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Abstract

Hashing approach becomes popular for fast simi-
larity search in many large scale applications. Real
world data are usually with multiple modalities
or having different representations from multi-
ple sources. Various hashing methods have been
proposed to generate compact binary codes from
multi-modal data. However, most existing multi-
modal hashing techniques assume that each data
example appears in all modalities, or at least there
is one modality containing all data examples. But
in real applications, it is often the case that every
modality suffers from the missing of some data
and therefore results in many partial examples, i.e.,
examples with some modalities missing. In this
paper, we present a novel hashing approach to deal
with Partial Multi-Modal data. In particular, the
hashing codes are learned by simultaneously ensur-
ing the data consistency among different modalities
via latent subspace learning, and preserving data
similarity within the same modality through graph
Laplacian. We then further improve the codes via
orthogonal rotation based on the orthogonal invari-
ant property of our formulation. Experiments on
two multi-modal datasets demonstrate the superior
performance of the proposed approach over several
state-of-the-art multi-modal hashing methods.

1 Introduction

With the explosive growth of the Internet, a huge amount of
data has been generated, which indicates that efficient simi-
larity search becomes more important. Traditional similarity
search methods are difficult to be directly used for large
scale applications since linear scan between query example
and all candidates in the database is impractical. Moreover,
the similarity between data examples is usually conducted in
high dimensional space. Hashing methods [Datar et al., 2004;
Bergamo et al., 2011; Weiss et al., 2008; Liu et al., 2011;
Rastegari et al., 2013; Salakhutdinov and Hinton, 2009;
Wang et al., 2010; Ye et al., 2013; Wang et al., 2014a;
2013a; Kong and Li, 2012; Raginsky and Lazebnik, 2009;
Zhang et al., 2013; Wang et al., 2014c; 2015] have been
proposed to address the similarity search problem within

large scale data. Hashing techniques design compact binary
code in a low-dimensional space for each data example so
that similar examples are mapped to similar binary codes. The
retrieval of similar data examples can then be completed in
a sublinear or even constant time, using Hamming distance
ranking based on fast binary operation (XOR) or hash table
lookup within a certain Hamming distance. In addition, the
storage cost can be significantly reduced due to the binary
compression.

In many applications, data examples are usually rep-
resented by multiple modalities captured from different
sources. For example, in web page search, the web page
content and its linkage information can be regarded as two
modalities. In web image retrieval, the image visual feature,
text description and textual tags can be viewed as multiple
modalities. Recently, several multi-modal hashing methods
(also known as multi-view or cross-view) have been proposed
to handle multi-modal data. Roughly speaking, these multi-
modal hashing approaches can be divided into two categories:
modality-specific methods and modality-integrated ones.

The modality-specific hashing methods [Bronstein et al.,
2010; Kumar and Udupa, 2011; Ou et al., 2013; Quadrianto
and Lampert, 2011; Zhen and Yeung, 2012; Liu et al., 2014;
Zhai et al., 2013] learn independent hashing codes for each
modality of data examples, and then merge multiple binary
codes from different modalities into the final hashing codes.
A cross-modality similarity search hashing (CMSSH) method
[Bronstein et al., 2010] is proposed to embed data from
different feature space into a common metric space. The
hashing codes are learned through eigen-decomposition with
AdaBoost framework. In work [Kumar and Udupa, 2011],
a cross-view hashing method is designed based on spectral
hashing, which generates the hashing codes by minimizing
the distance of hashing codes for similar data and maximizing
the distance for dissimilar data. Co-Regularized Hashing
[Zhen and Yeung, 2012] method intends to project data from
multiple sources, and at the same time, preserve the inter-
modality similarity.

