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ABSTRACT Audio steganography aims to exploit the human auditory redundancy to embed the secret

message into cover audio, without raising suspicion when hearing it. However, recent studies have shown

that the existing audio steganography can be easily exposed with the deep learning based steganalyzers

by extracting high-dimensional features of stego audio for classification. The existing audio steganography

schemes still have room for improvements. In this work, we propose an audio steganography framework

that could automatically learn to generate superior steganographic cover audio for message embedding.

Specifically, the training framework of the proposed framework consists of three components, namely,

generator, discriminator and trained deep learning based steganalyzer. Then the traditional message

embedding algorithm LSBM, is employed to embed the secret message into the steganographic cover audio

to obtain stego audio, which is delivered to the trained steganalyzer for misclassifying as cover audio. Once

the adversarial training is completed among these three parties, one can obtain a well-trained generator,

which could generate steganographic cover audio for subsequent message embedding. In the practice of our

proposed method, the stego audio is produced by embedding the secret message into the steganographic

cover audio using a traditional steganography method. Experimental results demonstrate that our proposed

audio steganography can yield steganographic cover audio that preserves a quite high perception quality

for message embedding. We have compared the detection accuracies with the existing audio steganography

schemes as presented in our experiment, the proposed method exhibits lower detection accuracies against

the state-of-the-art deep learning based steganalyzers, under various embedding rates. Codes are publicly

available at https://github.com/Chenlang2018/Audio-Steganography-using-GAN.

INDEX TERMS Audio steganography, deep learning based steganalysis, generative adversarial network

(GAN).

I. INTRODUCTION

Steganography is a technique that utilizes the human percep-

tion redundancy to embed secret message into a cover such as

video, image and audio. The cover with embedded data, i.e.,

the stego, could bypass adversary monitoring and realize the

covert communication. Steganography has been applied to

many multimedia security scenarios, e.g., privacy protection

[1].

According to different embedding strategies, steganogra-

phy can be classified into non-adaptive steganography and

adaptive steganography. In general, non-adaptive steganog-

raphy methods often modify all elements of cover in an

indiscriminate manner. The representative works along this

line are LSB [2] and LSB Matching (LSBM) [3]. Instead,

adaptive steganography methods selectively embed the se-

cret message in areas that are unlikely to be exposed. The

renowned adaptive steganography algorithms include WOW

[4], HUGO [5], HILL [6], S-UNIWARD [7]. These meth-

ods are all based on Syndrome-Trellis Codes (STC) [8].

In the adaptive steganography framework, a distortion cost

function of each embedding position in the cover is defined

to characterize the degree of distortion for stego. The total
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distortion is then minimized under the assumption that all

embedded operations are independent of each other. Note

that, the adaptive steganography can be easily detected by

Spatial Rich Model (SRM) [9] steganalysis method. Such

methods use multiple high-pass filters to preprocess the stego

to magnify steganographic signals.

Recently, deep learning has achieved great breakthroughs

in many fields, e.g., computer vision, natural language pro-

cessing and speech recognition, and it has been transforming

the information hiding research in the last few years. As

the fact that deep learning based steganalysis methods [10],

[11] have significantly exceeded the traditional steganalysis

methods [12], [13] in detecting conventional steganography

algorithms, which may bring challenges to the development

of steganography. So researchers have begun to propose deep

learning based image steganography methods. Volkhonskiy

et al. [14] first proposed Steganographic GAN (SNGAN)

to implement cover modified steganography. Unlike SGAN,

Hayes et al. [15] proposed to use the secret message and

cover image to generate stego image. Zhang et al. [16]

proposed a novel data-driven information hiding scheme

called “generative steganography by sampling” (GSS) that

the stego image was directly sampled by a generator without

using covers. Tang et al. [17] combined GAN with adaptive

steganography to propose automatic steganographic distor-

tion learning framework (ASDL-GAN), in which the GAN

component was supposed to learn the embedding change

probability map.

