Learning to Generate Synthetic Data via Compositing

Shashank Tripathi, Siddhartha Chandra, Amit Agrawal, Ambrish Tyagi, James M. Rehg, Vishes Chari
1Amazon Lab126 2Carnegie Mellon University
{shatripa, chansidd, aaagrawa, ambrisht, jamerehg, viseshc}@amazon.com

Abstract

We present a task-aware approach to synthetic data generation. Our framework employs a trainable synthesizer network that is optimized to produce meaningful training samples by assessing the strengths and weaknesses of a ‘target’ network. The synthesizer and target networks are trained in an adversarial manner wherein each network is updated with a goal to outdo the other. Additionally, we ensure the synthesizer generates realistic data by pairing it with a discriminator trained on real-world images. Further, to make the target classifier invariant to blending artefacts, we introduce these artefacts to background regions of the training images so the target does not over-fit to them.

We demonstrate the efficacy of our approach by applying it to different target networks including a classification network on AffNIST, and two object detection networks (SSD, Faster-RCNN) on different datasets. On the AffNIST benchmark, our approach is able to surpass the baseline results with just half the training examples. On the VOC person detection benchmark, we show improvements of up to 2.7% as a result of our data augmentation. Similarly on the GMU detection benchmark, we report a performance boost of 3.5% in mAP over the baseline method, outperforming the previous state of the art approaches by up to 7.5% on specific categories.

1. Introduction

Synthetic data generation is now increasingly utilized to overcome the burden of creating large supervised datasets for training deep neural networks. A broad range of data synthesis approaches have been proposed in literature, ranging from photo-realistic image rendering [22, 35, 48] and learning-based image synthesis [36, 40, 46] to methods for data augmentation that automate the process for generating new example images from an existing training

*Equal Contribution
†Work done during an internship at Amazon Lab126

Figure 1: Comparison of object detection results using SSD. Baseline: trained on VOC data, Ours: trained on VOC and synthetic data generated using our approach. Green and red bounding boxes denote correct and missed detections respectively. SSD fine-tuned with our synthetic data shows improved performance on small, occluded and truncated person instances.

set [9, 14, 15, 33]. Traditional approaches to data augmentation have exploited image transformations that preserve class labels [3, 46], while recent works [15, 33] use a more general set of image transformations, including even compositing images.

For the task of object detection, recent works have explored a compositing-based approach to data augmentation in which additional training images are generated by pasting cropped foreground objects on new backgrounds [6, 7, 10]. The compositing approach, which is the basis for this work, has two main advantages in comparison to image synthesis: 1) the domain gap between the original and augmented image examples tends to be minimal (resulting primarily from blending artefacts) and 2) the method is broadly-applicable, as it can be applied to any image dataset with object annotations.

A limitation of prior approaches is that the process that
generates synthetic data is decoupled from the process of training the target classifier. As a consequence, the data augmentation process may produce many examples which are of little value in improving performance of the target network. We posit that a synthetic data generation approach must generate data have three important characteristics. It must be a) efficient: generate fewer and meaningful data samples, b) task-aware: generate hard examples that help improve target network performance, and c) realistic: generate realistic examples that help minimize domain gaps and improve generalization.

We achieve these goals by developing a novel approach to data synthesis. We set up a 3-way competition among the synthesizer, target and discriminator networks. The synthesizer is tasked with generating composite images by combining a given background with an optimally transformed foreground, such that it can fool the target network as shown in Figure 2. The goal of the target network is to correctly classify/detect all instances of foreground object in the composite images. The synthesizer and target networks are updated iteratively, in a lock-step. We additionally introduce a real image discriminator to ensure the composite images generated by the synthesizer conform to the real image distribution. Enforcing realism prevents the model from generating artificial examples which are unlikely to occur in real images, thereby improving the generalization of the target network.