The modality-integrated hashing methods [Ding et al.,
2014; Gong et al., 2014; 2012; Kim et al., 2012; Zhang et
al., 2011; Zhang and Li, 2014] directly learn unified hashing
codes for each data example. In the work of [Zhang et
al., 2011], a Composite Hashing with Multiple Information
Sources (CHMIS) method is proposed to incorporate infor-

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3904



mation from multiple sources into final integrated hashing
codes by linearly combining the hashing codes from different
modalities. Multi-View Spectral Hashing (MVSH) [Kim
et al., 2012] integrates multi-view information into binary
codes, and uses product of codewords to avoid undesirable
embedding. More recently, A Canonical Correlation Analysis
with Iterative Quantization (CCA-ITQ) method has been
proposed in [Gong et al., 2014; 2012] which treats the data
features and tags as two different modalities. The hashing
function is then learned by extracting a common space
from these two modalities. The work in [Ding et al., 2014]

introduces collective matrix factorization into multi-modal
hashing (CMFH), which learns unified hashing codes by
collective matrix factorization with latent factor model from
different modalities. However, existing multi-modal hashing
methods fail to handle the situation where only partial
examples are available in different modalities.

Although existing multi-modal hashing methods generate
promising results in dealing with multi-modal data, most of
them assume that all data examples have full information in
all modalities, or there exists at least one modality which
contains all the examples. However, in real world tasks, it is
often the case that every modality suffers from some missing
information, which results in many partial examples [Li et
al., 2014]. For instance, in web page search, many web
pages may not contain any linkage information. For web
image retrieval, not all images are associated with tags or text
descriptions. Moreover, the image itself may be inaccessible
due to deletion or invalid url. Therefore, it is a practical
and important research problem to design effective hashing
methods for partial multi-modal data.

In order to apply existing multi-modal hashing methods
to partial data, we can either remove the data examples
that suffer from missing information, or preprocess the
partial examples by first filling in the missing data. The first
strategy is clearly not suitable since the purpose is to map
all examples to their corresponding binary codes, whereas
our experiments show that the second strategy does not
achieve good performance either. In this paper, we propose a
novel Partial Multi-Modal Hashing (PM2H) approach to deal
with such partial data. More specifically, a unified learning
framework is developed to learn the binary codes, which
simultaneously ensures the data consistency among different
modalities via latent subspace learning, and preserves data
similarity within the same modality through graph Laplacian.
A coordinate descent algorithm is applied as the optimization
procedure. We then further reduce the quantization error
via orthogonal rotation based on the orthogonal invariant
property of our formulation. Experiments on the datasets
demonstrate the advantages of the proposed approach over
several state-of-the-art multi-modal hashing methods. We
summarize the contributions in this paper as follows:

1. We propose a unified hashing method to deal with partial
multi-modal data scenario, which can generate effective
hashing codes for all data examples. As far as we know,
it is the first attempt to learn binary codes on partial
multi-modal data.

2. We propose a coordinate descent method for the joint

optimization problem. We prove the orthogonal invariant
property of the optimal solution and learn an orthogonal
rotation by minimizing the quantization error to further
improve the code effectiveness.

3. Our extensive experiments demonstrate PM2H is an
effective hashing method when only partial multiple
modality information sources are available.

2 Partial Multi-Modal Hashing

2.1 Problem Definition

For the convenience of discussion, assume we are dealing
with two-modality data, i.e., given a data set of N data
examples XXX={(x1

i , x
2
i ), i = 1, . . . , N}, where x1

i ∈ R
d1

is the instance of the i-th example in the first modality
and x2

i ∈ R
d2 is the i-th example in the second

modality (usually d1 6= d2). In the partial modality

setting, a partial data set X̂̂X̂X={X̂̂X̂X(1,2), X̂̂X̂X(1), X̂̂X̂X(2)} instead

of XXX is given, where X̂̂X̂X(1,2)={(x1
1, x

2
1), . . . , (x

1
c , x

2
c)} ∈

R
c×(d1+d2) denotes the common examples present in

both modalities, X̂̂X̂X(1)={x1
c+1, . . . , x

1
c+m} ∈ R

m×d1 de-
notes the examples only present in the first modality

and X̂̂X̂X(2)={x2
c+m+1, . . . , x

2
c+m+n} ∈ R

n×d2 denotes the
examples only present in the second modality. Note that
the number of examples present and only present in both
modalities, the first modality, and the second modality are
c, m and n (N=c+m+n). The purpose of PM2H is to learn
unified hashing codes YYY ={y1, y2, . . . , yN} ∈ {−1, 1}N×k