In addition to the GAN-based steganography approaches,

researchers also proposed steganographic methods inspired

from the adversarial examples. Zhang et al. [18] em-

ployed Fast Gradient Sign Method (FGSM) [19] to devise a

steganography model, where the core idea was to add random

noise for simulating embedding operation on the cover image

to generate “stego image” with noise, and then performed ad-

versarial attack on deep learning based steganalysis network

to acquire perturbation. Finally, the adaptive steganography

algorithm was used for embedding secret messages. The

reported results showed that the proposed method achieved

superior performance in resisting deep learning based ste-

ganalysis methods. While Tang et al. [20] thoroughly investi-

gated adversarial examples from the perspective of steganog-

raphy. They suggested that adversarial example can be used

to adjust steganographic distortion cost effectively.

The existing conventional audio steganography cannot re-

sist deep learning based steganalysis methods. Lin-Net [21]

and Chen-Net [22] are two state-of-the-art deep learning

based audio steganalysis methods, which have achieved ex-

cellent classification performance for detecting traditional

audio steganography algorithms. Moreover, the emerging

steganography algorithms based on deep learning are mainly

focused in the image domain, while the deep learning based

audio steganography algorithms have drawn less attention,

which still have room for improvements. Therefore, this

paper is devoted to exploring steganography in the audio

domain. The proposed training framework consists of three

components: generator, discriminator and trained deep learn-

ing based steganalyzer. The original cover audio is taken as

the input to the generator for generating undistinguishable

steganographic cover audio. Then the traditional message

embedding algorithm LSBM, is employed to embed the

secret message into the generated steganographic cover audio

to obtain stego audio, which is delivered to the trained stegan-

alyzer for being misclassified as cover audio. This is trying

to fool the trained steganalyzer for outputting wrong predic-

tion probabilities. When misclassification occurs, the error

corresponding to prediction loss will be back-propagated to

the generator for updating the weight parameters. Once the

adversarial training among these three parties is completed,

one can obtain a well-trained generator to generate stegano-

graphic cover audio for subsequent message embedding,

which ensures that the data distribution of generated stegano-

graphic cover audio matches well with that of messages.

It should be remarked that the steganographic cover audio

refers to the cover audio that’s suitable for message embed-

ding, not the stego audio. The stego audio is produced by

embedding the secret message into the steganographic cover

audio using a traditional steganography method. Experimen-

tal results demonstrate that our proposed audio steganog-

raphy can yield cover audio that preserves a quite high

perception quality for message embedding, and the proposed

method exhibits superior undetectability against the state-of-

the-art deep learning based steganalyzers, when comparing

with the existing audio steganography methods. The main

contributions of this paper are summarized as follows:

• We carefully design the network architecture of the

generator and discriminator of GAN framework, which

ensures the generator learn to generate steganographic

cover audio with high perception quality.

• We not only use L1 norm to measure the similarities be-

tween cover audio and original audio, but also between

stego audio and original audio, which further enhances

the undetectability of proposed audio steganography

method.

• Extensive experiments are conducted to demonstrate

the effectiveness and superiority of the proposed audio

steganography method, compared with the conventional

audio steganography methods.

The rest of this paper is organized as follows. Section II

reviews the related work, Section III describes the proposed

framework, including the network architecture of generator

and discriminator, the loss function and the training strategy.

The experiment results are demonstrated in Section IV, with

perception quality of steganographic cover audio, compari-

son with existing methods and ablation experiment. Finally,

conclusions are drawn in Section V.

II. RELATED WORK

In this section, we first briefly review the generative adver-

sarial networks, and then state the recent advances in GAN-

based steganography approaches.
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A. GENERATIVE ADVERSARIAL NETWORK

The generative adversarial network (GAN) was first proposed

by Goodfellow et al. [23]. The basic purpose of GAN is to

utilize the real samples for establishing a generator, which

could generate samples that obey the same data distribution

as the real samples. The generator can be considered as a

transformation that transforms a random noise into the space

of real samples. In order to obtain such a generator, a discrim-

inator is introduced to distinguish the generated samples from

the real data, which is aimed at enhancing the performance

of generator. In brief, through the continuous combat game

between generator and discriminator, an equilibrium point

in the training process is finally reached. So this makes

it possible that the discriminator could not distinguish the

generated samples from the real ones.