A key challenge with all composition-based methods is the sensitivity of trained models to blending artefacts. The target and discriminator networks can easily learn to latch on to the blending artefacts, thereby rendering the data generation process ineffective. To address these issues with blending, Dwibedi et al. [7] employed 5 different blending methods so that the target network does not over-fit to a particular blending artefact. We propose an alternate solution to this problem by synthesizing examples that contain similar blending artefacts in the background. The artefacts are generated by pasting foreground shaped cutouts in the background images. This makes the target network insensitive to any blending artefacts around foreground objects, since the same artefacts are present in the background images as well.

We apply our synthesis pipeline to demonstrate improvements on tasks including digit classification on the AffNIST dataset [45], object localization using SSD [29] on Pascal VOC [8], and instance detection using Faster RCNN [34] on GMU Kitchen [11] dataset. We demonstrate that our approach is a) efficient: we achieve similar performance to baseline classifiers using less than 50% data (Sec. 4.1), b) task-aware: networks trained on our data achieve up to 2.7% improvement for person detection (Sec. 4.2) and 3.5% increase in mAP over all classes on the GMU kitchen dataset over baseline (Sec. 4.3). We also show that our approach produces >2X hard positives compared to state-of-the-art [6, 7] for person detection. Our paper makes the following contributions:

- We present a novel image synthesizer network that learns to create composites specifically to fool a target network. We show that the synthesizer is effective at producing hard examples to improve the target network.
- We propose a strategy to make the target network invariant to artefacts in the synthesized images, by generating additional hallucinated artefacts in the background images.
- We demonstrate applicability of our framework to image classification, object detection, and instance detection.
2. Related Work

To the best of our knowledge, ours is the first approach to generate synthetic data by compositing images in a task-aware fashion. Prior work on synthetic data generation can be organized into three groups: 1) Image composition, 2) Adversarial generation, and 3) Rendering.

Image Composition: Our work is inspired by recent cut and paste approaches [6, 7, 10] to synthesize positive examples for object detection tasks. The advantage of these approaches comes from generating novel and diverse juxtapositions of foregrounds and backgrounds that can substantially increase the available training data. The starting point for our work is the approach of Dwibedi et al. [7], who were first to demonstrate empirical boosts in performance through the cut and paste procedure. Their approach uses random sampling to decide the placement of foreground patches on background images. However, it can produce unrealistic compositions which limits generalization performance as shown by [6]. To help with generalization, prior works [6, 10] exploited contextual cues [4, 30, 31] to guide the placement of foreground patches and improve the realism of the generated examples. Our data generator network implicitly encodes contextual cues which is used to generate realistic positive examples, guided by the discriminator. We therefore avoid the need to construct explicit models of context [4, 6]. Other works have used image compositing to improve image synthesis [44], multi-target tracking [20], and pose tracking [37]. However, unlike our approach, none of these prior works optimize for the target network while generating synthetic data.

Adversarial learning: Adversarial learning has emerged as a powerful framework for tasks such as image synthesis, generative sampling, synthetic data generation etc. [2, 5, 26, 43] We employ an adversarial learning paradigm to train our synthesizer, target, and discriminator networks. Previous works such as A-Fast-RCNN [49] and the adversarial spatial transformer (ST-GAN) [26] have also employed adversarial learning for data generation. The A-Fast-RCNN method uses adversarial spatial dropout to simulate occlusions and an adversarial spatial transformer network to simulate object deformations, but does not generate new training samples. The ST-GAN approach uses a generative model to synthesize realistic images, but does not optimize for a target network.

Rendering: Recent works [1, 16, 35, 40, 47, 50] have used simulation engines to render synthetic images to augment training data. Such approaches allow fine-grained control over the scale, pose, and spatial positions of foreground objects, thereby alleviating the need for manual annotations. A key problem of rendering based approaches is the domain difference between synthetic and real data. Typically, domain adaptation algorithms (e.g. [40]) are necessary to bridge this gap. However, we avoid this problem by compositing images only using real data.

