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Abstract

Recent advances in 3D deep learning have shown that it is possible to train highly
effective deep models for 3D shape generation, directly from 2D images. This is
particularly interesting since the availability of 3D models is still limited compared
to the massive amount of accessible 2D images, which is invaluable for training.
The representation of 3D surfaces itself is a key factor for the quality and resolution
of the 3D output. While explicit representations, such as point clouds and voxels,
can span a wide range of shape variations, their resolutions are often limited.
Mesh-based representations are more efficient but are limited by their ability to
handle varying topologies. Implicit surfaces, however, can robustly handle complex
shapes, topologies, and also provide flexible resolution control. We address the
fundamental problem of learning implicit surfaces for shape inference without
the need of 3D supervision. Despite their advantages, it remains nontrivial to
(1) formulate a differentiable connection between implicit surfaces and their 2D
renderings, which is needed for image-based supervision; and (2) ensure precise
geometric properties and control, such as local smoothness. In particular, sampling
implicit surfaces densely is also known to be a computationally demanding and very
slow operation. To this end, we propose a novel ray-based field probing technique
for efficient image-to-field supervision, as well as a general geometric regularizer
for implicit surfaces, which provides natural shape priors in unconstrained regions.
We demonstrate the effectiveness of our framework on the task of single-view
image-based 3D shape digitization and show how we outperform state-of-the-art
techniques both quantitatively and qualitatively.

1 Introduction

The efficient learning of 3D deep generative models is the key to achieving high-quality shape
reconstruction and inference algorithms. While supervised learning with direct 3D supervision has
shown promising results, its modeling capabilities are constrained by the quantity and variations
of available 3D datasets. In contrast, far more 2D photographs are being taken and shared over the
Internet, than can ever be watched. To exploit the abundance of image datasets, various differentiable
rendering techniques [1, 2, 3, 4] were introduced recently, to learn 3D generative models directly from
massive amounts of 2D pictures. While several types of shape representations have been adopted,
most techniques are based on explicit surfaces, which often leads to poor visual quality due to limited
resolutions (e.g., point clouds, voxels) or fail to handle arbitrary topologies (e.g., polygonal meshes).

Implicit surfaces, on the other hand, describe a 3D shape using an iso-surface of an implicit field
and can therefore handle arbitrary topologies, as well as support multi-resolution control to ensure
high-fidelity modeling. As demonstrated by several recent 3D supervised learning methods [5, 6, 7, 8],
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Figure 1: While explicit shape representations may suffer from poor visual quality due to limited resolutions

or fail to handle arbitrary topologies (a), implicit surfaces handle arbitrary topologies with high resolutions

in a memory efficient manner (b). However, in contrast to the explicit representations, it is not feasible to

directly project an implicit field onto a 2D domain via perspective transformation. Thus, we introduce a field

probing approach based on efficient ray sampling that enables unsupervised learning of implicit surfaces from

image-based supervision.

implicit representations are particularly advantageous over explicit ones, and naturally encode a 3D
surface at infinite resolution with minimal memory footprint.

Despite these benefits, it remains challenging to achieve unsupervised learning of implicit surfaces
only from 2D images. First, it is non-trivial to relate the changes of the implicit surface with that of the
observed images. An explicit surface, on the other hand, can be easily projected and shaded onto an
image plane (Figure 1 right). By inverting such process, one can obtain gradient flows that supervise
the generation of the 3D shape. However, it is infeasible to directly project an implicit field onto a 2D
domain via transformation. Instead, rendering an implicit surface relies on ray sampling techniques
to densely evaluate the field, which may lead to very high computational cost, especially for objects
with thin structures. Second, it is challenging to ensure precise geometric properties such as local
smoothness of an implicit surface. This is critical to generating plausible shapes in unconstrained
regions, especially when only image-based supervision is available. Unlike mesh-based surface
representations, it is not straightforward to obtain geometric properties, e.g. normal, curvature, etc.,
for an implicit surface, as the shape is implicitly encoded as the level set of a scalar field.