However, the training process of naive GAN is not stable,

and it is also possible to emerge vanishing gradient prob-

lem. So researchers have proposed some improved GANs

for optimizing the training of GAN. Arjovsky et al. [24]

proposed WGAN (Wasserstein GAN), which used Earth-

Mover distance instead of JS divergence to measure the

distance between the distribution of real samples and that

of generated samples. Qi et al. [25] proposed Loss-Sensitive

GAN (LS-GAN) to limit the loss function to satisfy the

Lipschitz constraint. Mirza et al. [26] proposed Conditional

GAN (CGAN) that adds extra conditional information for

both discriminator and generator to guide the training of

GAN.

B. GAN-BASED STEGANOGRAPHY APPROACHES

In recent years, researchers have applied GAN into the

information hiding domain, and most of the GAN-based

steganography approaches are focused on the image do-

main. Volkhonskiy et al. [14] first proposed a steganographic

model termed as Steganographic GAN (SGAN), which took

random noise as input for generating a cover image that

was visually indistinguishable from the original one. Then

the corresponding stego image was generated by LSBM.

Finally, the generator and steganalyzer were involved into an

adversarial game. The goal of such a game was to enforce

the steganalyzer to classify the stego image as an authentic

cover. Shi et al. [27] proposed Secure Steganography GAN

(SSGAN) on the basis of SGAN, which employed WGAN to

replace the GAN framework of SGAN. This could speed up

the training of SSGAN and enhance the perceptual quality

of generated images. Hayes et al. [15] proposed another

GAN-based steganography model (HayesGAN) that took the

cover image and secret message as the input of GAN to

synthesize the stego image. The discriminator was used for

extracting secret messages and evaluating their extraction

accuracy. The stegnalyzer evaluated the undetectable ability

of synthesized stego image. However, it was difficult to

ensure that the embedded secret message could be extracted

completely because of the existence of errors. Tang et al.

[17] combined GAN and adaptive steganography to devise

ASDL-GAN for steganographic distortion cost. According

to the reported ASDL-GAN, the goal of generator was to

generate the modified probability map, and the discriminator

(namely steganalyzer) aimed at distinguishing the stego im-

age from the cover image. After several rounds of adversarial

training between generator and discriminator, the generator

could yield a relatively optimal modified probability map for

computing steganographic distortion cost. Finally, STC was

employed to embed secret messages based on the stegano-

graphic distortion cost. While Yang et al. [28] have made

several improvements to ASDL-GAN, and proposed to em-

ploye tanh-simulator as an activation function to replace TES

(Ternary embedding simulator) in ASDL-GAN for solving

the problem that TES was difficult to perform gradient back-

propagation. The selected channel was also considered in the

design of discriminator, so that the learned distortion cost

could resist the selected channel based steganalysis methods.

In addition, Ye. et al [29] proposed a GAN-based audio

steganography method which the embedding and extraction

of secret audio were accomplished by GAN. Yang et al. [30]

employed GAN for learning the embedding cost to approach

optimal embedding for audio steganography in the temporal

domain.

III. GENERATING STEGANOGRAPHIC COVER AUDIO

USING GAN

In this section, we first describe the proposed training frame-

work, including the network architecture of generator and

discriminator, the loss function and the training strategy.

A. OVERALL FRAMEWORK

Figure 1 demonstrates the training framework of the pro-

posed steganography method, which is consisted of three

principal parts: generator, discriminator and trained stegan-

alyzer. It should be pointed out that the trained steganalyzer

is implemented on Lin-Net which has been trained to con-

vergence in advance. Specifically, the original cover audio

is taken as the input to the generator for generating undis-

tinguishable steganographic cover audio. That is to say, the

generated steganographic cover audio shall be as resemble

as possible to the original one. Then traditional message

embedding algorithm LSBM, is employed to embed the

secret message into the steganographic cover audio to obtain

stego audio, which is delivered to the trained steganalyzer

for being misclassified as cover audio. Once misclassification

occurs, the error corresponding to prediction loss will be

back-propagated to the generator for updating the weight

parameters. It is worth noting that we encourage the stegana-

lyzer misbehavior because our goal is to fool the deep learn-

ing based steganalyzer. After adequate adversarial training,

the well-trained generator will be obtained. In the ultimate

steganography, we use the well-trained generator to generate

steganographic cover audio, then traditional steganography

algorithm LSBM, will be used to embed secret message on

the steganographic cover audio to yield undetectable stego

audio. The workflow of the ultimate steganography model is

illustrated in Figure 2.
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FIGURE 2. The workflow of the ultimate audio steganography model.

