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Abstract

We propose a hierarchical approach for making

long-term predictions of future frames. To avoid

inherent compounding errors in recursive pixel-

level prediction, we propose to first estimate high-

level structure in the input frames, then predict

how that structure evolves in the future, and fi-

nally by observing a single frame from the past

and the predicted high-level structure, we con-

struct the future frames without having to observe

any of the pixel-level predictions. Long-term

video prediction is difficult to perform by recur-

rently observing the predicted frames because the

small errors in pixel space exponentially amplify

as predictions are made deeper into the future.

Our approach prevents pixel-level error propa-

gation from happening by removing the need to

observe the predicted frames. Our model is built

with a combination of LSTM and analogy-based

encoder-decoder convolutional neural networks,

which independently predict the video structure

and generate the future frames, respectively. In

experiments, our model is evaluated on the Hu-

man3.6M and Penn Action datasets on the task of

long-term pixel-level video prediction of humans

performing actions and demonstrate significantly

better results than the state-of-the-art.

1. Introduction

Learning to predict the future has emerged as an impor-

tant research problem in machine learning and artificial

intelligence. Given the great progress in recognition (e.g.,

(Krizhevsky et al., 2012; Szegedy et al., 2015)), predic-

tion becomes an essential module for intelligent agents to

plan actions or to make decisions in real-world application

scenarios (Jayaraman & Grauman, 2015; 2016; Finn et al.,
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2016). For example, robots can quickly learn manipulation

skills when predicting the consequences of physical inter-

actions. Also, an autonomous car can brake or slow down

when predicting a person walking across the driving lane. In

this paper, we investigate long-term future frame prediction

that provides full descriptions of the visual world.

Recent recursive approaches to pixel-wise video prediction

highly depend on observing the generated frames in the

past to make predictions further into the future (Oh et al.,

2015; Mathieu et al., 2016; Goroshin et al., 2015; Srivas-

tava et al., 2015; Ranzato et al., 2014; Finn et al., 2016;

Villegas et al., 2017; Lotter et al., 2017). In order to make

reasonable long-term frame predictions in natural videos,

these approaches need to be highly robust to pixel-level

noise. However, the noise amplifies quickly through time

until it overwhelms the signal. It is common that the first

few prediction steps are of decent quality, but then the pre-

diction degrades dramatically until all the video context is

lost. Other existing works focus on predicting high-level se-

mantics, such as motion trajectories or action labels (Walker

et al., 2014; Yuen & Torralba, 2010; Lee, 2015), driven by

immediate applications (e.g., video surveillance). We note

that such high-level representations are the major factors for

explaining the pixel variations into the future. In this work

we assume that the high-dimensional video data is gener-

ated from low-dimensional high-level structures, which we

hypothesize will be critical for making long-term visual pre-

dictions. Our main contribution is the hierarchical approach

for video prediction that involves generative modeling of

video using high-level structures. Concretely, our algorithm

first estimates high-level structures of observed frames, and

then predicts their future states, and finally generates future

frames conditioned on predicted high-level structures.

The prediction of future structure is performed by an LSTM

that observes a sequence of structures estimated by a CNN,

encodes the observed dynamics, and predicts the future se-

quence of such structures. We note that Fragkiadaki et al.

(2015) developed an LSTM architecture that can straight-

forwardly be adapted to our method. However, our main

contribution is the hierarchical approach for video predic-

tion, so we choose a simpler LSTM architecture to con-

vey our idea. Our approach then observes a single frame

from the past and predicts the entire future described by

the predicted structure sequence using an analogy-making
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network (Reed et al., 2015). In particular, we propose an

image generator that learns a shared embedding between

image and high-level structure information which allows us

convert an input image into a future image guided by the

structure difference between the input image and the future

image. We evaluate the proposed model on challenging

real-world human action video datasets. We use 2D human

poses as our high-level structures similar to Reed et al.

(2016a). Thus, our LSTM network models the dynamics of

human poses while our analogy-based image generator net-

work learns a joint image-pose embedding that allows the

pose difference between an observed frame and a predicted

frame to be transferred to image domain for future frame

generation. As a result, this pose-conditioned generation

strategy prevents our network from propagating prediction

errors through time, which in turn leads to very high quality

future frame generation for long periods of time. Overall,

the promising results of our approach suggest that it can be

greatly beneficial to incorporate proper high-level structures

into the generative process.

