Learning to Harvest Information for the
Semantic Web

Fabio Ciravegna, Sam Chapman, Alexiei Dingli, and Yorick Wilks

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, S1 4DP Sheffield, UK
N.Surname@dcs . shef .ac.uk
http://nlp.shef.ac.uk/wig/

Abstract. In this paper we describe a methodology for harvesting in-
formation from large distributed repositories (e.g. large Web sites) with
minimum user intervention. The methodology is based on a combination
of information extraction, information integration and machine learning
techniques. Learning is seeded by extracting information from structured
sources (e.g. databases and digital libraries) or a user-defined lexicon.
Retrieved information is then used to partially annotate documents. An-
notated documents are used to bootstrap learning for simple Information
Extraction (IE) methodologies, which in turn will produce more annota-
tion to annotate more documents that will be used to train more complex
IE engines and so on. In this paper we describe the methodology and its
implementation in the Armadillo system, compare it with the current
state of the art, and describe the details of an implemented application.
Finally we draw some conclusions and highlight some challenges and
future work.

1 Introduction

The Semantic Web (SW) needs semantically-based document annotation to both
enable better document retrieval and empower semantically-aware agents. Most
of the current technology is based on human centered annotation, very often com-
pletely manual. The large majority of SW annotation tools address the problem
of single document annotation. Systems like COHSE [7], Ontomat [8] and MnM
[14], all require presenting a document to a user in order to produce annota-
tion either in a manual or a (semi-)automatic way. Annotations can span from
annotating portions of documents with concept labels, to identifying instances
or concept mentions, to connect sparse information (e.g. a telephone number
and its owner. The process involves an important and knowledge intensive role
for the human user. Annotation is meant mainly to be statically associated to
the documents. Static annotation can: (1) be incomplete or incorrect when the
creator is not skilled enough; (2) become obsolete, i.e. not be aligned with page
updates; (3) be devious, e.g. for spamming or dishonest purposes; professional
spammers could use manual annotation very effectively for their own purposes.

For these reasons, we believe that the Semantic Web needs automatic meth-
ods for (nearly) completely automatic page annotation. In this way, the initial

2 Fabio Ciravegna et al.

annotation associated to a document will lose its importance because at any
time it will be possible to automatically reannotate the document. Systems like
SemTag [4] are a first step in that direction. SemTag addresses the problem of an-
notating large document repositories (e.g. the Web) for retrieval purposes, using
very large ontologies. Its task is annotating portion of documents with instance
labels. The system can be seen as an extension of a search engine. The process
is entirely automatic and the methodology is largely ontology/application inde-
pendent. The kind of annotation produced is quite shallow when compared to
the classic one introduced for the SW: for example there is no attempt to dis-
cover relations among entities. AeroDaml [9] is an information extraction system
aimed at generating draft annotation to be refined by a user in a similar way
to nowadays’ automated translation services. The kind of annotation produced
is more sophisticated than SemTag’s (e.g. it is also able to recognize relations
among concepts), but, in order to cover new domains, it requires the develop-
ment of application/domain specific linguistic knowledge bases (an IE expert is
required). The harvester of the AKT triple store! is able to build large knowl-
edge bases of facts for a specific application. Here the aim is both large scale and
deep ontology-based annotation. The process requires writing a large number
of wrappers for information sources using Dome, a visual language which fo-
cuses on manipulation of tree-structured data [11]. Porting requires a great deal
of manual programming. Extraction is limited to highly regular and structured
pages selected by the designer. Maintenance is complex because - as well known
in the wrapper community - when pages changes their format, it is necessary to
re-program the wrapper [10]. The approach is not applicable to irregular pages
or free text documents. The manual approach makes using very large ontologies
(like in SemTag) very difficult.

In this paper we propose a methodology for document annotation that was
inspired by the latter methodology, but (1) it does not require human interven-
tion for programming wrappers (2) it is not limited to highly regular documents
and (3) it is largely unsupervised. The methodology is based on adaptive infor-
mation extraction and integration, it is implemented in Armadillo, a tool able to
harvest domain information from large repositories. In the rest of the paper we
describe and discuss the methodology, present experimental results on a specific
domain and compare Armadillo with the current state of the art. Finally we
outline some challenges that the methodology highlights.