B. GENERATOR ARCHITECTURE

Inspired by the fact that U-Net [31] architecture can deal

with image-to-image translation tasks in an excellent perfor-

mance, we elaborately design the architecture of the gener-

ator in a U-Net fashion. The goal of generator is to auto-

matically learn to generate steganographic cover audio for

message embedding, then the steganalyzer could misclassify

corresponding stego audio as cover audio. The architecture

of generator as shown in Figure 3 contains 8 convolution

layers and 8 deconvolution layers, and Table 1 illustrates the

detailed parameter configuration of generator in the proposed

method. Specifically, the kernel size of all convolution layers

and deconvolution layers are 1×32, with stride 2 and padding

15, cascaded with batch normalization. As the fact that the

network is deeper, less content information will be reserved

after convolution operations, which may lead the stegano-

graphic cover audio to enjoy poor perceptual quality. Hence

we employ skip connection as a shortcut to concatenate the

feature map with the same size between convolution layers

and corresponding deconvolution layers. Skip connection can

render the deconvolution layers to share the features ex-

tracted by convolution layers, which benefits the perceptual

quality of steganographic cover audio. We concatenate the

feature map from Group i to Group L − i, here L is 16.

We apply parametric rectified linear units (PReLU) [32] from

Group 1 to Group 15. The tangent activation function in

Group 17 is applied to guarantee the sampling values of

steganographic cover audio range from −1 to 1. It should be

pointed out that all convolution and deconvolution layers of

the generator are initialized with Xavier [33] method.

C. DISCRIMINATOR ARCHITECTURE

The architecture of discriminator in the proposed method is

shown in Figure 4. The discriminator aims to distinguish

original audio from the steganographic cover audio, which

could motivate the generator to yield cover audio that approx-

imates the data distribution presented in the original audio. In

our proposed method, we employ the spectral normalization

technique which is proposed in the work Spectral Normal-

ization GAN (SNGAN)1 [34]. Compared with other GANs,

one of the highlights of SNGAN is that the weight parame-

ters of all convolution layers and fully-connected layers are

normalized by spectral norm. The reason why we employ

spectral normalization is that this could stabilize the training

process of GAN and finally motivate the generator in the

proposed method to yield steganographic cover audio with

better perceptual quality. In more detail, the discriminator

in our proposed method contains 9 convolution layers and

1 fully-connected layer. It should be pointed out that we re-

design a novel convolution kernel in the convolution layer by

normalizing its weight parameters using spectral norm. This

redesigned convolution kernel may be named as “SNConv”.

In the redesigned fully-connected layer named “SNLinear”,

of which the weight parameters are also normalized by

the spectral norm. Each convolution block is cascaded by

LeakyReLU [35] with slope setting to 0.01, the sigmoid

function is placed in the back of fully-connected layer. The

kernel size of all convolution layers is set to 1 × 32, with

stride 1 and padding 15.

D. LOSS FUNCTION

On behalf of forcing the generator to yield steganographic

cover audio with excellent perceptual quality, the loss func-

tion is a significant criterion to guide the training process

of generator and discriminator. For the purpose of ensuring

the discriminator possess a relatively better discriminant

1The implementation of SNGAN is that the weight parameters of all
convolution layers and fully-connected layers are normalized by the spectral
norm
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FIGURE 3. The architecture of generator in the proposed method.

TABLE 1. The parameter configuration of generator in the proposed method.