The rest of the paper is organized as follows: A review of the

related work is presented in Section 2. The overview of the

proposed algorithm is presented in Section 3. The network

configurations and their training algorithms are described

in Section 4 and Section 5, respectively. We present the

experimental details and results in Section 6, and conclude

the paper with discussions of future work in Section 7.

2. Related Work

Early work on future frame prediction focused on small

patches containing simple predictable motions (Sutskever

et al., 2009; Michalski et al., 2014; Mittelman et al., 2014)

and motions in real videos (Ranzato et al., 2014; Srivas-

tava et al., 2015). High resolution videos contain far more

complicated motion which cannot be modeled in a patch-

wise manner due to the well known aperture problem. The

aperture problem causes blockiness in predictions as we

move forward in time. Ranzato et al. (2014) tried to solve

blockiness by averaging over spatial displacements after

predicting patches; however, this approach does not work

for long-term predictions.

Recent approaches in video prediction have moved from pre-

dicting patches to full frame prediction. Oh et al. (2015) pro-

posed a network architecture for action conditioned video

prediction in Atari games. Mathieu et al. (2016) proposed

an adversarial loss for video prediction and a multi-scale

network architecture that results in high quality prediction

for a few timesteps in natural video; however, the frame pre-

diction quality degrades quickly. Finn et al. (2016) proposed

a network architecture to directly transform pixels from a

current frame into the next frame by predicting a distribution

over pixel motion from previous frames. Xue et al. (2016)

proposed a probabilistic model for predicting possible mo-

tions of a single input frame by training a motion encoder in

a variational autoencoder approach. Vondrick et al. (2016)

built a model that generates realistic looking video by sep-

arating background and foreground motion. Villegas et al.

(2017) improved the convolutional encoder/decoder archi-

tecture by separating motion and content features. Lotter

et al. (2017) built an architecture inspired by the predic-

tive coding concept in neuroscience literature that predicts

realistic looking frames.

All the previously mentioned approaches attempt to perform

video generation in a pixel-to-pixel process. We aim to

perform the prediction of future frames in video by taking a

hierarchical approach of first predicting high-level structure

and then using the high-level structure to predict the future

in the video from a single frame input.

To the best of our knowledge, this is the first hierarchical

approach to pixel-level video prediction. Our hierarchical

architecture makes it possible to generate good quality long-

term predictions that outperform current approaches. The

main success from our algorithm comes from the novel idea

of first making high-level structure predictions which allows

us to observe a single image and generate the future video

by visual-structure analogy. Our image generator learns

a shared embedding between image and structure inputs

that allows us to transform high-level image features into a

future image driven by the predicted structure sequence.

3. Overview

This paper tackles the task of long-term video prediction in

a hierarchical perspective. Given the input high-level struc-

ture sequence p1:t and frame xt, our algorithm is asked to

predict the future structure sequence pt+1:t+T and subse-

quently generate frames xt+1:t+T . The problem with video

frame prediction originates from modeling pixels directly

in a sequence-to-sequence manner and attempting to gen-

erate frames in a recurrent fashion. Current state-of-the-art

approaches recurrently observe the predicted frames, which

causes rapidly increasing error accumulation through time.

Our objective is to avoid having to observe generated future

frames at all during the full video prediction procedure.

Figure 1 illustrates our hierarchical approach. Our full

pipeline consists of 1) performing high-level structure esti-

mation from the input sequence, 2) predicting a sequence of

future high-level structures, and 3) generating future images

from the predicted structures by visual-structure analogy-

making given an observed image and the predicted struc-

tures. We explore our idea by performing pixel-level video

prediction of human actions while treating human pose as

the high-level structure. Hourglass network (Newell et al.,

2016) is used for pose estimation on input images. Subse-

quently, a sequence-to-sequence LSTM-recurrent network

is trained to read the outputs of hourglass network and to
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Figure 1. Overall hierarchical approach to pixel-level video prediction. Our algorithm first observes frames from the past and estimate the

high-level structure, in this case human pose xy-coordinates, in each frame. The estimated structure is then used to predict the future

structures in a sequence to sequence manner. Finally, our algorithm takes the last observed frame, its estimated structure, and the predicted

structure sequence, in this case represented as heatmaps, and generates the future frames. Green denotes input to our network and red

denotes output from our network.

predict the future pose sequence. Finally, we generate the

future frames by analogy making using pose relationship in

feature space to transform the last observed frame.