together with the modality-specific hashing functionsHHH1 and
HHH2 to map each data example xi to the corresponding hashing
codes yi:

yi = sgn(vi) = sgn(HHHtxt
i) t = {1, 2} (1)

where HHHt ∈ R
k×dt is the coefficient matrix representing

the hashing function for the t-th modality and sgn is the
sign function. k is the length of the code. vi is the signed
magnitude relaxation of binary code yi, which is widely
adopted in previous hashing approaches. The objective
function of PM2H is composed of two components: (1) Data
consistency between modalities, latent subspace learning is
utilized to ensure that the hashing codes generated from
different modalities are consistent. (2) Similarity preservation
within modality, graph Laplacian is applied to enforce that
similar data examples within each modality are mapped into
similar codes.

2.2 Data Consistency between Modalities

In the partial modality setting, X̂̂X̂X(1,2), X̂̂X̂X(1), X̂̂X̂X(2) are repre-
sented by heterogeneous features of dimensions (d1 + d2),
d1, d2, which makes it hard for their hashing codes learning.
But investigating the problem from modality perspective,
in each individual modality, the data instances are sharing
the same feature space. The two different modalities are
coupled/bridged by the shared common examples. If we can
learn a common latent subspace for the two modalities, where
instances belonging to the same example between different
modalities are consistent, while at the same time for each
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modality, the representations for similar instances are close
in the latent subspace. Then the hashing codes can be directly
learned from this subspace, and we do not need to fill in

or complete the partial modality examples. Let X̂̂X̂X(1,2) =

[X̂̂X̂X
(1)
c , X̂̂X̂X

(2)
c ], where X̂̂X̂X

(1)
c ∈ R

c×d1 , X̂̂X̂X
(2)
c ∈ R

c×d2 are the
instances of the common examples coming from the two
modalities. We denote the instances of each modality as:

X̄̄X̄X(1) = [X̂̂X̂X
(1)
c , X̂̂X̂X(1)] ∈ R

(c+m)×d1 , X̄̄X̄X(2) = [X̂̂X̂X
(2)
c , X̂̂X̂X(2)] ∈

R
(c+n)×d2 . Following the above idea, the latent subspace

learning can be formulated as:

min
V̄̄V̄V (1),BBB(1)

‖X̄̄X̄X(1) − V̄̄V̄V (1)BBB(1)‖2F + λ R(V̄̄V̄V (1),BBB(1)) (2)

min
V̄̄V̄V (2),BBB(2)

‖X̄̄X̄X(2) − V̄̄V̄V (2)BBB(2)‖2F + λ R(V̄̄V̄V (2),BBB(2)) (3)

where BBB(1) ∈ R
k×d1 and BBB(2) ∈ R

k×d2 are the basis matrix
for each modality’s latent space. V̄̄V̄V (1) = [V̂̂V̂V

(1)
c , V̂̂V̂V (1)] ∈

R
(c+m)×k and V̄̄V̄V (2) = [V̂̂V̂V

(2)
c , V̂̂V̂V (2)] ∈ R

(c+n)×k are the latent
representation of instances in the latent space, which can also
be viewed as the relaxed representation of binary codes YYY .
The same latent space dimension k is shared between the
two modalities. R(· ) = ‖· ‖2F (sum over all matrices) is
the regularization term and λ is the tradeoff parameter. By
Eqn.2 and Eqn.3, the latent space basis BBB and corresponding
instance latent representation VVV are simultaneously learned
to minimize the reconstruction error from each individual
modality.