2 Armadillo

Armadillo is a system for producing automatic domain-specific annotation on
large repositories in a largely unsupervised way. It annotates by extracting in-
formation from different sources and integrating the retrieved knowledge into a
repository. The repository can be used both to access the extracted information
and to annotate the pages where the information was identified. Also the link

! http://triplestore.aktors.org/SemanticWebChallenge/

Lecture Notes in Computer Science 3

Input:
can Ontology;
ean Initial Lexicon;
*a Repository of Documents;

Output: A set of triples representing the extracted information
and to be used to annotate documents

do {

spot information using the lexicon

seek for confirmation of the identified information

extend lexicon using adaptive information extraction
and seek confirmation of the newly extracted information

while a stable set of information is found(e.g. the base
does not grow anymore)

* Integrate Information from different documents

¢ Store information in repository

Fig. 1. The Armadillo’s main algorithm

with the pages can be used by a user to verify the correctness and the prove-
nance of the information. Armadillo’s approach is illustrated in Figure 1. In the
first step in the loop, possible annotations from a document are identified us-
ing an existing lexicon (e.g. the one associated to the ontology). These are just
potential annotations and must be confirmed using some strategies (e.g. disam-
biguation or multiple evidence). Then other annotations not provided by the
lexicon are identified e.g. by learning from the context in which the known ones
were identified. All new annotations must be confirmed and can be used to learn
some new ones as well. They will then become part of the lexicon. Finally all
annotations are integrated (e.g. some entities are merged) and stored into a data
base. Armadillo employs the following methodologies:

— Adaptive Information Extraction from texts (IE): used for spotting informa-
tion and to further learning new instances.

— Information Integration (II): used to (1) discover an initial set of information
to be used to seed learning for IE and (2) to confirm the newly acquired
(extracted) information, e.g. using multiple evidence from different sources.
For example, a new piece of information is confirmed if it is found in different
(linguistic or semantic) contexts.

— Web Services: the architecture is based on the concept of ”services”. Each
service is associated to some part of the ontology (e.g. a set of concepts
and/or relations) and works in an independent way. Each service can use
other services (including external ones) for performing some sub-tasks. For
example a service for recognizing researchers names in a University Web Site
will use a Named Entity Recognition system as a sub-service that will recog-
nise potential names (i.e. generic people’s names) to be confirmed using some

4 Fabio Ciravegna et al.

RDF repository

=
HE ="
-

Internal Modules

[
® ® ©

Wrapper Information Information
Induction Extraction Integration

Input Documents

£20TAIIE (o TeUI21XT

IDE for Internal
Modules Definition

Fig. 2. The Armadillo Architecture

internal strategies as real researchers names (e.g. as opposed to secretaries’
names).

— RDF repository: where the extracted information is stored and the link with
the pages is maintained.

A development environment allows to define architectures for new applications.
Porting to new applications does not require knowledge of TE. All the methods
used tend to be domain independent and are based on generic strategies to be
composed for the specific case at hand. The only domain dependent parts are:
the initial lexicon, the ontology and the way the confirmation strategies are
designed /composed.

2.1 Extracting Information

Most of the current tools (e.g. COHSE and SemTag) provide annotation using
a static lexicon where the lexicalization of objects in the ontology is contained.
The lexicon does not increase while the computation goes on, unless the user
adds terms to it. Armadillo continually and automatically expands the initial
lexicon by learning to recognize regularities in the repository. As a matter of
fact, Web resources (and in general all repositories) have a specific bias, i.e.
there are a number of regularities, either internal to a single document or across

Lecture Notes in Computer Science 5

a set of documents [13]. Regularities can either be very strong (e.g. in case of
pages generated by a data base), or given by a style imposed by the designers.
Armadillo is able to capture such regularities and use it to learn to expand its
initial lexicon. There are two ways in which an object (e.g., an instance of a
concept) can be identified in a set of documents. Using its internal description
(e.g. its name or the words describing it) and the context in which it appears.
Systems like COHSE, SemTag and Magpie [6] use the former. MnM and Ontomat
[8] use adaptive IE to learn from the context as well. They use the regularity
in a collection of documents (e.g. a set of web pages about a specific topic
from the same site) to derive corpus-wide rules. In those approaches, it is very
important that the corpus is carefully chosen as consistent in its regularity. This
allows learning from the human annotation to converge quickly to a stable and
effective situation. Armadillo uses an approach that can be seen as an extension
of the one used in MnM and Ontomat where there is no human in the loop and
where large diverse repositories (e.g. whole portions of the Web) are annotated,
and therefore such regularity is not straightforward. The system has to find
its own ways to identify those regularities and use them to learn without user
support. When regularities in the context are found, they are used to learn other
occurrences of the same (type of) object.