The proposed algorithm makes it possible to decompose the

task of video frame prediction to sub-tasks of future high-

level structure prediction and structure-conditioned frame

generation. By doing so, we remove the recursive depen-

dency of generated frames which have caused the compound

errors of pixel-level prediction in previous methods, which

allows us to perform very long-term video prediction.

4. Architecture

This section describes the architecture of the proposed al-

gorithm using human pose as a high-level structure. Our

full network is composed of two modules: an encoder-

decoder LSTM that observes and outputs xy-coordinates,

and an image generator that performs visual analogy-based

on high-level structure heatmaps constructed from the xy-

coordinates output from LSTM.

4.1. Future Prediction of High-Level Structures

Figure 2 illustrates our pose predictor. Our network first

encodes the observed structure dynamics by

[ht, ct] = LSTM (pt,ht−1, ct−1) , (1)

where ht ∈ R
H represents the observed dynamics up to

time t, ct ∈ R
H is the memory cell that retains information

from the history of pose inputs, pt ∈ R
2L is the pose at

time t (i.e., 2D coordinate positions of L joints). In order

to make a reasonable prediction of the future pose, LSTM

has to first observe a few pose inputs to identify the type of

motion occurring in the pose sequence and how it is chang-

ing over time. LSTM also has to be able to remove noise

present in the input pose, which can come from annotation

error if using the dataset-provided pose annotation or pose

estimation error if using a pose estimation algorithm. After

a few pose inputs have been observed, LSTM generates the

future pose by

p̂t = f
(

w⊤ht

)

, (2)

LSTM LSTM LSTMLSTM LSTM LSTM

Figure 2. Illustration of our pose predictor. LSTM observes k

consecutive human pose inputs and predicts the pose for the next

T timesteps. Note that the human heatmaps are used for illustration

purposes, but our network observes and outputs xy-coordinates.

where w is a projection matrix, f is a function on the pro-

jection (i.e. tanh or identity), and p̂t ∈ R
2L is the predicted

pose. In the subsequent predictions, our LSTM does not

observe the previously generated pose. Not observing gen-

erated pose in LSTM prevents errors in the pose prediction

from being propagated into the future, and it also encour-

ages the LSTM internal representation to contain robust

high-level features that allow it to generate the future se-

quence from only the original observation. As a result, the

representation obtained in the pose input encoding phase

must obtain all the necessary information for generating the

correct action sequence in the decoding phase. After we

have set the human pose sequence for the future frames, we

proceed to generate the pixel-level visual future.

4.2. Image Generation by Visual-Structure Analogy

To synthesize the future frame given its pose structure, we

make a visual-structure analogy inspired by Reed et al.

(2015) following pt : pt+n :: xt : xt+n, read as "pt is to

pt+n as xt is to xt+n" as illustrated in Figure 3. Intuitively,

the future frame xt+n can be generated by transferring the

structure transformation from pt to pt+n to the observed

frame xt. Our image generator instantiates this idea using

a pose encoder fpose, an image encoder fimg and an image

decoder fdec. Specifically, fpose is a convolutional encoder

that specializes on identifying key pose features from the
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Figure 3. Generating image frames by making analogies between

high-level structures and image pixels.
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Figure 4. Illustration of our image generator. Our image generator

observes an input image, its corresponding human pose, and the

human pose of the future image. Through analogy making, our

network generates the next frame.

pose input that reflects high-level human structure.1 fimg is

also a convolutional encoder that acts on an image input by

mapping the observed appearance into a feature space where

the pose feature transformations can be easily imposed to

synthesize the future frame using the convolutional decoder

fdec. The visual-structure analogy is then performed by

x̂t+n = fdec (fpose (g (p̂t+n))− fpose (g (pt)) + fimg (xt)) ,
(3)

where x̂t+n and p̂t+n are the generated image and corre-

sponding predicted pose at time t + n, xt and pt are the

input image and corresponding estimated pose at time t, and

g (.) is a function that maps the output xy-coordinates from

LSTM into depth-concatenated L heatmaps.2 Intuitively,

fpose infers features whose “substractive" relationship is

the same subtractive relationship between xt+n and xt in

the feature space computed by fimg, i.e., fpose(g(p̂t+n))−
fpose(g(p̂t)) ≈ fimg(xt+n) − fimg(xt). The network dia-

gram is illustrated in in Figure 4. The relationship discov-

ered by our network allows for highly non-linear transfor-

mations between images to be inferred by a simple addi-

tion/subtraction in feature space.