In the above equations, the latent space are learned
independently for each modality. But in the partial modality

setting, for examples present in both modalities X̂̂X̂X
(1)
c ,

X̂̂X̂X
(2)
c , their latent representation V̂̂V̂V

(1)
c , V̂̂V̂V

(2)
c should also be

consistent. Incorporating the above formulations by ensuring

V̂̂V̂V
(1)
c = V̂̂V̂V

(2)
c = V̂̂V̂V c, we seek to minimize:

min
VVV ,BBB

∥

∥

∥

∥

∥

[

X̂̂X̂X
(1)
c

X̂̂X̂X(1)

]

−

[

V̂̂V̂V c

V̂̂V̂V (1)

]

BBB(1)

∥

∥

∥

∥

∥

2

F

+

∥

∥

∥

∥

∥

[

X̂̂X̂X
(2)
c

X̂̂X̂X(2)

]

−

[

V̂̂V̂V c

V̂̂V̂V (2)

]

BBB(2)

∥

∥

∥

∥

∥

2

F

+ λ R(VVV ,BBB)

(4)

By solving the above problem, we can obtain the ho-
mogeneous feature (relaxed hashing) representation for all

examples as VVV = [V̂̂V̂V c, V̂̂V̂V
(1), V̂̂V̂V (2)] ∈ R

(c+m+n)×k, whether
they are originally partial or not. Then the hashing codes YYY
can be directly achieved via binarization from this relaxed
latent representation. Note that Eqn.4 is different from
previous subspace based multi-modal hashing approaches,

which either requires V̄̄V̄V (1) and V̄̄V̄V (2) to be the same or do

not require V̄̄V̄V (1) and V̄̄V̄V (2) to share any common part. In

the above formulation, V̄̄V̄V (1) and V̄̄V̄V (2) share one common

representation V̂̂V̂V c, while at the same time have their own
individual components. Moreover, the individual basis matrix

BBB(1) and BBB(2), which are learned from all available instances

from both modalities, are connected by the common V̂̂V̂V c.

2.3 Similarity Preservation within Modality

One of the key problems in hashing algorithms is similarity
preserving, which indicates that similar data examples should
be mapped to similar hashing codes within a short Hamming
distance. Therefore, besides the data consistency between
different modalities, we also preserve the data similarity
within each individual modality. In other words, we want the
learned relaxed representation VVV to preserve the similarity
structure in each modality. In this work, we use the L2

distance to measure the similarity between vi and vj as

‖vi − vj‖
2, which is consistent with the Hamming distance

between the binary codes yi and yj ( 14‖yi − yj‖
2). Then one

natural way to preserve the similarity in each modality is to
minimize the weighted average distance as follows:

∑

i,j

SSS
(t)
ij ‖vi − vj‖

2 t = {1, 2} (5)

Here, SSS(t) is the similarity matrix in t-th modality, which

can be calculated from the instances X̄̄X̄X(t). In this paper, we
adopt the local similarity [Wang et al., 2014b; Zhang et al.,
2011], due to its nice property in many machine learning
applications. To meet the similarity preservation criterion, we
seek to minimize this quantity in each modality since it incurs
a heavy penalty if two similar examples have very different
latent representations.

By introducing a diagonal n×n matrixDDD(t), whose entries

are given by DDD
(t)
ii =

∑n

j=1SSS
(t)
ij . Eqn.5 can be rewritten as:

tr
(

V̄̄V̄V (t)T (DDD(t) −SSS(t))V̄̄V̄V (t)
)

= tr
(

V̄̄V̄V (t)TLLL(t)V̄̄V̄V (t)
)

t = {1, 2}
(6)

where LLL is called graph Laplacian [Weiss et al., 2008] and
tr(· ) is the matrix trace function. By minimizing the above
objective in all modalities, the similarity between different
examples can be preserved in the latent representation.

2.4 Overall Objective and Optimization

The entire objective function consists of two components: the
data consistency between modalities in Eqn.4 and similarity
preservation within modality given in Eqn.6 as follows:

min
VVV ,BBB

O = ‖X̄̄X̄X(1) − V̄̄V̄V (1)BBB(1)‖2F + ‖X̄̄X̄X(2) − V̄̄V̄V (2)BBB(2)‖2F

+α
(

tr
(

V̄̄V̄V (1)TLLL(1)V̄̄V̄V (1)
)

+ tr
(

V̄̄V̄V (2)TLLL(2)V̄̄V̄V (2)
))