2.2 Gradually Acquiring Information

Armadillo exploits a key feature of the Web: the redundancy of information.
Redundancy is given by the presence of multiple citations of the same infor-
mation in different contexts and in different superficial formats. Redundancy is
currently used for improving question answering systems [5]. When known in-
formation is present in different sources, it is possible to use its multiple occur-
rences to bootstrap recognizers that, when generalized, will retrieve other pieces
of information, producing in turn more (generic) recognizers [1]. Armadillo uses
redundancy in order to bootstrap learning beyond the initial user lexicon (if any)
and even to acquire the initial lexicon. In particular, information can be present
in different formats on the Web: in documents, in repositories (e.g. databases or
digital libraries), via agents able to integrate different information sources, etc.
From them or their output, it is possible to extract information with different
degrees of reliability. Systems such as databases contain structured data that
can be queried either via APIs or web front ends (getting HTML output). In
the latter case, wrappers can be induced to extract information. Wrapper In-
duction methodologies are able to model rigidly structured Web pages such as
those produced by databases [10]. When the information is contained in textual
documents, extracting information requires more sophisticated methodologies.
Wrapper induction systems have been extended to cope with less rigidly struc-
tured pages, free texts and even a mixture of them [2]. There is an increasing
degree of complexity in the extraction task mentioned above. As complexity in-
creases more training data is required. Wrappers can be trained with a handful
of examples whereas full IE systems may require millions of words.

6 Fabio Ciravegna et al.

All the IE process in Armadillo is based on integrating information from
different sources to provide annotations which will bootstrap learning, which in
turn will provide more annotation and so on. The process starts with simple
methodologies which require limited annotation, to produce further annotation
to train more complex modules. The ontology provides the mean for integrating
information extracted from different sources. For example simple wrappers can
be used to extract information from a web page produced by databases contain-
ing papers from computer science departments. In order to avoid wrapping each
database separately (i.e., providing examples of annotated input/output for each
of them), Armadillo uses information from a database already wrapped in order
to provide automatic annotation of examples for the other ones as proposed in
[13]. For example, if the goal is to extract bibliographic information about the
Computer Science field, it is possible to use Citeseer (www.citeseer.com), a large
(and largely incomplete) database to learn how to query and understand another
service, e.g. the NLDB bibliography at Unitrier (http://www.informatik.uni-
trier.de/~ ley/db/). This can be done by querying Citeseer and the NLDB using
the same terms, and producing two parallel pages of results. The one from Cite-
seer will have a known format and the information can be easily extracted using
a predefined wrapper. Then, some of the information contained in the NLDB
output page can be automatically annotated (e.g. for the paper title generally it
is necessary just an intelligent string matching). Using the annotated examples it
is possible to induce wrappers that, given the high regularity of the information
in the NLDB page, will be able to extract papers also from the latter. Consid-
ering that training a wrapper generally requires just a handful of examples, it is
possible to focus only on those examples where the match is very clear and reli-
able, discarding others that are more questionable, therefore producing a highly
reliable wrapper. Facilities for defining wrappers are provided in our architec-
ture by Amilcare (nlp.shef.ac.uk/amilcare/), an adaptive IE system based on a
wrapper induction methodology able to cope with a whole range of documents
from rigidly structured documents to free texts [3].

2.3 Web Services

Each task in Armadillo (e.g. discovering all the papers written by an author)
is performed by a server which in turn will use other servers for implementing
some parts (subtask) of it. Each server exposes a declaration of input and output,
plus a set of working parameters. Servers are reusable in different contexts and
applications. For example one server could return all papers written by a person
by accessing Citeseer. Another one will do the same on another digital library.
Another one will use the papers extracted by the other two in order to discover
pages where they are cited and to bootstrap learning. Another one will invoke
these servers and integrate the evidence returned by each of them and decide
if there is evidence enough to conclude that some newly discovered candidate
strings represent a real new object or maybe just a variant version of a known
name. All the servers are defined in a resource pool and can be used in a user-
defined architecture to perform some specific tasks. New servers can be defined

Lecture Notes in Computer Science 7

and added to the pool by wrapping them in a standard format. The defined
architecture works as a ”Glass Box”. All the steps performed by the system are
shown to the user together with their input and output. The user can check the
intermediate results and manually modify their output, or change their strategy
(if possible, such as in the case of modules who integrate information). For
example if a piece of information is missed by the system, it can be manually
added by the user. The modules working on the output of that module will then
be re-run and further information will hopefully be retrieved. In this way the
user is able both to check the results of each step and to improve the results
of the system by manually providing some contributions (additions, corrections,
deletion).