Hard example mining: Previous works have shown the importance of hard examples for training robust models [19, 27, 38, 51, 52, 29]. However, most of these approaches mine existing training data to identify hard examples and are bound by limitations of the training set. Unlike our approach, these methods do not generate new examples. Recently, [18, 53] proposed data augmentation for generating transformations that yields additional pseudo-negative training examples. In contrast, we generate hard positive examples.

3. Task-Aware Data Synthesis

Our approach for generating hard training examples through image composition requires as input a background image, , and a segmented foreground object mask, , from the object classes of interest. The learning problem is formulated as a 3-way competition among the synthesizer , the target , and the discriminator . We optimize to produce composite images that can fool both and . is updated with the goal to optimize its target loss function, while continues to improve its classification accuracy. The resulting synthetic images are both realistic and constitute hard examples for . The following sections describe our data synthesis pipeline and end-to-end training process in more detail.

3.1. Synthesizer Network

The synthesizer operates on the inputs and and outputs a transformation function, . This transformation is applied to the foreground mask to produce a composite synthetic image, , where denotes the alpha-blending [26] operation. In this work, we restrict to the set of 2D affine transformations (parameterized by a 6-
The approach can trivially be extended to other classes of image transformations. b, f, A are then fed to a Spatial Transformer module [17] which produces the composite image f (Figure 2). The composite image is fed to the discriminator and target networks with the goal of fooling both of them. The synthesizer is trained in lockstep with the target and discriminator as described in the following sections.

Blending Artefacts: In order to paste foreground regions into backgrounds, we use the standard alpha-blending method described in [17]. One practical challenge, as discussed in [7], is that the target model can learn to exploit any artefacts introduced by the blending function, as these will always be associated with positive examples, thereby harming the generalization of the classifier. Multiple blending strategies are used in [7] to discourage the target model from exploiting the blending artefacts. However, a target model with sufficient capacity could still manage to overfit on all of the different blending functions that were used. Moreover, it is challenging to generate a large number of candidate blending functions due to the need to ensure differentiability in end-to-end learning.

We propose a simple and effective strategy to address this problem. We explicitly introduce blending artefacts into the background regions of synthesized images (see Fig. 5). To implement this strategy, we (i) randomly choose a foreground mask from our training set, (ii) copy background region shaped like this mask from one image, and (iii) paste it onto the background region in another image using the same blending function used by S. As a consequence of this process, the presence of a composited region in an image no longer has any discriminative value, as the region could consist of either foreground or background pixels. This simple strategy makes both the discriminator and the target model invariant to any blending artefacts.

Object Detection: For detection frameworks such as SSD [29] and faster-RCNN [34], for each bounding-box proposal, the target network outputs (a) probability distribution $p = (p^0, \ldots, p^L)$ over the $L + 1$ classes in the dataset (including background), (b) bounding-box regression offsets $r \in \mathbb{R}^4$. While SSD uses fixed anchor-boxes, faster-RCNN uses CNN based proposals for bounding boxes. The ground truth class labels and bounding box offsets for each proposal are denoted by c and v, respectively. Anchor boxes with an Intersection-over-Union (IoU) overlap greater than 0.5 with the ground-truth bounding box are labeled with the class of the bounding box, and the rest are assigned to the background class. The object detector target T is trained to optimize the following loss function:

$$
\mathcal{L}_T(p, c, r, v) = -\log(p^c) + \lambda[c > 0]L_{loc}(r, v)
$$

(1)
where, L_{loc} is the smooth L_1 loss function defined in [12]. The Iverson bracket indicator function $[c > 0]$ evaluates to 1 for $c > 0$, i.e. for non-background classes and 0 otherwise. In other words, only the non-background anchor boxes contribute to the localization objective.