+λ R(VVV ,BBB)
(7)

where α and λ are trade-off parameters to balance the weights

among the terms. Note that V̄̄V̄V (1) and V̄̄V̄V (2) share an identical

part V̂̂V̂V c corresponding to the common examples present in
both modalities. Directly minimizing the objective function
in Eqn.7 is intractable since it is a non-convex optimization
problem with VVV and BBB coupled together. We propose to
use coordinate descent scheme by iteratively solving the
optimization problem with respect to VVV and BBB as follows:

(1) Optimizing O with respect to V̂̂V̂V c, V̂̂V̂V (1) and V̂̂V̂V (2) by
fixing BBB. Given the basis matrix BBB(t) for both modalities,
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we can decompose the objective since V̂̂V̂V c and V̂̂V̂V (t) will not
depend on each other.

min
V̂̂V̂V (t)

O(V̂̂V̂V (t)) = ‖X̂̂X̂X(t) − V̂̂V̂V (t)BBB(t)‖2F

+α tr
(

V̂̂V̂V (t)T L̂̂L̂L(t)V̂̂V̂V (t)
)

+ λ R(V̂̂V̂V (t)) + const t = {1, 2}

(8)

min
V̂̂V̂V c

O(V̂̂V̂V c) = ‖X̂̂X̂X(1)
c − V̂̂V̂V cBBB

(1)‖2F + ‖X̂̂X̂X(2)
c − V̂̂V̂V cBBB

(2)‖2F

+α tr
(

V̂̂V̂V c

T
(L̂̂L̂L(1)

c + L̂̂L̂L(2)
c )V̂̂V̂V c

)

+ λ R(V̂̂V̂V c) + const

(9)

where L̂̂L̂L(t) and L̂̂L̂L
(t)
c can be simply derived from LLL(1) with

some addition mathematical operation. const is the constant
value independent with the parameter that to be optimized
with. Although Eqn.8 and Eqn.9 are still non-convex, but they
are smooth and differentiable which enables gradient descent
methods for efficient optimization. We use L-BFGS quasi-
Newton method [Liu and Nocedal, 1989] to solve Eqn.8 and
Eqn.9 with the obtained gradients. Due to space limitation,
we will present the gradients in supplementary material.

(2) Optimizing O with respect to BBB(t) by fixing VVV . It is
equivalent to solve the following least square problems:

min
BBB(t)

O(BBB(t)) = ‖X̄̄X̄X(t)−V̄̄V̄V (t)BBB(t)‖2F +λ‖BBB(t)‖2F t = {1, 2}

(10)
By taking the derivative of Eqn.10 w.r.t. BBB(t) and setting
it to 000, a closed form solution can be simply obtained. We
then alternate the process of updating VVV and BBB for several
iterations to find a locally optimal solution.

2.5 Orthogonal Rotation

After obtaining the optimal latent representation VVV , the
hashing codes YYY and modality-specific hashing functions
HHHt can be generated using Eqn.1. It is obvious that the
quantization error can be measured as ‖YYY − VVV ‖2F . Inspired
by [Gong et al., 2012], we propose to further improve the
hashing codes by minimizing this quantization error using an
orthogonal rotation. We first prove the following orthogonal
invariant theorem.

Theorem 1. Assume QQQ is a k × k orthogonal matrix, i.e.,
QQQTQQQ = III . If VVV andBBB are an optimal solution to the problem
in Eqn.7, then V QV QV Q and QQQTBBB are also an optimal solution.

Proof. By substitutingV QV QV Q andQQQTBBB into Eqn.7, it is obvious

that: ‖X̄̄X̄X(t) − V̄̄V̄V (t)QQQQQQTBBB(t)‖2F = ‖X̄̄X̄X(t) − V̄̄V̄V (t)BBB(t)‖2F ,

tr
(

(V̄̄V̄V (t)QQQ)
T
LLL(t)V̄̄V̄V (t)QQQ

)

= tr
(

QQQT V̄̄V̄V (t)TLLL(t)V̄̄V̄V (t)QQQ
)

=

tr
(

V̄̄V̄V (t)TLLL(t)V̄̄V̄V (t)
)

, and ‖V QV QV Q‖2F = ‖VVV ‖2F , ‖QQQTBBB‖2F =

‖BBB‖2F . Thus, the value of the objective function in Eqn.7 does
not change by the orthogonal rotation.