2.4 The Triple Store

Facts extracted from the Web are stored in an RDF store in the form of triples
which define relations in the form ”Subject - Verb - Object”, where the subject
and object are elemenets and the verb details the relation between them. For
each element in the triples, the following information is stored: the string (e.g.
J. Smith), the position where it was found (e.g. the document URL and its
offset) and the concept, instance or relation represented. The triples can be
used to derive also aliases for the same object, i.e. a lexicon (”J. Smith” at
< www-address; >: 33 : 44 and ” John Smith” at < www_addresss >: 21 : 35),
and to recover dispersed information (e.g. the person JSMITH45 has names ”J.
Smith” at < www_address; >: 33 : 44 and ” John Smith” at < www_addressy >:
21 : 35 and telephone number ”444.12.12.12.12 at < www-addresss >: 10 : 12,
homepage at < www_addressy >). The triple store constitutes the resource
used by the different services to communicate. Each server stores the extracted
information in the form of signed triples. The other services will extract them
and elaborate the information to store further information (or to confirm the
existing one). Each piece of information is tagged with its provenance both in
terms of source document and in terms of extraction method, i.e. the service or
agent that has retrieved it. The provenance is used to assign reliability to the
information itself: the more the information is confirmed, the more reliable it is
considered.

2.5 Confirming Information

A crucial issue in the cycle of seeding and learning is the quality of the informa-
tion used to seed. Wrong selections can make the method diverge and produce
spurious information. When a piece of information is acquired (e.g. a new paper
is assigned to a specific author in the CS task mentioned in section 3), Armadillo
requires confirmation by different sources before it can be used for futher seeding
of learning. Again, using the redundancy of the Web, we expect that the same
piece of information is repeated somewhere in a different forms and the system to
find it. The strategy for evidence gathering is application dependent. Users have
to identify task specific strategies. Such strategies can be defined declaratively

8 Fabio Ciravegna et al.

in Armadillo by posing requirements on the provenance of the information in
terms of methods of extraction and sources (including the number of times the
information was confirmed in the different sources).

The next section describes how Armadillo was used in a specific application.

3 Armadillo in Action

Armadillo has been applied so far to three tasks: the CS website harvesting
task, the Art Domain task and the discovery of geographical information?. Here
we describe Armadillo’s application to mining websites of Computer Science
Departments, an extension of its original task in the AKTive Space application
that won the 2003 Semantic Web Challenge®. Armadillo’s task is to discover
who works for a specific department (name, position, homepage, email address,
telephone number) and to extract for each person some personal data and a list
of published papers larger than the one provided by services such as Citeseer.

3.1 Finding People Names

The goal of this subtask is to discover the names of all the people who work
in the specific department. This task is more complex than a generic Named
Entity Recognition because many non researchers’ names are cited in a site,
e.g. those of undergraduate students, clerics, secretaries, etc, as well as names
of researchers from other sites that e.g. participate in common projects or have
co-authored papers with members of staff. Organizing the extraction around a
generic Named Entity Recognizer (NER) is the most natural option. This does
not finish the job, though, because a NER recognizes ALL the people’s names
in the site, without discriminating between relevant and irrelevant. Moreover
classic NERs tend to be quite slow if launched on large sites and can be quite
imprecise on Web pages, as they are generally defined for newspaper-like articles.
A two-step strategy is used here instead: initially a short list of highly reliable
seed names are discovered; this constitute the initial lexicon. Such lexicon could
also be provided by an existing list. Here we suppose such list does not exist.
Then these seeds are used to bootstrap learning for finding further names.

Finding Seed Names. To find seed names, a number of weak strategies are
combined that integrate information from different sources. First of all the web
site is crawled looking for strings that are potential names of people (e.g. using a
gazetteer of first names and a regular expression such as <first-name< " (capitalized
word)T.). Then the following web services are queried:

— Citeseer (www.citeseer.com): Input: the potential name; Output: a list of
papers and a URL for homepage (if any);

2 http://www.dcs.shef.ac.uk/~sam/results/index.html
3 http://challenge.semanticweb.org/)

Lecture Notes in Computer Science 9

— The CS bibliography at Unitrier (http://www.informatik.uni-trier.de/~ ley/db/):
Input: the potential name: Output: a list of papers (if any);

— HomePageSearch (http://hpsearch.uni-trier.de/): Input: the potential name;
Output: a URL for homepage (if any);

— Annie (www.gate.ac.uk): Input: the potential name and the text surrounding
it; Output: True/False;