We address the above challenges and propose the first framework for learning implicit surfaces with
only 2D supervision. In contrast to 3D supervised learning, where a signed distance field can be
computed from the 3D training data, 2D images can only provide supervision on the binary occupancy
of the field. Hence, we formulate the unsupervised learning of implicit fields as a classification
problem such that the occupancy probability at an arbitrary 3D point can be predicted. The key to our
approach is a novel field probing approach based on efficient ray sampling that achieves image-to-field
supervision. Unlike conventional sampling methods [9], which excessively cast rays passing through
all image pixels and apply binary search along the ray to detect the surface boundary, we propose a
much more efficient approach by leveraging sparse sets of 3D anchor points and rays. In particular,
the anchor points probe the field by evaluating the occupancy probability at its location, while the
rays aggregate the information from the anchor points that it intersects with. We assign a spherical
supporting region to each anchor point to enable the ray-point intersection. To further improve the
boundary modeling accuracy, we apply importance sampling in both 2D and 3D space to allocate
more rays and anchor points around the image and surface boundaries respectively.

While geometric regularization for implicit fields is largely unexplored, we propose a new method
for constraining geometric properties of an implicit surface using the approximated derivatives
of the field with a finite difference method. Since we only care about the decision boundary of
the field, regularizing the entire 3D space would introduce scarcity of constraints in the region of
interest. Hence, we further propose an importance weighting technique to draw more attention
to the surface region. We validate our approach on the task of single-view surface reconstruction.
Experimental results demonstrate the superiority of our method over state-of-the-art unsupervised 3D
deep learning techniques, that are based on alternative shape representations, in terms of quantitative
and qualitative measures. Comprehensive ablation studies also verify the efficacy of proposed
probing-based sampling technique and the implicit geometric regularization.

Our contributions can be summarized as follows: (1) the first framework that enables learning of
implicit surfaces for shape modeling without 3D supervision; (2) a novel field probing approach based
on anchor points and probing rays that efficiently correlates the implicit field and the observed images;
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(3) an efficient point and ray sampling method for implicit surface generation from image-based
supervision; (4) a general formulation of geometric regularization that can constrain the geometric
properties of a continuous implicit surface.

2 Related Work

Geometric Representation for 3D Deep Learning. A 3D surface can be represented either ex-
plicitly or implicitly. Explicit representations mainly consist of three categories: voxel-, point- and
mesh-based. Due to their uniform spatial structures, voxel-based representations [10, 11, 12, 13] have
been extensively explored to replicate the success of 2D convolutional networks onto the 3D regular
domain. Such volumetric representations can be easily generalized across shape topologies, but are
often restricted to low resolutions due to large memory requirements. Progress has also been made in
reconstructing point clouds from single images using point feature learning [14, 15, 16, 17, 3]. While
being able to describe arbitrary topologies, point-based representations are also restricted by their
resolution capabilities since dense samples are needed. Mesh representations can be more efficient
since they naturally describe mesh connectivity and are hence, suitable for 2-manifold representations.
Recent advances have focused on reconstructing mesh geometry from point clouds [18] or even a
single image [19]. AtlasNet [18] learns an implicit representation that maps and assembles 2D squares
to 3D surface patches. Despite the compactness of mesh representations, it remains challenging to
modify the vertex connections, making it unsuitable for modeling shapes with arbitrary topology.

Unlike explicit surfaces, implicit surface representations [20, 21] depict a 3D shape by extracting the
iso-surface from a continuous field. For implicit surfaces, a generative model can have more flexibility
and expressiveness for capturing complex topologies. Furthermore, multi-resolution representations
and control enable them to also capture fine geometric details at arbitrary resolution and also reduce
the memory footprint during training. Recent works [22, 5, 6, 7, 8, 23] have shown promising results
on supervised learning for 3D shape inference based on implicit representations. Our approach further
pushes the envelope by achieving 3D-unsupervised learning of implicit generative shape modeling
solely from 2D images.

