rules; (2) The means and variations of log-

normal distributions controlling shape primitives (P), such

as the radius of the sphere; (3) The means and variations of

log-normal distributions controlling transformation param-

eters (T), such as scale values. Examples of sampled shapes

are shown in Fig. 3. For the generalization loss L, we com-

pute the mean angle error of predictions on the training set

of the MIT-Berkeley dataset.

Training setup For network training and evaluation, we fol-

low Yang and Deng [65] and train the Stacked Hourglass

Network [42] on the images, and use the standard split of

the MBII dataset for the optimization of β and testing.

We report the performance of surface normal directions

with the metrics commonly used in previous works, includ-

ing mean angle error (MAE), median angle error, mean

squared error (MSE), and the proportion of pixels that nor-

mals fall in an error range (≤ N◦). See supplementary ma-

terial for detailed definitions.

Figure 3. Sampled shapes from our probabilistic context-free

grammar, with parameters optimized using hybrid gradient.
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Figure 4. Mean angle error on the test images vs. computation

time, compared to two black-box optimization baselines.

Ablation study We first sample 10 random values of β and

fix those values in advance. Then, for each β, we sample

3D shapes and render images to train a network, with the

same training and evaluation configurations as in our hybrid

gradient, except that we do not update β. We then report the

best, median and worst performance of those 10 networks,

and label the corresponding β as βbest, βmedian and βworst.

In hybrid gradient, we then initialize β0 from these three

values, run our algorithm, and report the performance on

test images also in Table 1.

From the table we can observe that training with a fixed β
can hardly match the performance of our method, even with

multiple trials. Instead, our hybrid gradient approach can

optimize β to a reasonable performance regardless of dif-

ferent initialization (βbest/median/worst). This simple diag-

nostic experiment demonstrates that our algorithm is work-

ing correctly: the optimization of β is necessary in order to

generate useful synthetic images for training networks.

Comparison with the state of the art In addition to Basic

Random Search as mentioned earlier, in this experiment we

also compare with Yang and Deng [65], a state-of-the-art

method on MIT-Berkeley Intrinsic Images.

In Shape Evolution [65], a population of shapes are

evolved, and fitness scores for individual shapes are com-

puted using a network trained on an incremental dataset and

evaluated on the validation set. We compose our shapes

in mesh representations, slightly different from the im-

plicit functions in Yang and Deng [65]. Therefore, we re-

implemented their algorithm with mesh representations for

a fair comparison. We follow Yang and Deng [65] for the

initialization of β, and train the networks and update β for

the same number of steps. We then report the test perfor-

mance of the network that has the best validation perfor-

mance. The results are shown in Table 2.

We also run the experiments on the same set of CPUs and

GPUs, sum the computation time, and plot the mean angle

error (on the test set) with respect to the CPU time and GPU

time Fig. 4). We see that our algorithm is more efficient than

the above baselines. This is natural, because when comput-

ing ∂L/∂β(t) in black-box algorithms, for each sample of

β(t)+δj , one needs to train one network to evaluate the per-
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Summary Stats ↑ Errors ↓

≤ 11.25◦ ≤ 22.5◦ ≤ 30◦ MAE Median MSE

Fixed β
β = βbest 19.9% 52.7% 70.5% 24.0◦ 21.5◦ 0.2282
β = βmedian 20.7% 50.9% 67.5% 24.8◦ 22.1◦ 0.2461
β = βworst 17.9% 46.7% 64.6% 25.6◦ 23.8◦ 0.2553

Hybrid gradient

β0 = βbest 22.7% 58.5% 73.9% 22.5◦ 19.3◦ 0.2065
β0 = βmedian 24.0% 60.1% 75.7% 21.8◦ 18.8◦ 0.1938
β0 = βworst 26.0% 58.6% 73.9% 22.0◦ 19.1◦ 0.1998

Table 1. Ablation Study: the diagnostic experiment to com-

pare with random but fixed β. We sample 10 values of β in

advance, and then train the networks with the same setting

as in hybrid gradient. The best, median and worst perfor-

mance is reported on the test images, and the corresponding

values of β are used to initialize β0 for hybrid gradient for

comparison. The results show that our approach is consis-

tently better than the baselines with fixed β.