Group Operation Convolution/Deconvolution kernels Output Size

Input Audio / / 1× 16384

Group 1 Conv1d+Batch Normalization+PReLU 16× (1× 32) 16× 8192

Group 2 Conv1d+Batch Normalization+PReLU 32× (1× 32) 32× 4096

Group 3 Conv1d+Batch Normalization+PReLU 32× (1× 32) 32× 2048

Group 4 Conv1d+Batch Normalization+PReLU 64× (1× 32) 64× 1024

Group 5 Conv1d+Batch Normalization+PReLU 64× (1× 32) 64× 512

Group 6 Conv1d+Batch Normalization+PReLU 128× (1× 32) 128× 256

Group 7 Conv1d+Batch Normalization+PReLU 128× (1× 32) 128× 128

Group 8 Conv1d+Batch Normalization+PReLU 256× (1× 32) 256× 64

Group 9
deConv1d+Batch Normalization+PReLU

Concatenate Group 7 to Group 9
128× (1× 32) 128× 128

Group 10
deConv1d+Batch Normalization+PReLU

Concatenate Group 6 to Group 10
128× (1× 32) 128× 256

Group 11
deConv1d+Batch Normalization+PReLU

Concatenate Group 5 to Group 11
64× (1× 32) 64× 512

Group 12
deConv1d+Batch Normalization+PReLU

Concatenate Group 4 to Group 12
64× (1× 32) 64× 1024

Group 13
deConv1d+Batch Normalization+PReLU

Concatenate Group 3 to Group 13
32× (1× 32) 32× 2048

Group 14
deConv1d+Batch Normalization+PReLU

Concatenate Group 2 to Group 14
32× (1× 32) 32× 4096

Group 15
deConv1d+Batch Normalization+PReLU

Concatenate Group 1 to Group 15
16× (1× 32) 16× 8192

Group 16 deConv1d 1× (1× 32) 1× 16384

Group 17 (Output Audio) Tanh / 1× 16384
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FIGURE 4. The architecture of discriminator in the proposed method.

capability, and also facilitate the cover audio to resist the

perturbation caused by embedding secret messages. There-

fore, we divide the training process into two stages: in stage

1, only discriminator and generator are incorporated in the

adversarial training, and in stage 2, the trained steganalyzer

begins to join in the remaining adversarial training. Cor-

respondingly, we elaborately design loss functions for two

stages, respectively. Especially, in order to define the loss

function, we set the corresponding labels of steganographic

audio and stego audio both as 0, and the corresponding labels

of original audio and cover audio both as 1.

For stage 1, the loss function can be expressed as

Lstage1 = LD + LG1
(1)

where Lstage1 represents the loss of GAN framework in

stage 1. The losses LD and LG1
are computed in terms of

binary cross entropy. The loss for generator in stage 1 can be

calculated by

LG1
= Ex[log(1−D(G(x)))]. (2)

where x denotes original audio (the input of generator), Ex[·]
is the expectation operator over the input geniue audio clips.

The discriminator aims at distinguishing the steganographic

cover audio from the original one. Thus the loss of discrimi-

nator can be computed by

LD = −{Ex[logD(G(x))] + Ex[log(1−D(x))]}. (3)

For stage 2, the loss function is exhibited as follows.

Lstage2 = αLGAN + βLSim, (4)

where Lstage2 represents the loss of GAN framework in stage

2, and LSim is the similarity loss function to measure the

similarity between steganographic cover audio and original

audio. The hyperparameters α and β balance the importances

between the two parts. More specifically, LGAN is composed

of the loss of generator and discriminator, which can be

denoted as

LGAN = LD + LG2
(5)

The losses LD and LG2
are computed in terms of binary

cross entropy. For the generator, its goal is to yield stegano-

graphic audio with no differences in auditory compared with

original audio, and the stego audio produced by embed-

ding operations is sent to the steganalyzer for predicting

the probability belonging to cover audio. The loss between

the cover audio label and the prediction probability should

be minimized, which is used to propagate to the generator

for updating its parameters. This is devoted to forcing the

generator to yield preferable steganographic cover audio for

embedding message so that the stego audio cannot easily be

distinguished by steganalyzer. Therefore, the loss of genera-

tor can be calculated by

LG2
= Ex[log(1−D(G(x)))] + Ex[log(1− S(F(G(x))))], (6)

where x denotes original audio. Ex[·] is the expectation

operator over the input original audio clips. F(·) denotes

the traditional information method, e.g., LSBM, and D(·),
S(·), and G2(·) denote the discriminator, steganalyzer and

generator, respectively. The similarity loss term LSim shall

has two parts: The first part measures the differences between

steganographic cover audio and the original cover audio, and

the second measures the differences between the stego audio

and original audio. This can be expressed as

LSim = Ex[‖ G(x)− x ‖1] + Ex[‖ F(G(x))− x ‖1]. (7)