3.3. Natural Image Discriminator

An unconstrained cut-paste approach to data augmentation can produce non-realistic composite images (see for example Fig. 3). Synthetic data generated in such a way can still potentially improve the target network as shown by Dwibedi et al. [7]. However, as others [4, 30, 31] have shown, generating contextually salient and realistic synthetic data can help the target network to learn more efficiently and generalize more effectively to real world tasks.

Instead of learning specific context and affordance models, as employed in aforementioned works, we adopt an adversarial training approach and feed the output of the synthesizer to a discriminator network as negative examples. The discriminator also receives positive examples in the form of real-world images. It acts as a binary classifier that differentiates between real images r and composite images f. For an image I, the discriminator outputs $D(I)$, i.e. the probability of I being a real image. D is trained to maximize the following objective:

$$L_D = E_r \log(D(r)) + E_f \log(1 - D(f)). \quad (2)$$

As illustrated in Figure 3, the discriminator helps the synthesizer to produce more natural looking images.

3.4. Training Details

The three networks, S, T, and D, are trained according to the following objective function:

$$L_{S,T,D} = \max_S \min_T \min_D L_T + \min_S \max_D L_D \quad (3)$$

For a given training batch, parameters of S are updated while keeping parameters of T and D fixed. Similarly, parameters of T and D are updated by keeping parameters of S fixed. S can be seen as an adversary to both T and D.

Synthesizer Architecture. Our synthesizer network (Figure 6) consists of (i) a shared low-level feature extraction backbone that performs identical feature extraction on foreground masks m and background images b, (ii) and parallel branches for mid-level feature extraction on m, b, and (iii) a fully-connected regression network that takes as input the concatenation of mid-level features of m, b and outputs a 6-dimensional feature vector representing the affine transformation parameters. For the AffNIST experiments, we use a 2-layer network as the backbone. For experiments on Pascal VOC and GMU datasets, we use the VGG-16 [31] network up to Conv-5. The mid-level feature branches each consist of 2 bottlenecks, with one convolutional layer, followed by ReLU and BatchNorm layers. The regression network consists of 2 convolutional and 2 fully connected layers.

Synthesizer hyper parameters. We use Adam [21] optimizer with a learning rate of $1e - 3$ for experiments on the AffNIST dataset and $1e - 4$ for all other experiments. We set the weight decay to 0.0005 in all of our results.

Target fine-tuning hyper parameters. For the AffNIST benchmark, the target classifier is finetuned using the SGD optimizer with a learning rate of $1e - 2$, a momentum of 0.9 and weight decay of 0.0005. For person detection on VOC, the SSD is finetuned using the Adam optimizer with a learning rate of $1e - 5$, and weight decay of 0.0005. For experiments on the GMU dataset, the faster-RCNN model is finetuned using the SGD optimizer with a learning rate of $1e - 3$, weight decay of 0.0001 and momentum of 0.9.

4. Experiments & Results

We now present qualitative and quantitative results to demonstrate the efficacy of our data synthesis approach.

4.1. Experiments on AffNIST Data

We show the efficiency of data generated using our approach on AffNIST [45] hand-written character dataset. It is generated by transforming MNIST [24] digits by randomly sampled affine transformations. For generating synthetic images with our framework, we apply affine transformations on MNIST digits and paste them onto black background images.

Target Architecture: The target classification model is a neural network consisting of two 5×5 convolutional layers with 10 and 20 output channels, respectively. Each layer uses ReLU activation, followed by a dropout layer. The output features are then processed by two fully-connected layers with output sizes of 50 and 10, respectively.

We conducted two experiments with AffNIST dataset: Efficient Data Generation: The baseline classifier is trained on MNIST. The AffNIST model is fine-tuned by incrementally adding samples undergoing random affine transformation as described in [45]. Similarly, results from our method incrementally improves the classifier using composite images generated by S.