5. Training
In this section, we first summarize the multi-step video

prediction algorithm using our networks and then describe

1Each input pose to our image generator is converted to con-
catenated heatmaps of each landmark before computing features.

2We independently construct the heatmap with a Gaussian
function around the xy-coordinates of each landmark.

Algorithm 1 Video Prediction Procedure

input: x1:k

output: x̂k+1:k+T

for t=1 to k do

pt ← Hourglass(xt)
[ht, ct]← LSTM(pt,ht−1, ct−1)

end for

for t=k + 1 to k + T do

[ht, ct]← LSTM(ht−1, ct−1)
p̂t ← f

(

w⊤ht

)

x̂t ← fdec (fpose (g (p̂t))− fpose (g (pk)) + fimg (xk))
end for

the training strategies of the high-level structure LSTM and

of the visual-structure analogy network. We train our high-

level structure LSTM independent from the visual-structure

analogy network, but both are combined during test time to

perform video prediction.

5.1. Multi-Step Prediction

Our algorithm multi-step video prediction procedure is de-

scribed in Algorithm 1. Given input video frames, we use

the Hourglass network (Newell et al., 2016) to estimate

the human poses p1:k. High-level structure LSTM then

observes p1:k, and proceeds to generate a pose sequence

p̂k+1:k+T where T is the desired number of time steps to

predict. Next, our visual-structure analogy network takes xk,

pk, and p̂k+1:k+T and proceeds to generate future frames

x̂k+1:k+T one by one. Note that the future frame prediction

is performed by observing pixel information from only xk,

that is, we never observe any of the predicted frames.

5.2. High-Level Structure LSTM Training

We employ a sequence-to-sequence approach to predict

the future structures (i.e. future human pose). Our LSTM

is unrolled for k timesteps to allow it to observe k pose

inputs before making any prediction. Then we minimize the

prediction loss defined by

Lpose =
1

TL

T
∑

t=1

L
∑

l=1

1{ml

k+t
=1}‖p̂

l

k+t
− pl

k+t
‖22, (4)

where p̂l

k+t
and pl

k+t
are the predicted and ground-truth

pose l-th landmark, respectively, 1{.} is the indicator func-

tion, and ml

k+t
tells us whether a landmark is visible or

not (i.e. not present in the ground-truth). Intuitively, the

indicator function allows our LSTM to make a guess of the

non-visible landmarks even when not present at training.

Even in the absence of a few landmarks during training,

LSTM is able to internally understand the human structure

and observed motion. Our training strategy allows LSTM to

make a reasonable guess of the landmarks not present in the

training data by using the landmarks available as context.
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5.3. Visual-Structure Analogy Training

Training our network to transform an input image into a

target image that is too close in image space can lead to sub-

optimal parameters being learned due to the simplicity of

such task that requires only changing a few pixels. Because

of this, we train our network to perform random jumps in

time within a video clip. Specifically, we let our network

observe a frame xt and its corresponding human pose pt,

and force it to generate frame xt+n given pose pt+n, where

n is defined randomly for every iteration at training time.

Training to jump to random frames in time gives our net-

work a clear signal the task at hand due to the large pixel

difference between frames far apart in time.

To train our network, we use the compound loss from Doso-

vitskiy & Brox (2016). Our network is optimized to mini-

mize the objective given by

L = Limg + Lfeat + LGen, (5)

where Limg is the loss in image space defined by

Limg = ‖xt+n − x̂t+n‖
2
2, (6)

where xt+n and x̂t+n are the target and predicted frames,

respectively. The image loss intuitively guides our network

towards a rough blurry pixel-leven frame prediction that

reflects most details of the target image. Lfeat is the loss in

feature space define by

Lfeat = ‖C1 (xt+n)− C1 (x̂t+n) ‖
2
2

+ ‖C2 (xt+n)− C2 (x̂t+n) ‖
2
2,

(7)

where C1 (.) extracts features representing mostly image

appearance, and C2 (.) extracts features representing mostly

image structure. Combining appearance sensitive features

with structure sensitive features gives our network a learning

signal that allows it to make frame predictions with accurate

appearance while also enforcing correct structure. LGen is

the term in adversarial loss that allows our model to generate

realistic looking images and is defined by

LGen = − logD ([pt+n, x̂t+n]) , (8)

where xt+n is the target image, pt+n is the human pose

corresponding to the target image, and D (.) is the discrimi-

nator network in adversarial loss. This sub-loss allows our

network to generate images that reflect a similar level of

detail as the images observed in the training data.