According to the above theorem, we propose to seek for
better hashing codes by minimizing the quantization error

between the binary hashing codes YYY and the orthogonal
rotation of the latent representation V QV QV Q as follows:

min
Y,QY,QY,Q

‖YYY − V QV QV Q‖2F

s.t. YYY ∈ {−1, 1}N×k, QQQTQQQ = III
(11)

Intuitively, we seek binary codes that are close to some
orthogonal transformation of the latent representation. The
orthogonal rotation not only preserves the optimality of the
solution but also provides us more flexibility to achieve
better hashing codes with low quantization error. The above
optimization problem can be solved by minimizing Eqn.11
with respect to YYY and QQQ alternatively.

Fix Q and update Y . The closed form solution can be
expressed as:

YYY = sgn (V QV QV Q) (12)

which is identical with Eqn.1 except the rotation.

Fix Y and update Q. The objective function becomes:

min
QQQTQQQ=III

‖YYY − V QV QV Q‖2F (13)

In this case, the objective function is essentially the classic
Orthogonal Procrustes problem [Schonemann, 1966], which
can be solved efficiently by singular value decomposition
using the following theorem (detailed proof in [Schonemann,
1966]).

Theorem 2. Let SΛUSΛUSΛUT be the singular value decomposition
of YYY TVVV . Then QQQ = USUSUST minimizes the objective function in
Eqn.13.

We perform the above two steps alternatively to obtain the
optimal hashing codes and the orthogonal rotation matrix.
The modality-specific hashing functions can be then derived
by minimizing the projection error as:

min
HHHt

‖X̄̄X̄X(t)(HHHt)T − V̄̄V̄V (t)QQQ‖2F + γ‖HHHt‖2F t = {1, 2} (14)

where γ is the tradeoff parameter of the regularization term.
The full learning algorithm is described in Algorithm 1.

Algorithm 1 Partial Multi-Modal Hashing (PM2H)

Input: Partial data {X̂̂X̂X(1,2), X̂̂X̂X(1), X̂̂X̂X(2)}, trade-off parame-
ters α, λ and γ

Output: Unified hashing codesYYY and hashing functionsHHH1,
HHH2

Initialize BBB, Calculate LLL.
repeat

Optimize Eqns.8 and 9 and update V̂̂V̂V c, V̂̂V̂V (1) and V̂̂V̂V (2).

Optimize Eqn.10 and update BBB(1) and BBB(2).
until the solution converges
repeat

Update YYY using Eqn.12
Update QQQ = USUSUST according to Theorem 2.

until the solution converges
Obtain the hashing functions HHH1 and HHH2 from Eqn.14.
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modality 1 NUS-WIDE MIRFLICKR-25k
# of bits 8 16 32 64 128 8 16 32 64 128

PM2H 0.4550.4550.455 0.4760.4760.476 0.5140.5140.514 0.5220.5220.522 0.5330.5330.533 0.5480.5480.548 0.5670.5670.567 0.5820.5820.582 0.6010.6010.601 0.6140.6140.614

CMFH 0.432 0.448 0.463 0.476 0.484 0.519 0.533 0.545 0.560 0.568

CCA-ITQ 0.397 0.415 0.428 0.436 0.443 0.451 0.475 0.488 0.496 0.513

CMSSH 0.368 0.380 0.403 0.411 0.414 0.402 0.417 0.421 0.426 0.429

CVH 0.285 0.307 0.324 0.336 0.331 0.438 0.456 0.472 0.470 0.475

modality 2 NUS-WIDE MIRFLICKR-25k
# of bits 8 16 32 64 128 8 16 32 64 128

PM2H 0.4220.4220.422 0.4450.4450.445 0.4620.4620.462 0.4730.4730.473 0.4790.4790.479 0.5500.5500.550 0.5710.5710.571 0.5950.5950.595 0.6080.6080.608 0.6180.6180.618

CMFH 0.386 0.403 0.414 0.427 0.431 0.504 0.521 0.536 0.547 0.549

CCA-ITQ 0.347 0.361 0.377 0.385 0.392 0.498 0.515 0.526 0.535 0.541

CMSSH 0.353 0.372 0.391 0.386 0.382 0.470 0.493 0.502 0.499 0.504

CVH 0.312 0.338 0.348 0.355 0.351 0.456 0.468 0.481 0.475 0.472

Table 1: Precision of top 100 retrieved examples with PDR=0.4.