Learning Shapes from 2D Supervision. Training a generative model for 3D shapes typically
requires direct 3D supervision from a large corpus of shape collections [10]. However, 3D model
databases are still limited compared to the massive availability of 2D photos, especially since acquiring
clean and high-fidelity ground-truth 3D models still requires a tedious 3D capture process [24, 25]. A
number of techniques have been introduced to exploit 2D training data to overcome this limitation, and
use key points [26], silhouettes [4, 1, 2, 27], and shading cues [28] for supervision. In particular, Yan
et al. [4] obtain the shape supervision by measuring the loss between the perspectively transformed
volumes with the ground-truth silhouettes. To achieve even denser 2D supervision, differentiable
rendering (DR) techniques have been proposed to relate the changes in the observed pixels with that of
the 3D models. One line of DR research focuses on differentiating the rasterization-based rendering.
Loper and Black [29] introduce an approximate differentiable renderer that generates rendering
derivatives. Kato et al. [1] achieve single-view mesh reconstruction using a hand-crafted function to
approximate the gradient of mesh rendering. Liu et al. [2] instead propose to render meshes with
differentiable functions to obtain the gradient. In addition to polygon meshes, Insafutdinov et al. [3]
propose the use of differentiable point clouds to learn shapes and poses in an unsupervised manner.
Another direction of DR work aims to differentiate the ray tracing procedure during rendering.
Li et al. [30] introduce a differentiable ray tracer through edge sampling. Aside from silhouettes,
shading and appearances in image space also provides supervision cues for learning fine-grained
shape representations in category specific domains such as 3D face reconstruction [31, 32, 33, 34, 35]
and material inference [36, 37, 38]. Whereas existing methods focus on learning shapes from 2D
supervisions and the use of explicit shape representations (i.e., voxels, point clouds, and meshes),
we present the first framework for unsupervised learning of implicit surface representations by
differentiating the implicit field rendering. With our framework, one can reconstruct shapes with
arbitrary topology at arbitrary resolution from a single image without requiring any 3D supervision.
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Figure 2: Ray-based field probing technique. (a) A sparse set of 3D anchor points are distributed
to sense the field by sampling the occupancy value at its location. (b) Each anchor is assigned a
spherical supporting region to enable ray-point intersection. The anchor points that have higher
probability to stay inside the object surface are marked with deeper blue. (c) Rays are cast passing
through the sampling points {xi} on the 2D silhouette under the camera views {πk} (blue indicates
object interior and white otherwise). (d) By aggregating the information from the intersected anchor
points via max pooling, one can obtain the prediction for each ray. (e) The silhouette loss is obtained
by comparing the prediction with the ground-truth label in the image space.

3 Unsupervised Learning of Implicit Surfaces

Overview. Our goal is to learn a generative model for implicit surfaces that infers 3D shapes solely
from 2D images. Unlike direct supervision with 3D ground truth, which supports the computation
of a continuous signed distance field with respect to the surface, 2D observations can only provide
guidance on the occupancy of the implicit field. Hence, we formulate the unsupervised learning of

implicit surfaces as a classification problem. Given {Ik}
NK

k=1
images of an object O from different

views {πk}
NK

k=1
as supervision signals, we train a neural network that takes a single image Ik and

produce a continuous occupancy probability field, whose iso-surface at 0.5 depicts the shape of O.
Our pipeline is based on a novel ray-based field probing technique as illustrated in Figure 2. Instead
of excessively casting rays to detect the surface boundary, we probe the field using a sparse set of
3D anchor points and rays. The anchor points sense the field by sampling the occupancy probability
at its location, and are assigned a spherical supporting region to ease the computation of ray-point
intersection. We then correlate the field and the observed images by casting the probing rays, which
originate from the viewpoint and pass through the sampling points of the images. The ray, that
passes through the image pixel xi, given the camera parameter πk, obtains its prediction ψ(πk,xi)
by aggregating the occupancy values from the anchor points whose supporting regions intersect
with it. By comparing ψ(πk,xi) with the ground-truth label of xi, we can obtain error signals that
supervise the generation of implicit fields. Note that when detecting ray-point intersections, we apply
a boundary-aware assignment to remove ambiguity, which is detailed in Section 3.1.