— Google (www.google.co.uk) Input: the potential name and the URL of the
site in order to restrict search; Output: Relevant Pages that are hopefully
homepages;

The digital libraries (Citeseer and Unitrier) are used as first filters to determine
if a string is a name of a known researcher. If they return reasonable results
for a specific string (i.e. not too few and not too many), this name is further
processed, otherwise it is discarded. A string is a potentially valid name if the
digital libraries return a reasonable number of papers (between 5 and 50 in our
experiments). Results not in line with the reasonability criteria are discarded as
inappropriate seeds. This is to discard potential anomalies such as ambiguous
names (e.g. Citeseer returns more than 10,000 papers for the term ”Smith”; this
cannot be a single researcher) and invalid names (e.g. the words ” Fortune Teller”
do not return any paper). We tend to use quite restrictive criteria for keeping
reliability high (i.e. it is very possible that a person writes some 100 papers,
but that amount could also hide name ambiguity. The results of the digital
libraries are integrated with those of the classic Named Entity Recognizer run
on a window of words around the candidates (so to avoid the problem of slow
processing). At this point a number of names are available that fall in three
potential types: (1) correct (they are people working for the department); (2)
wrong (they are not people: they are false positives); (3) people who do not work
at the site but that are cited because, for example, they have coauthored papers
with some of the researchers of the department. For this reason, Citeseer, Google
and HomepageSearch are used to look for a personal web page in the site. If such
a page is not found, the names are discarded. From the results, personal web
pages are recognized with simple heuristics such as looking for the name in the
title or in "<H1>" tags. The process mentioned above is meant to determine a
small, highly reliable list of seed names to enable learning. Each of the strategies
is, per se, weak, as they all report high recall, low precision. Their combination
is good enough to produce data with high accuracy.

Learning Further Names. All the occurrences of seed names are then anno-
tated on the site’s documents and learning is initiated only on documents where
a reasonable quantity of known names are organized in structures such as lists
and tables. Such structures generally have an intrinsic semantic: lists generally
contain elements of the same type (e.g. names of people), while the semantics in
tables is generally related to the position either in rows or columns (e.g. all the
elements of the first column are people, the second column represents addresses,
etc.). When some seeds (at least four or five in our case) are identified in a list or
specific portions of a table, we train a classifier able to relate a large part of these

10 Fabio Ciravegna et al.

examples, for example using linguistic and/or formatting criteria (e.g. relevant
names are always the first element in each row). If we succeed, we are able to
reliably recognize other names in the structure. Every department generally has
one or more pages listing their staff in some kind of lists. These are the lists that
we are mainly looking for, but also tables assigning supervisors and students
are useful, provided that students and teachers can be discriminated. Each time
new examples are identified, the site is further annotated and more patterns can
potentially be learnt. New names can be cross-checked on the resources used
to identify the seed list: we have now more evidence that these names are real
names. In our experiments this is enough to discover a large part of the staff of
an average CS website with very limited noise, even using a very strict strategy
of multiple cross-evidence. We are currently using combinations of the follow-
ing evidence to accept a learnt name: (1) the name was recognized as seed; (2)
the name is included in an HTML structure where other known occurrences are
found (3) there is an hyperlink internal to the site that wraps the whole name;
(4) there is evidence from generic patterns (as derived by recognizing people on
other sites) that this is a person. The latter strategy was inspired by [12].

Evaluation. The CS task effectiveness was evaluated on a number of sites. Here
we report results from an evaluation done on both a specific web site (the Com-
puter Science Department site of the University of Sheflield, www.dcs.shef.ac.uk)
and by pointing the system to some pages containing interesting infromation for
the task, but distributed in random sites (the latter task is equivalent to applying
Armadillo on the results of a document classifier providing interesting pages).
Results on other sites are qualitatively largely equivalent. On the Sheffield de-
partment’s website, the system initially discovers 51 seed names of people (either
academics, researchers or PhD students) integrating information from Citeseer
and NLDB. Of them, 48 are correct and 3 wrong. These names are used to the
seed learning. Learning allows to discover other 57 names, 48 correct, 6 wrong.
This increases the overall recall from 37% to 84% with a very limited loss in
precision (see Table 1). Results obtained on the set of pages from random sites
are in Table 2. In this experiments we checked Armadillo’s ability to improve
results in case the II step returned high recall. The AKT triple store was used as
a source of information in addition to Citeseer and UniTrier. The gain in using
the TE-based extraction is still considerable (recall grows from 73 to 85).