2.6 Analysis

This section provides some complexity analysis on the
training cost of the learning algorithm. The optimization
algorithm of PM2H consists of two main loops. In the first
loop, we iteratively solve VVV and BBB to obtain the optimal
solution, where the time complexities for solving VVV and
BBB are bounded by O(Nkd1 + Nkd2 + Nk2 + N2k)
and O(Nk2 + Nkd1 + Nkd2) respectively. The second
loop iteratively optimizes the binary hashing codes and the
orthogonal rotation matrix, where the time complexities for
updating YYY and QQQ are bounded by O(Nk2 + k3). Thus, the
total time complexity of the learning algorithm is bounded by
O(Nkd1 +Nkd2 +N2k +Nk2 + k3). For each query, the
hashing time is constant O(d1k) and O(d2k).

3 Experimental Results

3.1 Datasets and Setting

We evaluate our method on two image datasets: NUS-WIDE
and MIRFLICKR-25k. NUS-WIDE1 contains 270k images
associated with more than 5k unique tags. 81 ground-truth
concepts are annotated on these images. We filter out those
images with less than 10 tags, resulting in a subset of 110k
image examples. Visual features are represented by 500-
dimension SIFT [Lowe, 2004] histograms, and text features
are represented by index vectors of the most common 2k
tags. We use 90% of the data as the training set and the rest
10% as the query set. MIRFLICKR-25k2 is collected from
Flicker images for image retrieval tasks. This dataset contains
25k image examples associated with 38 unique labels. 100-
dimensional SIFT descriptors and 512-dimensional GIST
descriptors [Oliva and Torralba, 2001] are extracted from
these images as the two modalities. We randomly choose 23k
image examples as the training set and 2k for testing. Two
image examples are considered to be similar if they share
at least one ground-truth concept/label. In our experiments,
SIFT feature is viewed as modality 1, while text and GIST
features are viewed as modality 2.

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2http://press.liacs.nl/mirflickr/

To simulate the partial modality setting, we randomly
select a fraction of training examples to be partial examples,
i.e., they are represented by either of the modality but not
both, and the remaining ones appear in both modalities. We
refer the fraction number of partial examples as Partial Data
Ratio (PDR), i.e., m+n

N
.

The proposed PM2H approach is compared with four
different multi-modal hashing methods, i.e., CVH [Kumar
and Udupa, 2011], CMSSH [Bronstein et al., 2010], CCA-
ITQ [Gong et al., 2014; 2012] and CMFH [Ding et al.,
2014].3 We implement our algorithm using Matlab on a
PC with Intel Duo Core i5-2400 CPU 3.1GHz and 8GB
RAM. The parameters α, λ and γ are tuned by 5-fold cross
validation on the training set. We set the maximum number
of iterations to 100. To remove any randomness caused by
random selection of training set and random initialization, all
of the results are averaged over 10 runs.

3.2 Results and Discussion

We first evaluate the performance of different methods
by varying the number of hashing bits in the range of
{8, 16, 32, 64, 128}, with fixed PDR 0.4. To apply the
compared multi-modal hashing methods to the partial data,
a simple way is to fill in the missing data with 0. However,
this may result in large fitting errors between two modalities
for the multi-modal methods, since the hashing code for
the missing instance will be 0. Therefore, to achieve
stronger baseline results, we replace the missing instance
using the linear combination of its 5 nearest neighbor
examples (weighed by their similarities) which appear in both
modalities4. Then the baseline multi-modal hashing methods
can be directly applied on these extended data.