During the optimization of D, we use the mismatch term

proposed by Reed et al. (2016b), which allows the discrimi-

nator D to become sensitive to mismatch between the gen-

eration and the condition. The discriminator loss is defined

by

LDisc = − logD ([pt+n,xt+n])

− 0.5 log (1−D ([pt+n, x̂t+n]))

− 0.5 log (1−D ([pt+n,xt])) ,

(9)

while optimizing our generator with respect to the adversar-

ial loss, the mismatch-aware term sends a stronger signal to

our generator resulting in higher quality image generation,

and network optimization. Essentially, having a discrimi-

nator that knows the correct structure-image relationship,

reduces the parameter search space of our generator while

optimizing to fool the discriminator into believing the gen-

erated image is real. The latter in combination with the rest

of loss terms allows our network to produce high quality

image generation given the structure condition.

6. Experiments

In this section, we present experiments on pixel-level

video prediction of human actions on the Penn Action

(Weiyu Zhang & Derpanis, 2013) and Human 3.6M datasets

(Ionescu et al., 2014). Pose landmarks and video frames

are normalized to be between -1 and 1, and frames are

cropped based on temporal tubes to remove as much back-

ground as possible while making sure the human of inter-

est is in all frames. For the feature similarity loss term

(Equation 7), we use we use the last convolutional layer

in AlexNet (Krizhevsky et al., 2012) as C1, and the last

layer of the Hourglass Network in Newell et al. (2016) as

C2. We augmented the available video data by perform-

ing horizontal flips randomly at training time for Penn

Action. Motion-based pixel-level quantitative evaluation

using Peak Signal-to-Noise Ratio (PSNR), analysis, and

control experiments can be found in the supplementary ma-

terial. For video illustration of our method, please refer to

the project website: https://sites.google.com/

a/umich.edu/rubenevillegas/hierch_vid.

We compare our method against two baselines based on

convolutional LSTM and optical flow. A convolutional

LSTM baseline (Shi et al., 2015) was trained with adversar-

ial loss (Mathieu et al., 2016) and the feature similarity loss

(Equation 7). An optical flow based baseline used the last

observed optical flow (Farneback, 2003) to move the pixels

of the last observed frame into the future.

We follow a human psycho-physical quantitative evaluation

metric similar to Vondrick et al. (2016). Amazon Mechani-

cal Turk (AMT) workers are given a two-alternative choice

to indicate which of two videos looks more realistic. Specif-

ically, the workers are shown a pair of videos (generated by

two different methods) consisting of the same input frames

indicated by a green box and predicted frames indicated

by a red box, in addition to the action label of the video.

The workers are instructed to make their decision based on

the frames in the red box. Additionally, we train a Two-

stream action recognition network (Simonyan & Zisserman,

2014) on the Penn Action dataset and test on the generated

videos to evaluate if our network is able to generate videos

predicting the activities observed in the original dataset.

We do not perform action classification experiments on the

https://sites.google.com/a/umich.edu/rubenevillegas/hierch_vid
https://sites.google.com/a/umich.edu/rubenevillegas/hierch_vid
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Method Temporal Stream Spatial Stream Combined

Real Test Data * 66.6% 63.3% 72.1%

Ours 35.7% 52.7% 59.0%
Convolutional LSTM 13.9% 45.1% 46.4%

Optical Flow 13.9% 39.2% 34.9%

Table 1. Activity recognition evaluation.

"Which video is more realistic?" Baseball Clean & jerk Golf Jumping jacks Jump rope Tennis Mean

Prefers ours over Convolutional LSTM 89.5% 87.2% 84.7% 83.0% 66.7% 88.2% 82.4%
Prefers ours over Optical Flow 87.8% 86.5% 80.3% 88.9% 86.2% 85.6% 86.1%

Table 2. Penn Action Video Generation Preference: We show videos from two methods to Amazon Mechanical Turk workers and ask

them to indicate which is more realistic. The table shows the percentage of times workers preferred our model against baselines. A

majority of the time workers prefer predictions from our model. We merged baseball pitch and baseball swing into baseball, and tennis

forehand and tennis serve into tennis.