Summary Stats ↑ Errors ↓

≤ 11.25◦ ≤ 22.5◦ ≤ 30◦ MAE Median MSE

SIRFS [3] 20.4% 53.3% 70.9% 26.2◦ — 0.2964
Evolution [65](Reported) 21.6% 55.5% 73.5% 23.3◦ — 0.2204
Evolution [65](Our Impl.) 23.0% 58.3% 73.8% 22.5◦ 18.8◦ 0.2042

Basic Random Search [36] 21.9% 59.6% 74.0% 22.8◦ 19.2◦ 0.2106
Hybrid gradient 24.5% 59.3% 74.3% 22.0◦ 18.9◦ 0.1984

Table 2. Our approach compared to previous work, on the

test set of MIT-Berkeley images [3]. The results show that

our approach is better than the state of the art as reported in

[65].

formance L, while in hybrid gradient, only a forward train-

ing pass and a backpropagation pass for a single network

are required to compute ∂L/∂X . Shapes sampled from our

optimized PCFG are shown in Fig. 3.

5.2. Normal Estimation on NYU Depth

Scene perturbation We design our scene generation gram-
mar as an augmentation of collected SUNCG scenes [54]
with the cameras from Zhang et al. [67]:

S => E,P

E => T_shapes * R_shapes * E0

P => T_camera * R_camera * P0

T_shapes => translate(x, y, z)

R_shapes => rotate(yaw, pitch, roll)

For each 3D scene S, we perturb the positions and poses

of the original cameras (P0) and shapes (E0) using random

translations and rotations. The position perturbations follow

a mixture of uncorrelated Gaussians, and the perturbations

for pose angles (yaw, pitch & roll) follow a mixture of von

Mises, i.e. wrapped Gaussians. The vector β consists of the

parameters of the above distributions.

Training setup Our networks are trained on synthetic im-

ages only, and evaluated on NYU Depth V2 [53] with the

same setup as in Zhang et al. [67]. For real images in our

optimization pipeline, we sample a subset of images from

the standard validation images in NYU Depth V2. We ini-

tialize our network from the synthetically trained model in

Zhang et al. [67] and initialize β0 using a small value. To

compare with random β, we construct a dataset of 40k im-

ages with a small random β for each image. We then load

the same pre-trained network and train for the same number

of iterations as in hybrid gradient. We then evaluate the net-

works on the test set of NYU Depth V2 [53], following the

same protocol. The results are reported in Table 3. Note that

none of these networks has been trained on real images ex-

cept for validation, and the validation subset of real images

is only used to update the decision vector.

The numbers indicate that our parametrized generation

of SUNCG augmentation exceeds the original baseline per-

Summary Stats ↑ Errors ↓

≤ 11.25◦ ≤ 22.5◦ ≤ 30◦ Mean Median

Original [67] 24.1% 49.7% 61.5% 28.8◦ 22.7◦

Random β + [67] 23.0% 48.8% 61.3% 29.2◦ 23.2◦

Hybrid gradient + [67] 27.3% 52.5% 63.8% 28.1◦
21.1◦

Table 3. The performance of the finetuned networks on the test set

of NYU Depth V2 [53], compared to the original network in [67].

The networks are trained only on the synthetic images. Without

optimizing the parameters (random β), the augmentation hurts the

generalization performance. With proper search of β using hy-

brid gradient, we are able to achieve better performance than the

original model.

formance. Note that the network trained with random β
is worse than original performance. This means without

proper optimization of perturbation parameters, such ran-

dom augmentation may hurt generalization, demonstrating

that good choices of these parameters are crucial for gener-

alization to real images.

5.3. Depth Estimation on Basel Face Model

Synthetic face generation We exploit an off-the-shelf

3DMM morphable face and expression model [14, 70, 69]

to generating human 3D models, with face and pose pa-

rameters randomly sampled from mixtures of Gaussians or

von Mises. Since the parameters for 3DMM are PCA co-

efficients, we only include the first 10 principal dimensions

each for geometry, texture and expression parameters in the

decision vector β, and uniformly sample for the remaining

dimensions to save disk usage.