![Figure 6: Synthesizer Architecture](image-url)

465
Figure 7: Performance of MNIST classifier on AffNIST test data when progressively augmented with (i) AffNIST training data (red), (ii) our synthetic images (green). Our approaches achieves baseline accuracy (∼ 90%) with less than half the data (12\(K\) samples vs 25\(K\) samples). Note that even with 5\(K\) samples we reach an accuracy of ∼ 80%, compared to baseline accuracy of ∼ 40%.

Table 1: Our approach achieves better classification accuracy compared to previous pseudo-negative data synthesis approaches on AffNIST dataset. Numbers are reported from the respective papers.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Error (%)</td>
<td>2.78</td>
<td>2.76</td>
<td>2.97</td>
<td>2.56</td>
<td>1.52</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Figure 7 shows the performance of the target model on the AffNIST test set by progressively increasing the size of training set. When trained on MNIST dataset alone, the target model has a classification accuracy of 17% on the AffNIST test set. We iteratively fine-tune the MNIST model from this point by augmenting the training set with 500 images either from the AffNIST training set (red curve) or from the synthetic images generated by \(S\) (green curve). Note that our approach achieves baseline accuracy with less than half the data. In addition, as shown in Figure 7, using only 5\(K\) examples, our method improves accuracy from 40% to 80%. Qualitative results in Figure 4 shows the progression of examples generated by \(S\). As training progresses, our approach generates increasingly hard examples in a variety of modes.

Improvement in Accuracy: In Table 1, we compare our approach with recent methods [53, 32, 13, 25, 18] that generate synthetic data to improve accuracy on AffNIST data. For the result in Table 1, we use 55000, 5000, 10000 split for training, validation and testing as in [53] along with the same classifier architecture. We outperform hard negative

Table 2: Ablation Studies. We show the effect of design choices on the performance of our approach. Significant improvements are observed by introducing blending artefacts in background regions (col. 4) and maintaining a 1 : 1 ratio between real and synthetic images (col 5) during training. Adding a discriminator provides additional boost at AP\(_{0.8}\).

<table>
<thead>
<tr>
<th>Baseline [29]</th>
<th>AP(_{0.5}) (\rightarrow) 78.93</th>
<th>AP(_{0.8}) (\rightarrow) 29.52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ann. Cleanup</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dropout</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Blending</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1 : 1 Ratio</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Discriminator</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>AP(_{0.5})</td>
<td>79.02</td>
<td>79.13</td>
</tr>
<tr>
<td>AP(_{0.8})</td>
<td>29.64</td>
<td>30.72</td>
</tr>
</tbody>
</table>

Figure 8: Comparison of our approach with Cut-Paste-Learn [7] and Context-Data-Augmentation [6], on the fraction of hard positives generated for the person class.

Figure 8: Comparison of our approach with Cut-Paste-Learn [7] and Context-Data-Augmentation [6], on the fraction of hard positives generated for the person class.

![Comparison of AffNIST & Our Data for Training](image)

![Hardness of Synthetic Data](image)

4.2. Experiments on Pascal VOC Data

We demonstrate improved results using our approach for person detection on the Pascal VOC dataset [8], using the SSD–300 network [29]. We use ground-truth person segmentations and bounding box annotations to recover instance masks from VOC 2007 and 2012 training and validation sets as foreground. Background images were obtained from the COCO dataset [28]. We do an initial clean up of those annotations since we find that for about 10% of the images, the annotated segmentations and bounding-boxes do not agree. For evaluation we augment the VOC 2007 and 2012 training dataset with our synthetic images, and report mAP for detection on VOC 2007 test set for all experiments.
Table 3: Comparison of our approach with the baseline Faster-RCNN and [7] on the GMU Kitchen Dataset. Our approach improves overall mAP and outperforms other approaches in most classes.

4.2.1 Comparison with Previous Cut-Paste Methods

We compare our results with the performance of the baseline SSD network after fine-tuning it with the data generated by recent approaches from [6, 7]. We use the publicly available software from authors of [6, 7] to generate the same amount of synthetic data that we use in our experiments. To ensure a fair comparison, we use the same foreground masks and background images with added blending artifacts for the generation of synthetic data. We report detailed results over multiple IoU thresholds in Table 4, and some qualitative results in Figure 1.