3.2 Discovering Papers Citations

Discovering what papers are written by what members of the departmental staff
is a very difficult task. It requires recognizing the paper title and the authors,
and then relating the authors to the people identified in the previous step. Au-
thors are names in particular positions and in particular contexts: they must not
be confused with editors of collections in which the paper can be published, nor
they must be confused with other names mentioned in the surrounding text. A
title is generally a random sequence of words (e.g. the tile of [5]) and cannot be

Lecture Notes in Computer Science 11

Possible Actual Correct Wrong Missing Precision Recall F-Measure

Seed discovery 129 51 48 3 0 94 37 51
Adaptive IE 129 108 99 9 30 92 84 87

Table 1. Results in Discovering People and Associated homepage. First line: accu-
racy reached using Information Integration only (Citeseer+Google, etc.); second line:
accuracy using adaptive IE. Possible represents the number of people working for the
department, Actual the number of people returned by the systems. Actual results are
divided into Correct, Wrong and Missing.

Possible Actual Correct Wrong Missing Precision Recall F-Measure

Seed Discovery 331 243 242 1 89 99.59 73.11 84.32
Adaptive IE 331 288 284 4 47 98.61 85.80 91.76

Table 2. The results of discovering names of peoples working at some random sites.

characterized in any way (i.e. we cannot write generic patterns for identifying
candidate strings as we did for people). Moreover paper titles must not be con-
fused with titles of collections in which they are published. CS department sites
typically contain lists of publications for the department as a whole or personal
ones for each member of staff. Moreover papers are co-authored, so it is very
possible that each paper is cited more than one time within a specific site. In
rare cases personal lists of papers are produced using a departmental database
(i.e. all the publication pages are formatted in the same way), but in most cases
each person writes the list using a personal format; very often the style is quite
irregular as the list is compiled manually over time. This is a typical case in
which the classic methodology of manually annotating some examples for each
page for each member of staff is unfeasible, due to the large number of different
pages. Also irregularities in style produce noisy data and classic wrappers are
not able to cope with noise. A generic methodology is needed that does not
require any manual annotation.

In order to bootstrap learning we query the digital libraries (Citeseer and
UniTrier) using staff names as keywords. The output for each name is hopefully
a list of papers. Such lists will be incomplete because the digital libraries are
largely incomplete. The titles in the list are then used to query a search engine to
retrieve pages containing multiple paper citations. We focus on lists and tables
where at least four papers are found. We use titles because they tend to be unique
identifier. We are looking for seed examples, so we can discard titles which report
too many hits (so to avoid titles which are very common strings such as ”Lost”).
As for discovering new papers, the seed examples are annotated and page-specific
patterns are induced. We favour examples contained in structures such as lists

12 Fabio Ciravegna et al.

Possible Actual Correct Wrong Missing Precision Recall F-Measure

Seed Discovery 320 151 152 1 168 99 47 64
Adaptive IE 320 217 214 3 103 99 67 80

Table 3. Paper title harvesting for 7 random people.

and tables for which we have multiple evidence. Please note however that the
structure of the citation is often not very structured internally. For example:
<1i> Fabio Ciravegna, Alexiei Dingli, Daniela Petrelli and Yorick Wilks:

User-System Cooperation in Document Annotation based on Information Extraction

 in Asuncion Gomez-Perez, V. Richard Benjamins (eds.): Knowledge

Engineering and Knowledge Management (Ontologies and the Semantic Web),

 Lecture Notes in Artificial Intelligence 2473, Springer Verlag
</1li>

Simple wrappers would be ineffective, as there is no way to discriminate - for
example - between authors and editors and title of paper and title of collec-
tion when relying on the HTML structure only. More sophisticated wrapper
induction systems are needed, as that provided by Amilcare, which uses both
html structure and (para-)linguistic information [3]. Using a cycle of annota-
tion/learning/annotation we are able to discover a large number of new papers.
Note that every time co-authorship among people is discovered on a publication
page of one author, the paper is retained for annotation of the publication pages
of the other authors (i.e. the redundancy is exploited again).

Evaluation. Discovering papers is a very complex task. We performed a task
of associating papers to people discovered during the previous step. A paper was
considered correctly assigned to a person if it was authored by the person and
the title was 100% correct. We did not use reseeding in the experiment, i.e. if
a paper was coauthored by two researchers, the information returned for one
person was not used to further annotate the publication pages for the second
person. In this sense the redundancy of information was not fully exploited.
Checking correctness of papers for a hundred people is very labor intensive,
therefore we randomly checked the papers extracted for 7 staff members for
which the seed papers exceeded 6 examples; results are shown in Table 3. The use
of IE increases significantly the overall recall rate which grows from 47 for seeds
and 67 for IE-based, precision 99 and 98 and F-measure 64 and 80 respectively.