Here, L1 norm is applied to measure the similarity loss be-

tween steganographic cover audio and original audio. In our

experiment, L2 norm is also used to measure the aforemen-

tioned similarity loss, then we find that the steganographic

cover audio with L1 norm enjoys slightly better perceptual

quality compared to that generated with L2 norm. Finally,

we would like to remark that the steganalyzer is a well-

trained neural network based on Lin-Net [21]. Hence in stage

2, the steganalyzer is involved, but all its model parameters

are fixed; it is only responsible for back-propagating the

prediction errors via gradients. The back-propagated mis-

classification errors are used to update the parameters of

generator, which may force the generator into learning to

generate steganographic cover audio that suitable for mes-

sage embedding, and attempt to deceive the steganalyzer.

E. TRAINING STRATEGY

In our proposed method, the training process includes two

stages. In stage 1, we have trained the GAN framework

(i.e., generator G and D) for N epochs in advance (We

empirically set N as 30). In stage 2, the steganalyzer joins in

the training process to start post-training, which takes around

another 100 epochs. This is for the suppose of guaranteeing

the discriminator to possess stronger discriminant ability

for distinguishing the steganographic cover audio from the

original one, and also prompt the generator to yield cover

audio with superior perceptual quality. The generator and

discriminator are trained alternatively, that is to say, when

training the generator, the weight parameters of discriminator

are fixed and vice versa. It should be pointed out that the
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parameters of steganalyzer are not updated in the entire

training process. The role of steganalyzer is orientated to

output the confidence that stego audio belongs to the original

one. Then the produced misclassification loss can be back-

propagated via gradients to generator G, which is applied to

update the parameters of generator. The training strategy is

briefly described in Algorithm 1.

Algorithm 1 Training Strategy of the Proposed Method

Input: original audio x, traditional information embedding

method F , trained steganalyzer S , loop variable i, pre-

training epochs N for stage 1, total training epochs M ,

learning rate γ.

Output: The well-trained generator G∗.

1: Initialization: Initialize the weight parameters of gener-

ator θG and discriminator θD using Xavier method.

2: for i = 1 to M do

3: Generate fake cover audio c=G(x).
4: if i ≤ N then

5: Update the weight parameters of generator and dis-

criminator by gradient descent optimizer in stage 1,

respectively. θG = θG − γ∇θGLstage1, θD = θD −

γ∇θDLstage1.
6: else

7: Embed secret message using information embedding

algorithm to yield stego audio s = F(c).
8: Update the weight parameters of generator and dis-

criminator by gradient descent optimizer in stage 2,

respectively. θG = θG − γ∇θGLstage2, θD = θD −

γ∇θDLD. // trained steganalyzer joins in the training

process for backpropagating gradients to generator.
9: end if

10: end for

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

TIMIT corpus [36] and UME corpus [37] are two widely-

used datasets in speech recognition speaker recognition and

so on. Both TIMIT and UME contain uncompressed mono

audio with a sampling frequency of 16 kHz. We have con-

ducted experiments on the two datasets to verify the effective-

ness of the proposed method, respectively. TIMIT is used for

training the generator in the proposed method, and UME is

used for evaluating the undetectability performance by using

different deep learning based steganalysis methods. For the

sake of facilitating to design the framework of generator, we

tailored the audio files into small clips with 16384 sampling

points. In the training process, 15000 small clips are used for

training the generator, the mini-batch size is set to 32. The

Adam optimizer is used with the learning rate 0.0001. Em-

pirically, the hyper-parameter α and β in the loss function are

both set to be 1. The input is normalized firstly before feeding

to the generator, the maximum and minimum normalization

trick is used for normalizing the input audio into [−1, 1]. The

proposed method is implemented using PyTorch and trained

on four NVIDIA RTX1080 Ti GPUs with 11 GB memory.

B. PERCEPTION QUALITY OF STEGANOGRAPHIC

COVER AUDIO

Recall that one goal of our method is to incur minor per-

turbation on the steganographic cover audio. In other words,

the steganographic cover audio shall be acoustically indistin-

guishable from the original cover audio, and also the stego

audio (produced by embedding message on the stegano-

graphic cover audio) should be with no differences compared

with the original cover audio when hearing it. To show this,

the visualization results of one randomly selected original

cover audio, steganographic cover audio and corresponding

stego audio on UME are illustrated in Figure 5. As can be

seen, the waveform and spectrogram of steganographic cover

audio are almost the same as that of the original cover audio.