Human3.6M dataset due to high uncertainty in the human

movements and high motion similarity amongst actions.

Architectures. The sequence prediction LSTM is made of

a single layer encoder-decoder LSTM with tied parameters,

1024 hidden units, and tanh output activation. Note that

the decoder LSTM does not observe any inputs other than

the hidden units from the encoder LSTM as initial hidden

units. The image and pose encoders are built with the same

architecture as VGG16 (Simonyan & Zisserman, 2015) up

to the pooling layer, except that the pose encoder takes in

the pose heat-maps as an image made of L channels, and the

image encoder takes a regular 3-channel image. The decoder

is the mirrored architecture of the image encoder where

we perform unpooling followed by deconvolution, and a

final tanh activation. The convolutional LSTM baseline is

built with the same architecture as the image encoder and

decoder, but there is a convolutional LSTM layer with the

same kernel size and number of channels as the last layer in

the image encoder connecting them.

6.1. Penn Action Dataset

Experimental setting. The Penn Action dataset is com-

posed of 2326 video sequences of 15 different actions and

13 human joint annotations for each sequence. To train our

image generator, we use the standard train split provided in

the dataset. To train our pose predictor, we sub-sample the

actions in the standard train-test split due to very noisy joint

ground-truth. We used videos from the actions of baseball

pitch, baseball swing, clean and jerk, golf swing, jumping

jacks, jump rope, tennis forehand, and tennis serve. Our

pose predictor is trained to observe 10 inputs and predict 32

steps, and tested on predicting up to 64 steps (some videos’

groundtruth end before 64 steps). Our image generator is

trained to make single random jumps within 30 steps into

the future. Our evaluations are performed on a single clip

that starts at the first frame of each video.

AMT results. These experiments were performed by 66

unique workers, where a total of 1848 comparisons were

made (934 against convolutional LSTM and 914 against op-

tical flow baseline). As shown in Table 2 and Figure 5, our

method is capable of generating more realistic sequences

compared to the baselines. Quantitatively, the action se-

quences generated by our network are perceptually higher

quality than the baselines and also predict the correct action

sequence. A relatively small (although still substantial) mar-

gin is observed when comparing to convolutional LSTM

for the jump rope action (i.e., 66.7% for ours vs 33.3% for

Convolutional LSTM). We hypothesize that convolutional

LSTM is able to do a reasonable job for this action class due

the highly cyclic motion nature of jumping up and down in

place. The remainder of the human actions contain more

complicated non-linear motion, which is much more com-

plicated to predict. Overall, our method outperforms the

baselines by a large margin (i.e. 82.4% for ours vs 17.6%

for Convolutional LSTM, and 86.1% for ours vs 13.9% for

Optical Flow). Side by side video comparison for all actions

can be found in our project website.

Action recognition results. To see whether the generated

videos contain actions that can fool a CNN trained for action

recognition, we train a Two-Stream CNN on the PennAc-

tion dataset. In Table 1, “Temporal Stream” denotes the

network that observes motion as concatenated optical flow

(Farneback’s optical flow) images as input, and “Spatial

Stream” denotes the network that observes single image as

input. “Combined” denotes the averaging of the output prob-

ability vectors from the Temporal and Spatial stream. “Real

test data” denotes evaluation on the ground-truth videos (i.e.

perfect prediction).

From Table 1, it is shown that our network is able to generate

videos that are far more representative of the correct action

compared to all baselines, in both Temporal and Spatial

stream, regardless of using a neural network as the judge.

When combining both Temporal and Spatial streams, our

network achieves the best quality videos in terms of making

a pixel-level prediction of the correct action.

Pixel-level evaluation and control experiments. We

evaluate the frames generated by our method using PSNR

https://goo.gl/U7UOfy
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"Which video is more realistic?" Directions Discussion Eating Greeting Phoning Photo Posing

Prefers ours over Convolutional LSTM 67.6% 75.9% 74.7% 79.5% 69.7% 66.2% 69.7%
Prefers ours over Optical Flow 61.4% 89.3% 43.8% 80.3% 84.5% 52.0% 75.3%

"Which video is more realistic?" Purchases Sitting Sittingdown Smoking Waiting Walking Mean

Prefers ours over Convolutional LSTM 79.0% 38.0% 54.7% 70.4% 50.0% 86.0% 70.3%
Prefers ours over Optical Flow 85.7% 35.1% 46.7% 73.3% 84.3% 90.8% 72.3%