4 Conclusions

In this paper we have described a methodology to extract information from
large repositories (e.g. large Web sites) with minimum user intervention. Ex-
tracted information can then be used for document annotation. Information is
initially extracted by starting from highly reliable/easy-to-mine sources such as

Lecture Notes in Computer Science 13

databases and digital libraries and is then used to bootstrap more complex mod-
ules such as wrappers for extracting information from highly regular Web pages.
Information extracted by the wrappers is then used to train more sophisticated
IE engines. All the training corpora for the IE engines are produced automati-
cally. Experiments show that the methodology can produce high quality results.
The user intervention is limited to providing an initial URL and to add infor-
mation missed by the different modules when the computation is finished. No
preliminary manual annotation is required. The information added or deleted by
the user can then be reused for restarting learning and therefore getting more
information (recall) and/or more precision. The type of user needed is a person
able to understand the annotation task. No skills in IE are needed. The natural
application of such methodology is the Web, but large companies’ repositories
are also an option. In this paper we have focused on the use of the technology
for mining web sites, an issue that can become very relevant for the Semantic
Web, especially because annotation is provided largely without user interven-
tion. It could potentially provide a partial solution to the outstanding problem
of who is providing semantic annotation for the SW. It can potentially be used
either by search engines associated to services/ontologies to automatically an-
notate/index/retrieve relevant documents or by specific users to retrieve needed
information on the fly by composing an architecture.

Armadillo has been fully integrated into the AKT triple store and it is con-
stantly providing new triples to it. Its contribution to the architecture is the
ability to reindex the pages when they change format (in the classic architecture
this step would require manually reprogramming of the wrapper) and the abillity
to extract information from sources that are not highly structured and regular
as possible to Dome [11]. Armadillo is compatible with SW tools like COHSE,
Magpie, MnM, Ontomat, etc. In COHSE and Magpie it could provide a way to
(1) extend the automatic annotation step beyond the connection between sim-
ple terms and concepts descriptions stored in a lexicon. It could allow to move
towards relation identification. Moreover it couls provide automatic extension
of the initial lexicon. In MnM and Ontomat, Armadillo could provide a way
to converge more rapidly towards an effective annotation service. As a matter
of fact, learning in those tools is limited to the documents already annotated
by the user and to the use of an initial lexicon. Armadillo could provide a way
to integrate information from external repositories in the corpus (e.g. digital li-
braries) to learn in an unsupervised way, from example from regularities found
in documents not annotated.

From the IE point of view there are a number of challenges in learning from
automatic annotation, instead of using human annotation. On the one hand
not all the annotation is reliable: the use of multiple strategies and combined
evidence reduces the problem, but still there is a strong need for methodologies
robust with respect to noise. On the other hand, many IE systems are able
to learn from completely annotated documents only, so that all the annotated
strings are considered positive examples and the rest of the text is used as a set of
counterexamples. In our cycle of seed and learn, we generally produce partially

14 Fabio Ciravegna et al.

annotated documents. This means that the system is presented with positive
examples, but the rest of the texts can never be considered as a set of negative
examples, because unannotated portions of text can contain instances that the
system has to discover, not counterexamples. This is a challenge for the learner.
At the moment we present the learner with just the annotated portion of the
text plus a windows of words of context, not with the whole document. This is
enough to have the system learning correctly: the unannotated examples that
become negative examples entering the training corpus is generally low enough
to avoid problems. In the future we will have to focus on using machine learning
methodologies that are able to learn from scattered annotation.