As observed in [6], we note that adding data generated from [7] to training leads to a drop in performance. We also noticed that adding data generated by [6] also leads to a drop in SSD performance. In contrast, our method improves SSD performance by 2.7% at AP0.8.

Quality of Synthetic Data: We develop another metric to evaluate the quality of synthetic data for the task of person detection. A hardness metric is defined as $1 - p$, where p is the probability of the synthetic composite image containing a person, according to the baseline SSD. We argue that if the baseline network is easily able to detect the person in a composite image, then it is an easy example and may not boost the network’s performance when added to the training set. A similar metric has been proposed by previous works [19, 39, 49, 52] for evaluating the quality of real data.

In Figure 8, we compare the hardness of data generated by our approach to that of [6, 7]. The X-axis denotes the SSD confidence and the Y-axis captures fraction of samples generated. We generate the same amount of data with all methods and take an average over multiple experiment runs to produce this result. As shown in Figure 8, we generate significantly harder examples than [6, 7]. Please find more qualitative examples and experiments in the supplementary material.

4.2.2 Ablation Studies

Table 2 studies the effect of various parameters on the performance of an SSD network fine-tuned on our data. In particular, we study the effect of (i) excluding noisy foreground segmentation annotations during generation, (ii) using dropout in the synthesizer, (iii) adding blending artifacts in the background, (iv) fine-tuning with real and synthetic data, and (v) adding the discriminator. Our performance metric is mAP at an IoU threshold of 0.5. While we note progressive improvements in our performance with each addition, we see a slight drop in performance after the addition of the discriminator. We investigate this further in Table 4, and note that adding the discriminator improves our performance on all IoU thresholds higher than 0.5, allowing us to predict bounding boxes which are much better aligned with the ground truth boxes.

4.3. Experiments on GMU Data

Lastly, we apply our data synthesis framework to improve the Faster-RCNN [34] for instance detection. We compare our approach with baseline Faster-RCNN and the method of [7] on the GMU Kitchen Dataset [11].

The GMU Kitchen Dataset comprises 11 classes and has 3-fold train/test splits as reported in [7]. We use foregrounds from the Big Berkeley Instance Recognition (Big-BIRD) [42] dataset and backgrounds from the UW Scenes dataset [23].

Table 3 reports per class accuracy and mean average precision on the GMU test set. Our approach out-performs baseline Faster-RCNN and [7] by 3.5% and 1% in mAP, respectively. Interestingly, we improve accuracy of some categories such as ‘palmolive-orange’ by up to 7.5%.

5. Conclusion

The recent success of deep learning has been fueled by supervised training requiring human annotations. Large training sets are essential for improving performance under challenging real world environments, but are difficult, expensive and time-consuming to obtain. Synthetic data gen-
Figure 9: Qualitative results for VOC 2007 test set before and after training SSD with our synthesized data. Green and red boxes show correct and missed detections, respectively. Note that synthetic data helps improve the SSD performance on severely occluded and small instances.

Our work opens up several avenues for future research. Our synthesizer network outputs affine transformation parameters, but can be easily extended to output additional learnable photometric transformations to the foreground masks and non-linear deformations. We showed composition using a foreground and background image, but composing multiple images can offer further augmentations. While we showed augmentations in 2D using 2D cut-outs, our work can be extended to paste rendered 3D models into 2D images. Our approach can also be extended to other target networks such as regression and segmentation networks. Future work includes explicitly adding a diversity metric to data synthesis to further improve its efficiency.

6. Acknowledgements

We wish to thank Kris Kitani for valuable discussions on this topic.
References

[53] Yunhan Zhao, Ye Tian, Wei Shen, and Alan Yuille. Towards resisting large data variations via introspective learning. 2018. 3, 6