Network Architecture. We demonstrate our network architecture in Figure 3. Following the recent
advances in unsupervised shape learning [4, 1], we use 2D silhouettes of the objects as the supervision
for network training. Our framework consist of two components: (1) an image encoder g that maps
the input image I to a latent feature z; and (2) an implicit decoder f that consumes z and a 3D
query point pj and infers its occupancy probability φ(pj). Note that the implicit decoder generates
a continuous prediction ranging from 0 to 1, where the estimated surface can be extracted at the
decision boundary of 0.5 (Figure 3 right).

3.1 Sampling-Based 2D Supervision

To compute the prediction loss of the implicit decoder, a key step is to properly aggregate the
information collected throughout the field probing process for each ray. Given a continuous occupancy
field and a set of anchor points along a ray r, the probability that r hits the object interior can be
considered as an aggregation function:

ψ (πk,xi) = G
(

{φ (c+ r (πk,xi) · tj)}
Np

j=1

)

, (1)
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where r(πk,xi) denotes the ray direction that intersects with the image pixel xi in the viewing
direction πk; c is the camera location; Np is the number of 3D anchor points; tj indicates the sampled
location along the ray for each anchor point; φ(·) is the occupancy function that returns the occupancy
probability of the input point; ψ denotes the predicted occupancy for ray r(πk,xi). Since whether
the ray r hits the object interior is determined by the maximum occupancy value detected along the
ray, in this work, we adopt G as a max-pooling operation due to its computational efficiency and
effectiveness demonstrated in [4]. By considering the l2 differences between the predictions and the
ground-truth silhouette, we can obtain the silhouette loss Lsil:

Lsil =
1

Nr

Nr
∑

i=1

NK
∑

k=1

‖ψ(πk,xi)− Sk(xi)‖
2, (2)

where Sk(xi) is a bilinearly interpolated silhouette at xi under the k-th viewpoint; Nr andNK denote
the number of 2D sampling points and camera views, respectively.

Boundary-Aware Assignment. To facilitate the computation of ray-point intersections, we model
each anchor point as a sphere with a non-zero radius. While such a strategy works well in most
cases, erroneous labeling may occur in the vicinity of the decision boundary. For instance, a ray
that has no intersection with the target object may still have a chance to hit the supporting region of
an anchor point whose center lies inside the object. Since we use max-pooling as the aggregating
function, the ray may be wrongly labeled as an intersecting ray. To resolve this issue, we use 2D
silhouettes as additional prior by filtering out the anchor points on the wrong side. In particular, if
a ray is passing through a pixel belonging to the inside/outside of the silhouette, the anchor points
lying outside/inside of the 3D object are ignored when detecting intersections (Figure 2 (c)). This
boundary-aware assignment can significantly improve the quality and reconstructed details, which is
demonstrated in the ablation study in Section 4.

Importance Sampling. A naive solution for distributing anchor points and probing rays is to apply
random sampling. However, as the occupancy of the target object may be highly sparse over the
3D space, random sampling could be extremely inefficient. We propose an importance sampling
approach based on shape cues obtained from the 2D images for efficient sampling of rays and anchor
points. The main idea is to draw more samples around the surface boundary, which is equivalent to
the 2D contour of the object in image space. For ray sampling, we first obtain the contour map Wr(x)
by applying Laplacian operator over the input silhouette. We then generate a Gaussian mixture
distribution by positioning the individual kernels to each pixel of Wr(x) and setting the kernel height
as the pixel intensity at its location. The rays are then generated by sampling from the resulting
distribution. Similarly, to generate the 3D contour map Wp(p), we apply mean filtering to the 3D
visual hulls computed from the multi-view silhouettes. The anchor points are then sampled from a
3D Gaussian mixture distribution model created in a similar fashion to the 2D case, which yields the
probabilistic density function of the sampling as:

{

Pr(x) =
∫

x′
κ(x′,x;σ)Wr(x

′)dx′,
Pp(p) =

∫

p′
κ(p′,p;σ)Wr(p

′)dp′, (3)

where x
′ is a pixel in the image domain and p

′ is a point in the 3D space, κ(·, ·;σ) denotes the
gaussian kernel with bandwidth σ; Pr(x) and Pp(p) denotes the probabilistic density function at
pixel x and point p respectively.