Training setup We train a stacked hourglass network [42]

from scratch with a single-channel output after a ReLU

layer to predict the raw depth, and supervise using mean

squared error. The learning rate for the network is 0.1 and

the batch size is 8.

Evaluation We evaluate on the renderings of the scanned
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human faces [43]. We split the 10 identities into two dis-

joint sets for validation and test, then use the rendering pa-

rameters provided in the dataset to recreate the renderings

as well as depth images. For each scan, there are 3 lighting

directions and 9 pose angles, creating 135 validation images

and 135 test images. Example images are shown in Fig. 5.

For depth evaluation, we use the standard metrics including

the relative difference (absolute and squared) and root mean

squared error (linear, log and scale-invariant log). The defi-

nitions are listed in Eigen et al. [15] and also detailed in the

supplementary material.

Synthetic faces generated from the PCFG Re-renderings of real scans

Figure 5. Training images generated using PCFG with 3DMM face

model, and example test images.

Relative Difference RMSE

abs sqr linear log scale inv.

Random β 0.03718 9.701× 10−3 0.1395 0.1014 0.09717
Basic Random
Search [36] 0.02330 1.728× 10−3 0.0581 0.0299 0.02700

Hybrid gradient 0.02256 1.649× 10
−3

0.0570 0.0293 0.02603

Table 4. The results on the scanned faces of the Basel Face Model.

Our method is able to search for the synthetic face parameters such

that the trained network can generalize better.

The results in 4 show that our algorithm is able to search

for better β so that the network trained on the synthetic faces

and generalize better on the scanned faces.

5.4. Intrinsic Image Decomposition on ShapeNet

Texture generation and rendering We design a painter’s

algorithm as PCFG for generating the textures. To gener-

ate one texture image, we paint Perlin-noise-perturbed poly-

gons sequentially onto a canvas, and then repeat the canvas

as the final texture image. The number of repetitions and the

number of polygons follow zero-truncated Poisson distribu-

tions, the vertex coordinates follow independent truncated

Gaussian mixtures, and the number of edges in a polygon

are also controlled by sampling probabilities. All the dis-

tribution parameters are concatenated to form the decision

vector β. Example textures are shown in Fig. 6.

The texture is then mapped onto the SUNCG

shapes [55]. We choose SUNCG shapes because they are

well parametrized for texture mapping and we can easily

apply our synthetic textures. We then render the textured

shapes using random directional lights as training data. For

Figure 6. Example textures generated using our procedural

pipeline with parameters controlled by β.

validation and testing, we randomly render ShapeNet [9]

shapes with their original textures, and randomly choose 50

as validation and 50 for test. The shapes used in validation

or test are mutually exclusive.

Training We use the Stacked Hourglass Network [42] with

a 4-channel output (3 for albedo, 1 for shading), and train

with a learning rate of 10−4 and a batch size of 8. For su-

pervision, we sum the mean squared error for both albedo

and shading outputs as the loss.

Evaluation We also compare with our Basic Random

Search implementation and with the random β baseline. We

evaluate the performance using mean absolute error (abs),

root mean squared error (rmse) and scale-invariant rmse for

albedo and shading. We also evaluate the reconstruction er-

ror of the rendered image, even though we do not have any

supervision for the reconstruction error of the image. The

results are shown in Table 5.

abs rmse rmse (scale inv.)

Random β
Albedo 0.157 0.198 0.175

Shading 0.118 0.132 0.095

Reconstruction 0.139 0.169 –

Basic
Random

Search [36]

Albedo 0.152 0.193 0.177

Shading 0.104 0.116 0.085

Reconstruction 0.134 0.166 –

Hybrid

gradient

Albedo 0.147 0.189 0.168

Shading 0.104 0.119 0.088

Reconstruction 0.118 0.150 –

Table 5. The results of intrinsic image decomposition on the

ShapeNet renderings.

6. Conclusion

In this paper, we have proposed hybrid gradient, a novel

approach to the problem of automatically optimizing a gen-

eration pipeline of synthetic 3D training data. We evalu-

ate our approach on the task of estimating surface normal,

depth and intrinsic decomposition from a single image. Our

experiments show that our algorithm can outperform the

prior state of the art on optimizing the generation of 3D

training data, particularly in terms of computational effi-

ciency.
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[4] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs
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