The precisions for the top 100 retrieved examples are
reported in Table 1. From these comparison results, we can
see that PM2H provides the best results among all five

3We implement CVH and obtain the codes of CMSSH and
CMFH from the authors. The code of CCA-ITQ is public available.

4We empirically choose 5 in our experiments. But other numbers
can also be applied.

3908



Figure 1: Precision of top 100 retrieved examples under different PDRs with 32 bits.

mod 1 NUS-WIDE MIRFLICKR-25k
bits 16 32 64 16 32 64

After 0.476 0.514 0.522 0.567 0.582 0.601

Before 0.463 0.504 0.515 0.552 0.566 0.587

Table 2: Precision of top 100 examples before and after
orthogonal rotation with PDR=0.4 on modality 1.

hashing methods on both datasets. For example, the precision
of PM2H increases over 8% and 15% on average compared
with CMFH and CCA-ITQ on NUS-WIDE under modality
1. The reason is that PM2H can effectively handle the partial
data by common subspace learning between modalities and
similarity preservation within modality, while the compared
methods fail to accurately extract a common space from the
partial examples. It can be seen from Table 1 that CMSSH and
CVH do not perform well especially with 64 or 128 bits. This
phenomenon has also been observed in [Ding et al., 2014;
Wang et al., 2013b]. Actually, in CMSSH and CVH methods,
the hashing codes are learned by eigenvalue decomposition
under the hard bit orthogonality constraint, which makes
the first few projection directions very discriminative with
high variance. However, the hashing codes will be dominated
by bits with very low variance when the code length
increases, resulting in many meaningless and ambiguous bits.
Another interesting observation is that the retrieval result
from modality 1 is better than that from modality 2 on NUS-
WIDE. This coincides with our expectation that the image
modality is more informative than the tag modality since tags
are usually noisy and incomplete.

To evaluate the effectiveness of the proposed PM2H under
different partial data ratios, we progressively increase the
PDR from {0, 0.2, 0.4, 0.6, 0.8} and compare our method
with the other baselines by fixing the hashing bits to 32.
The precision results of top 100 retrieved examples are
shown in Fig.1. It can be seen from the figure that when
the partial data ratio PDR is 0, the data actually becomes the
traditional multi-modal setting with each example appears in
both modalities. In this case, PM2H is also able to perform
better than most baselines and is comparable with CMFH.
As the PDR increases from 0 to 0.8, our PM2H approach
always achieves the best performance among all compared
methods. Although the missing instances are recovered from
the common examples in both modalities, the baseline

methods seem less effective in the modality missing case.
Our hypothesis is that the missing data may not be accurately
recovered when the data are missing blockwise for the partial
data setting. In other words, the missing examples can be
dissimilar to all the examples appear in both modalities.

We also evaluate the code effectiveness with and without
orthogonal rotation. The comparison results (before and after
rotation) in Table 2 demonstrate that the orthogonal rotation
can further improve the effectiveness of the codes, which is
consistent with our expectation since the quantization error is
minimized through the rotation. Similar results on modality 2
are observed. Furthermore, we conduct parameter sensitivity
experiment on α and λ by tuning only one parameter while
fixing the other one to the optimal values obtained from the
previous experiments. We identify that the performance of
PM2H is relatively stable with respect to α ∈ (2, 100) and
λ ∈ (0.001, 0.1).

4 Conclusions

This paper propose a novel hashing approach to deal with
partial multi-modal data. We formulate a unified learning
framework by simultaneously ensuring data consistency
among different modalities via latent subspace learning, and
preserving data similarity within the same modality through
graph Laplacian. A coordinate descent algorithm is applied
to solve the optimization problem. We then utilize orthogonal
rotation to further reduce the quantization error. Experiments
on two datasets demonstrate the advantages of the proposed
approach in dealing with partial multi-modal data over several
multi-modal hashing methods. There are several possibilities
to explore in the future research. For example, we plan to
apply some sequential learning approach to accelerate the
training process. We also plan to extend this subspace based
partial modality learning idea to nonlinear latent subspace
cases.
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