Table 3. Human3.6M Video Generation Preference: We show videos from two methods to Amazon Mechanical Turk workers and ask

them to indicate which is more realistic. The table shows the percentage of times workers preferred our model against baselines. Most of

the time workers prefer predictions from our model. We merge baseball pitch and baseball swing into baseball, and tennis forehand and

tennis serve into tennis.

as measure, and separated the test data based on amount

of motion, as suggested by Villegas et al. (2017). From

these experiments, we conclude that pixel-level evaluation

highly depends on predicting the exact future observed in

the ground-truth. Highest PSNR scores are achieved when

trajectories of the exact future is used to generate the fu-

ture frames. Due to space constraints, we ask the reader to

please refer to the supplementary material for more detailed

quantitative and qualitative analysis.

6.2. Human3.6M Dataset

Experimental settings. The Human3.6M dataset

(Ionescu et al., 2014) is composed of 3.6 million 3D human

poses (we use the provided 2D pose projections) composed

of 32 joints and corresponding images taken from 11

professional actors in 17 scenarios. For training, we use

subjects number 1, 5, 6, 7, and 8, and test on subjects

number 9 and 11. Our pose predictor is trained to observe

10 inputs and predict 64 steps, and tested on predicting

128 steps. Our image generator is trained to make single

random jumps anywhere in the training videos. We evaluate

on a single clip from each test video that starts at the exact

middle of the video to make sure there is motion occurring.

AMT results. We collected a total of 2203 comparisons

(1086 against convolutional LSTM and 1117 against optical

flow baseline) from 71 unique workers. As shown in Ta-

ble 3, the videos generated by our network are perceptually

higher quality and reflect a reasonable future compared to

the baselines on average. Unexpectedly, our network does

not perform well on videos where the action involves mini-

mal motion, such as sitting, sitting down, eating, taking a

photo, and waiting. These actions usually involve the person

staying still or making very unnoticeable motion which can

result in a static prediction (by convolutional LSTM and/or

optical flow) making frames look far more realistic than the

prediction from our network. Overall, our method outper-

forms the baselines by a large margin (i.e. 70.3% for ours

vs 29.7% for Convolutional LSTM, and 72.3% for ours vs

27.7% for Optical Flow). Figure 5 shows that our network

generates far higher quality future frames compared to the

convolutional LSTM baseline. Side by side video compari-

son for all actions can be found in our project website.

Pixel-level evaluation and control experiments. Fol-

lowing the same procedure as Section 6.1, we evaluated

the predicted videos using PSNR and separated the test data

by motion. Due to the high uncertainty and number of pre-

diction steps in these videos, the predicted future can largely

deviate from the exact future observed in the ground-truth.

The highest PSNR scores are again achieved when the exact

future pose is used to generate the video frames; however,

there is an even larger gap compared to the results in Sec-

tion 6.1. Due to space constraints, we ask the reader to

please refer to the supplementary material for more detailed

quantitative and qualitative analysis.

7. Conclusion and Future Work

We propose a hierarchical approach of pixel-level video

prediction. Using human action videos as benchmark, we

have demonstrated that our hierarchical prediction approach

is able to predict up to 128 future frames, which is an order

of magnitude improvement in terms of effective temporal

scale of the prediction.

The success of our approach demonstrates that it can be

greatly beneficial to incorporate the proper high-level struc-

ture into the generative process. At the same time, an impor-

tant open research question would be how to automatically

learn such structures without domain knowledge. We leave

this as future work.

Another limitation of this work is that it generates a single

future trajectory. For an agent to make a better estimation

of what the future looks like, we would need more than one

generated future. Future work will involve the generation of

many futures given using a probabilistic sequence model.

Finally, our model does not handle background motion. This

is a highly challenging task since background comes in and

out of sight. Predicting background motion will require a

generative model that hallucinates the unseen background.

We also leave this as future work.
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Figure 5. Qualitative evaluation of our network for 55 step prediction on Penn Action (top rows), and 109 step prediction on Human3.6M

(bottom rows). Our algorithm observes 10 previous input frames, estimates the human pose, predicts the pose sequence of the future, and

it finally generates the future frames. Green box denotes input and red box denotes prediction. We show the last 7 input frames. Side by

side video comparisons can be found in our project website.
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