3.2 Geometric Regularization on Implicit Surfaces

Regularizing geometric surface properties is critical to achieving desirable shapes, especially in un-
constrained regions. While such constraints can be easily realized with explicit shape representations,
a controlled regularization of an implicit surface is not straightforward, since the surface is implicitly
encoded as the level set of a scalar field. Here, we introduce a general formulation of geometric
regularization for implicit surfaces using a new importance weighting scheme.

Since computing geometric properties of a surface, e.g. normal, curvature, etc., requires access to
the derivatives of the field, we propose a finite difference method-based approach. In particular, we
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Figure 3: Network architecture for unsupervised learning of implicit surfaces. The input image I is
first mapped to a latent feature z by an image encoder g while the implicit decoder f consumes both
the latent code z and a query point pj and predicts its occupancy probability φ(pj). With a trained
network, one can generate an implicit field whose iso-surface at 0.5 depicts the inferred geometry.

compute the n-order derivative of the implicit field at point pj with central difference approximation:

δnφ

δpn
j

=
1

∆dn

n
∑

l=0

(−1)l
(

n
l

)

φ(pj + (
n

2
− l)∆d), (4)

where ∆d is the spacing distance between pj and its adjacent sample points (Figure 4). When n

equals to 1, the surface normal n(pj) at pj can be obtained via n(pj) =
δφ
δpj

/
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∣
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Figure 4: 2D illustration of im-
portance weighted geometric
regularization.

Importance weighting. As we focus on the geometric properties
on the surface, applying the regularizer over the entire 3D space
would lead to overly loose constraint in regions of interest. Hence,
we propose an importance weighting approach to assign more atten-
tion on the sampling points closer to the surface. Here, we leverage
the prior learned by our network – the surface points should have
an occupancy probability close to the decision boundary, which is
0.5 in our implementation. Therefore, we propose a weighting func-
tion W (x) = I(|x− 0.5| < ǫ) and formulate the loss of geometric
regularization as follows:

Lgeo =
1

Np

Np
∑

j=1

W (φ(sj))

∑

6

l=1
W (φ(ql

j))‖n(sj)− n(ql
j)‖

p
p

∑

6

l=1
W (φ(ql

j))
. (5)

In particular, as shown in Figure 4, for each anchor point sj , we uniformly sample 2 neighboring

samples {ql
j} with spacing ∆d along the x, y and z axis respectively. We feed the weight function

W (·) with the predicted occupancy probability φ(sj) such that anchor points closer to the surface
(with φ(sj) closer to 0.5) would receive higher weights and vice versa. By minimizing Lgeo, we
encourage the normals at the 3D anchors to stay close to that of its adjacent points. Notice that we use
lp norm rather than the commonly used l2 for generality. We show that various geometric properties
can be achieved by taking p as a hyper parameter (see Section 4.3).

The total loss for network training is a weighted sum of the silhouette loss Lsil and the geometric
regularization loss Lgeo with a trade-off factor λ as shown below:

L = Lsil + λLgeo. (6)

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate our method on ShapeNet [10] dataset. We focus on 6 commonly used
categories with complex topologies: plane, bench, table, car, chair and boat. We use the same
train/validate/test split as in [4, 1, 2] and the rendered images (64× 64 resolution) provided by [1]
which consist of 24 views for each object.
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Figure 5: Qualitative results of single-view reconstruction using different surface representations. For
point cloud representation, we also visualize the meshes reconstructed from the output point cloud.