The residual waveform validate that the magnitude of the

perturbation is quite small when comparing with the original

cover audio. The waveform and spectrogram for stego audio

are also similar to the steganographic cover audio.

Furthermore, to quantitatively assess the audio perception

quality, we employ the widely-used reference audio quality

metrics, i.e., the subjective metric PESQ [38] and the ob-

jective metric SNR (Peak signal-to-noise ratio). PESQ score

ranges from −0.5 to 4.5, and higher value indicates better

perception quality. SNR characterizes the average power

ratio between the intrinsic signal and the noise. We randomly

select 100 test audio samples from UME as references and

corresponding steganographic cover audio for evaluation.

The average PESQ score is 4.4235 and the SNR is 83.275
dB. This means that the steganographic cover audio cannot

be distinguished from the original audio in human hearing,

which verifies the effectiveness in generating steganographic

cover audio with high perceptual quality by the means of our

proposed method.

C. COMPARISON WITH EXISTING METHODS

To demonstrate the performance of our proposed method,

two experiments on TIMIT and UME are conducted in our

work. We compare the detection accuracy with LSBM [3],

STC [8], and Yang et al.’s GAN-based method [30] . Two

state-of-the-art deep learning based steganalysis methods,

Lin-Net [21] and Chen-Net [22] are used to evaluate the un-

detectability performance of these steganography methods,

respectively. For the experiments on TIMIT, 15000 audios

clips from TIMIT are selected as the input to the genera-

tor trained on TIMIT for generating corresponding 15000

steganographic cover audio samples. Then the bitstream se-

cret messages are embedded into the steganographic cover

audio samples. This finally yields 15000 cover-stego pair

samples. 12000 cover-stego pairs are used as training set,

and the remaining 3000 pairs are for testing set. We have

considered five embedding rates for testing, i.e., 0.5 bit per

sample (bps), 0.4 bps, 0.3 bps, 0.2 bps, and 0.1 bps. In order

to reduce the randomness of the experiment results, we repeat
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FIGURE 5. The visualization results of one randomly selected original audio, steganographic cover audio and corresponding stego audio on UME. (a)
(b) and (c) are the original waveform, the steganographic audio waveform and the residual waveform between (a) and (b), respectively. Similarly, (d) (e)

and (f) are the original spectrogram, the steganographic audio spectrogram and the residual spectrogram between (d) and (e), respectively. (g) and (h)
are the waveform and spectrogram for stego audio, respectively.

all the experiments for 10 times under randomly splitting

training set and test set and then average the detection accu-

racies. The similar experiments as mentioned above are also

conducted on UME. The only difference is that we take the

audio clips from UME as the input to the generator trained

on TIMIT for generating corresponding steganographic cover

audio samples.

The detection accuracy results are tabulated in Table 2.

As one can see, generally, for all embedding rates, all test

datasets, and all the deep learning based steganalyzers, our

method attains lower detection accuracy consistently. This

means the proposed method could generate better stegano-

graphic cover audio for message embedding, benefiting the

conventional steganography methods. With more careful

comparisons, for low embedding rates, e.g., 0.1 bps, the

detection accuracy of our method ranges from 48.14% to

49.25%, closing to the random guess (i.e., 50%), and a

similar phenomenon can be observed for conventional STC.

Instead, the detection accuracies for conventional method

LSBM all exceed 58%. This suggests that, for lower embed-

ding rates, the conventional method LSBM is more vulnera-

ble to deep learning based methods, while both our proposed

method and STC retain good undetectability. However, for

large embedding rates, e.g., 0.5 bps, the superiority of our

proposed method becomes more pronounced. For instance,

for the case of steganalyzer Lin-Net on UME dataset, the

detection accuracy’s for LSBM and STC are 75.24% and

71.08%, respectively. In contrast, our method yields 63.25%,

still enjoying lower undetectability. In addition, compared

with Yang et al.’s GAN-based method, our proposed method

has achieved lower detection accuracies under various em-

bedding rates. For example, when training the generator on

TIMIT and evaluating undetectability with UME using Chen-

Net, the detection accuracy of our proposed method is 3.23%
lower than Yang et al.’s method under 0.5 bps. Similarly,

our proposed method enjoys preferable undetectability per-

formance when the embedding rate is 0.1 bps. Therefore,

whether compared with conventional audio steganogrpahy

methods or the existing GAN-based audio steganogrpahy

schemes, our proposed method has witnessed excellent un-

detectability performance under various embedding rates.