Many of the classic problems of integrating information are to be coped
with in Armadillo. Information can be represented in different ways, in differ-
ent sources from both a syntactic and a semantic point of view. The syntactic
variation is coped with in the definition architecture definition step: when two
modules are connected, a canonical form of the information is defined in the
ontology, e.g. the classic problem of recognising film titles as ”"The big chill”
and ”Big chill, the” can be addressed. More complex tasks are to be addressed,
though. In the art domain it is quite common to report the title of an art work
in different languages. For example a number of Cezanne’s paintings can be
referred in different web sites as both ”Apples and Oranges” and ” Aepfel mit
Orangen” (same title but in German), Michelangelo’s can be referred as ”The
Last Judgment” or "Il Giudizio Universale” (in Italian). Relating them can be
very difficult, even for a human, without looking at the actual artwork. Also, a
person name can be cited in different ways in different documents: N. Weaver,
Nick Weaver and Nicholas Weaver are potential variation of the same name. But
do they identify the same person as well? This is the problem of intra- and inter-
document coreference resolution well known in Natural Language Processing. In
many applications it is possible to identify some simple heuristics to cope with
this problem. For example in mining one specific CS websites, N. Weaver, Nick
Weaver and Nicholas Weaver are most of the times the same person, therefore it
is possible to hypothesize coreference. Another potential problem concerns ambi-
guity in the external resources (e.g. in the digital libraries). When querying with
very common names (e.g. ”John Smith”) papers by different people are mixed.
This is not a problem in Armadillo because the information returned is used to
annotate the site in order to both seed more learning and to look for multiple
confirmation. Papers from people from other departments or universities will not
introduce any annotations and therefore will not be accepted. The same applies
in case multiple homepages are returned: if some of them do not have an address
local to the current site, they are not used.

Acknowledgements

This work was carried out within the AKT project (www.aktors.org), spon-
sored by the UK Engineering and Physical Sciences Research Council (grant
GR/N15764/01), and the Dot.Kom project (www.dot-kom.org), sponsored by
the EU IST asp part of Framework V (grant IST-2001-34038).

Lecture Notes in Computer Science 15

References

10.

11.

12.

13.

14.

. Sergey Brin. Extracting patterns and relations from the world wide web. In

WebDB Workshop at 6th International Conference on Extending Database Tech-
nology, EDBT’98, 1998.

. Fabio Ciravegna. Adaptive information extraction from text by rule induction and

generalisation. In Proceedings of 17th International Joint Conference on Artificial
Intelligence (IJCAI), 2001. Seattle.

. Fabio Ciravegna. Designing adaptive information extraction for the Semantic Web

in Amilcare. In S. Handschuh and S. Staab, editors, Annotation for the Semantic
Web, Frontiers in Artificial Intelligence and Applications. IOS Press, 2003.

. S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S. Ra-

jagopalan, A. Tomkins, J. A. Tomlin, and J. Y. Zien. SemTag and Seeker: Boot-
strapping the semantic web via automated semantic annotation. In Proceedings of
the World Wide Web Conference 2003, 2003.

. Susan Dumais, Michele Banko, Eric Brill, Jimmy Lin, and Andrew Ng. Web ques-

tion answering: Is more always better? In Proceedings of the 25th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2002), Tampere, Finland, 2002.

. Martin Dzbor, John B. Domingue, and Enrico Motta. Magpie - towards a semantic

web browser. In Proceedings of the 2nd Intl. Semantic Web Conference, October
2003. Sanibel Island, Forida.

. C. Goble, S. Bechhofer, L.. Carr, D. De Roure, and W. Hall. Conceptual Open

Hypermedia = The Semantic Web? In The Second International Workshop on the
Semantic Web, pages 44-50, Hong Kong, May 2001.

. S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM - Semi-automatic CREAtion

of Metadata. In Proceedings of the 13th International Conference on Knowledge
Engineering and Knowledge Management, EKAW02. Springer Verlag, 2002.

. P. Kogut and W. Holmes. Applying information extraction to generate daml anno-

tations from web pages. In Proceedings of the K-CAP 2001 Workshop Knowledge
Markup € Semantic Annotation, 2001. Victoria B.C., Canada.

N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper induction for information
extraction. In Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI), 1997., 1997.

Thomas Leonard and Hugh Glaser. Large scale acquisition and maintenance from
the web without source access. In Siegfried Handschuh, Rose Dieng-Kuntz, and
Steffen Staab, editors, Proceedings Workshop 4, Knowledge Markup and Semantic
Annotation, K-CAP 2001, 2001.

Tom Mitchell. Extracting targeted data from the web. In Proceedings of the seventh
ACM SIGKDD international conference on Knowledge discovery and data mining,
San Francisco, California, 2001.

M. Perkowitz and O. Etzioni. Category translation: Learning to understand infor-
mation on the internet. In International Joint Conference on Artificial Intelligence,
1JCAI-95, pages 930-938, Montreal, Canada, 1995.

M. Vargas-Vera, Enrico Motta, J. Domingue, M. Lanzoni, A. Stutt, and
F. Ciravegna. MnM: Ontology driven semi-automatic or automatic support for
semantic markup. In Proc. of the 13th International Conference on Knowledge
Engineering and Knowledge Management, EKAWO02. Springer Verlag, 2002.