Implementation details. We adopt a pre-trained ResNet18 as the encoder, which outputs a latent
code of 128 dimensions. The decoder is realized using 6 fully-connected layers (output channels
as 2048, 1024, 512, 256, 128 and 1 respectively) followed by a sigmoid activation function. We
sample Np = 16, 000 anchor points in 3D space and Nr = 4096 rays for each view. The sampling

bandwidth σ is set as 7 × 10−3. The radius τ of the supporting region is set as 3 × 10−2. For the
regularizer, we set ∆d = 3× 10−2, λ = 1× 10−2, and norm p = 0.8. We train the network using
Adam optimizer with learning rate of 1× 10−4 and batch size of 8 on a single 1080Ti GPU.

4.2 Comparisons

We validate the effectiveness of our framework in the task of unsupervised shape digitization from a
single image. Figure 5 and Table 1 compare the performance of our approach with the state-of-the-art
unsupervised methods that are based on explicit surface representations, including voxels [4], point
clouds [3], and triangle meshes [1, 2]. We provide both qualitative and quantitative measures. Note
that all the methods are trained with the same training data for fair comparison. While the explicit
surface representations either suffer from visually unpleasant reconstruction due to limited resolution
and expressiveness (voxels, point clouds), or fail to capture complex topology from a single template
(meshes), our approach produces visually appealing reconstructions for complex shapes with arbitrary
topologies. Compared to mesh-based representations, we are able to achieve higher resolution output,
which is reflected by the even sharper local geometric details, e.g. the engine of plane (first row) and
the wheels of the vehicle (fourth row). The performance of our method is also demonstrated in the
quantitative comparisons, where we achieve state-of-the-art reconstruction accuracy using 3D IoU
with large margins.

In Figure 6, we further illustrate the importance of supporting arbitrary topologies, compared to
existing mesh-based reconstruction techniques [2]. Since real-world objects can exhibit a wide range
of varying topologies even for a single object category (e.g., chairs), mesh-based approaches often
lead to deteriorated results. In contrast, our approach is able to faithfully infer complex shapes and
arbitrary topologies from very limited visual cues, e.g. the chair and the table on the third row,
thanks to the flexibility of the implicit representation and the strong shape prior enabled through the
geometric regularizer.

4.3 Ablation Analysis

We provide a comprehensive ablation study to assess the effectiveness of each algorithmic component.
For all the experiments, we use the same data and parameters as before unless otherwise noted.
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Category Airplane Bench Table Car Chair Boat Mean

PTN [4] 0.5564 0.4875 0.4938 0.7123 0.4494 0.5507 0.5417
NMR [1] 0.6172 0.4998 0.4829 0.7095 0.4990 0.5953 0.5673

SoftRas [2] 0.6419 0.5080 0.4487 0.7697 0.5270 0.6145 0.5850

Ours 0.6510 0.5360 0.5150 0.7820 0.5480 0.6080 0.6067

Table 1: Comparison of 3D IoU with other unsupervised reconstruction methods.

Input images Ground Truth SoftRas (Mesh) Ours (Implicit field) Input images Ground Truth SoftRas (Mesh) Ours (Implicit field)

Figure 6: Qualitative comparisons with mesh-based approach [2] in term of modeling capability of
capturing varying topologies.

Geometric Regularization. In Table 2 and Figure 7, we demonstrate that our proposed geometric
regularization enables a flexible control over various geometric properties by varying the value of
norm p. To validate the effectiveness of geometric regularization, we train the same network using
different configurations: 1) without using any geometry regularizers; 2) applying our proposed
geometric regularization with p norm equals to 0.8, 1.0, 2.0, respectively. As shown in the results,
the lack of geometry regularizer would lead to an ambiguity of reconstructed geometry, e.g. first
row in Figure 7, as some unexpected shape could appear the same with the ground-truth with an
accordingly optimized texture map, and thus makes the generation of flat surface rather difficult. The
proposed regularizer can effectively enhance the regularity of reconstructed objects, especially for
man-made objects, while providing flexible control. In particular, when p = 2.0, the surface normal
difference is minimized in a least-square manner, leading to a smooth reconstruction. When p→ 0,
sparsity is enforced in the surface normal consistency, which encourages the reconstructed surface to
be piece-wise linear and is often desirable for man-made objects. We also perform ablation study
on the effect of the sampling step ∆d for the regularizer as shown in Table 3 and Figure 8. We can
observe that larger ∆d leads to more flattening surfaces at the cost of less fine details.