D. ABLATION EXPERIMENT

In this section, we have conducted ablation experiments

on the proposed framework’s main architecture variants as

shown in Table 3. Figure 6 illustrates the corresponding

PESQ score of steganographic cover audio from UME when

these main variants are modified. We can easily find that our

proposed framework can steganographic cover audio with the

largest PESQ score 4.4235, compared with the other 6 gener-

ative steganography models. This means that our proposed

framework is the most effective in generating cover audio

with excellent perception quality. In addition, variants #2
and #4 could impose prominent influences on the perceptual

quality of steganographic cover audio, the PESQ scores are

3.8315 and 3.9256, respectively. We may perceive that there

exists obvious noise in the steganographic cover audio when

hearing it, which enjoys low auditory experience. To sum

up, the architecture variants in the proposed framework are

optimal.

V. CONCLUSION

In this work, we proposed to generate a better steganographic

cover audio for using the generative adversarial network. Em-

bedding messages on such steganographic cover audio could

yield more secure stego audio, which is able to resist the

deep learning based steganalyzers. The training framework

of the proposed method contains three principal modules:

generator, discriminator, and an off-the-shelf deep learning

based steganalyzer. We deliberately devised the network

architecture of the generator and discriminator, and propose

an effective training strategy for adversarial training among
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TABLE 2. Comparison of the detection accuracy (%) using Lin-Net [21] and Chen-Net [22] steganalyzers. For each cell, the top number is for Lin-Net and
the bottom number is for Chen-Net. Lower detection accuracy indicates better undetectability performance.

Dataset Steganography
Embedding rates (bps)

0.5 0.4 0.3 0.2 0.1

TIMIT

LSBM
76.28 72.54 69.15 67.45 60.24

72.15 70.22 67.23 63.35 59.41

STC
70.12 68.72 62.35 55.18 52.32

68.22 63.48 60.25 54.95 50.19

Yang et al.’s method
68.12 62.24 59.43 54.56 51.02

66.39 60.69 57.34 52.64 50.11

Proposed method
64.39 61.58 55.28 52.33 49.25

61.25 55.80 54.23 51.29 48.62

UME

LSBM
75.24 72.35 70.24 67.38 60.15

71.65 65.21 63.49 60.14 58.31

STC
71.08 68.27 60.12 56.49 51.13

65.21 62.08 59.49 52.65 50.89

Yang et al.’s method
66.42 62.06 59.04 55.19 51.36

65.62 61.20 58.47 53.10 50.09

Proposed method
63.25 61.42 55.13 52.11 49.03

62.39 59.56 55.46 50.49 48.14

TABLE 3. The main modified architecture variants in the proposed

method

Index Modified variants

#1 Proposed framework

#2 Remove spectral normalization

#3 Remove similarity loss

#4 Remove skipping connection in the generator framework

#5 Remove PReLU in the generator framework

#6 Remove batch normalization in the generator framework

#7 Remove LeakyReLU in the discriminator framework

#1 #2 #3 #4 #5 #6 #7
Index

0

1

2

3

4

PE
SQ

 sc
or

e

4.4235

3.8315
4.1924

3.9256
4.2546 4.3145 4.2754

FIGURE 6. The corresponding PESQ score of steganographic cover
audio from UME when the main architecture variants of the proposed
method are modified.

the three modules in the proposed framework. Once the

adversarial training is completed among these three parties,

one can obtain a well-trained generator, which could generate

steganographic cover audio for subsequent message embed-

ding. By using the well-trained generator, one can use con-

ventional steganography for embedding secret the message

as usual. Experimental results show that the generator of

the proposed audio steganography method can yield stegano-

graphic cover audio with high perception quality, while re-

taining reasonably good undetectability performance, even

under large embedding rates.
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