3D IoU

norm p = 2.0 0.502
norm p = 1.0 0.524
norm p = 0.8 0.548
-Regularizer 0.503

Table 2: Quantitative evalua-
tions of our approach on chair
category using different regu-
larizer configurations.

Input images -Regularizer norm p=2.0 norm p=1.0 norm p=0.8Ground truths

Figure 7: Qualitative evaluations of geometric regularization by
using different configurations.

Importance Sampling. To fully explore the effect of importance sampling, we compare two different
configurations of sampling scheme: 1) “-Imp. sampling": drawing both 3D anchor points and rays
from the normal distribution with mean and standard deviation set as 0 and 0.4 respectively; and 2)
“Full model": only using the importance sampling approach for both anchor points and rays with
the bandwidth set as 0.007. We show sampled rays and results in Table 4 and Figure 9. In terms of
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visual quality, importance sampling based approach has achieved much more detailed reconstruction
compared to its counterpart. The quantitative measurement also leads to consistent observation,
where our proposed importance sampling has outperformed the normal sampling by a large margin.

3D IoU

∆d = 1× 10−2 0.482

∆d = 3× 10−2 0.515

∆d = 1× 10−1 0.507

Table 3: Quantitative evalua-
tions on table category with
different ∆d

Input images Ground truths ∆d = 3× 10−2 ∆d = 1× 10−2∆d = 1× 10−1

Figure 8: Qualitative results of reconstruction using our ap-
proach with different regularizer sampling step ∆d.

3D IoU

Full model 0.548
-Imp. sampling 0.482
-Boundary aware 0.524

Table 4: Quantitative measure-
ments for the ablation anal-
ysis of importance sampling
and boundary-aware assign-
ment on the chair category as
shown in Figure 9.

Ground truthsSampled rays Full model -Imp. samplingInput images -Boundary-aware

Figure 9: Qualitative analysis of importance sampling and boundary-
aware assignment for single-view reconstruction.

Boundary-Aware Assignment. We also compare the performance with and without boundary-aware
assignment in Table 4 and Figure 9. When boundary-aware assignment is disabled, the sampling rays
around the decision boundary may be assigned with incorrect labels. As a result, the reconstructions
lack sufficient accuracy, especially around the thin surface regions, and thus may not be able to
capture holes and thin structures as demonstrated in the rightmost examples in Figure 9.

5 Discussion

We introduced a learning framework for implicit surface modeling of general objects without 3D
supervision. An occupancy field is learned through a set of 2D silhouettes using an efficient field
probing algorithm, and the desired local smoothness of implicit field is achieved using a novel
geometric regularizer based on finite difference. Our experiments show that high-fidelity implicit
surface modeling is possible from 2D images alone, even for unconstrained regions. Our approach can
produce more visually pleasant and higher-resolution results compared to both voxels and point clouds.
In addition, unlike mesh representations, our approach can handle arbitrary topologies spanning
various object categories. We believe that the use of implicit surfaces and our proposed algorithms
opens up new frontiers for learning limitless shape variations from in-the-wild images. Future work
includes unsupervised learning of textured geometries, which has been recently addressed with an
explicit mesh representation [2], and eliminating the need of silhouette segmentations to further
increase the scalability of the image-based learning. It would also be interesting to investigate the use
of anisotropic kernels for shape modeling and hierarchical implicit representations with advanced
data structure, e.g. Octree, to further improve the modeling efficiency. Furthermore, we would like to
consider the use of learning from texture cues in addition to binary masks.
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