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Abstract. We develop a conceptually simple but powerful approach
that can learn novel categories from few annotated examples. In this
approach, the experience with already learned categories is used to facil-
itate the learning of novel classes. Our insight is two-fold: (1) there exists
a generic, category agnostic transformation from models learned from few
samples to models learned from large enough sample sets, and (2) such a
transformation could be effectively learned by high-capacity regressors.
In particular, we automatically learn the transformation with a deep
model regression network on a large collection of model pairs. Experi-
ments demonstrate that encoding this transformation as prior knowledge
greatly facilitates the recognition in the small sample size regime on a
broad range of tasks, including domain adaptation, fine-grained recogni-
tion, action recognition, and scene classification.

Keywords: Small sample learning · Transfer learning · Object recogni-
tion · Model transformation · Deep regression networks

1 Motivation

Over the past decade, large-scale object recognition has achieved high perfor-
mance levels due to the integration of powerful machine learning techniques
with big annotated training data sets [38,51,52,62,79,83,84]. In practical appli-
cations, however, training examples are often expensive to acquire or otherwise
scarce [30]. Visual phenomena follow a long-tail distribution, in which a few sub-
categories are common while many are rare with limited training data even in the
big-data setting [105,106]. More crucially, current recognition systems assume a
set of categories known a priori, despite the obviously dynamic and open nature
of the visual world [12,32,64,96].

Such scenarios of learning novel categories from few examples pose a multi-
tude of open challenges for object recognition in the wild. For instance, when
operating in natural environments, robots are supposed to recognize unfamiliar
objects after seeing only few examples [50]. Humans are remarkably able to grasp
a new category and make meaningful generalization to novel instances from just
a short exposure to a single example [30,81]. By contrast, typical machine learn-
ing tools require tens, hundreds, or thousands of training examples and often
break down for small sample learning [7,40].
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Fig. 1. Our main hypothesis is that there exists a generic, category agnostic transfor-
mation T from classifiers w0 learned from few annotated samples (represented as blue)
to the underlying classifiers w∗ learned from large sets of samples (represented as red).
We estimate the transformation T by learning a deep regression network on a large col-
lection of model pairs, i.e., a model regression network. For a novel category/task (such
as scene classification and fine-grained object recognition), we introduce the learned T
to construct the target model and thus facilitate its generalization in the small sample
size regime (Color figure online)

In this paper, we explore a novel learning to learn approach that leverages
the knowledge gained when learning models in large sample sets to facilitate
recognizing novel categories from few samples. From a discriminative machine
learning perspective, object recognition is basically a process that learns an
object category classifier to separate annotated positive and negative examples
in a feature space. We assume a fixed, discriminative feature space, which is
reasonable especially considering the recent learned feature representations via
deep convolutional neural networks. We now take the model such as SVM clas-
sifiers and make important modification. The central issue can be reduced to
the following: How to estimate a classifier that would be learned from a large
set of samples (on the order of hundreds or thousands of) based on its corre-
sponding classifier learned from few annotated samples (as few as one and up to
a hundred)?

Our main hypothesis is that there exists a generic, category agnostic transfor-
mation from small-sample models to the underlying large-sample models. This
hypothesis is validated empirically in Sect. 4. Intuitively, a model can be viewed
as a separating hyperplane in the feature space.1 Small training examples already
constrain the search space by pointing to an initial hyperplane not far from the
desired hyperplane produced by a large training set. When gradually introducing
additional examples, the initial hyperplane is progressively subject to a series of
transformations until it converges as illustrated in Fig. 1.

We suspect that this transformation, or at least certain components of it, is
fairly generic. In a machine learning context, a learner needs to be biased in some
way for it to generalize well [9,30,40,81]. Consequently, there might exist some
systematic bias from a small-sample model to its large-sample version. In essence,

1 A kernel model can be viewed as a separating hyperplane in the lifted feature space.
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this transformation potentially captures the natural intra-class variability in a
discriminative manner and represents how sparse samples change to a category
cluster. Hence, we view the model transformation as a form of shared structure
and, when available, it can be re-purposed for novel categories.

A desirable goal, then, is to find ways of automatically learning such a trans-
formation. We achieve this by learning a deep regression network on a large
collection of model pairs, which we term as a model regression network. The net-
work explicitly regresses between the small-sample classifiers (as input) and their
corresponding large-sample classifiers (as ground-truth) on a variety of known
categories. The deep learning framework enables us to learn the transformation
without imposing strong priors. Now, for a novel category/task, we introduce
the learned transformation to construct the target model and thus facilitate its
generalization in the small sample size regime.

Our approach is inspired by the recent observation in deep learning based
object recognition that features extracted from deep convolutional neural net-
works trained on a large set of particular object categories exhibit attractive
transferability [4,20,76,104]. They could thus serve as universal feature extrac-
tors for novel categories/tasks. Our key insights then are that such generality
would also hold on a model level and that it would be learnable in a similar
fashion as on the feature level. This is also suggested by the duality perspective
between the feature space and the classifier space [91]. Eventually, the trans-
formation can be also viewed to be imposed on features but parametrized in a
model fashion.

Our contribution is three-fold: First, we show how to construct a training
“model set” by generating a large collection of model pairs that are learned from
small and large sample sets respectively on various categories (Sect. 3.1). Second,
we show how a model regression network, based on deep neural networks and
this training model set, is learned and a generic transformation between these
two types of models is identified by the regressor (Sects. 3.2 and 3.3). Finally,
we show how our regression network is used to facilitate the recognition of novel
categories from few samples, leading to significantly improved performance on
a broad range of tasks, including domain adaptation, fine-grained recognition,
action recognition, and scene classification (Sects. 3.4 and 4).

2 Related Work

It remains a fundamental challenge to understand how to recognize novel cate-
gories from few examples for both humans and machines. This line of research is
generally addressed in the fields of one/few-shot learning [26], inductive trans-
fer or transfer learning [70], multi-task learning [14], learning to learn [86], and
meta-learning [82]. Because of high-dimensionality of feature spaces, successful
generalization from small training samples typically requires strong and appro-
priately tuned “inductive biases” using additional available information [9,40].

A natural source of information comes from additional data via “data man-
ufacturing” [7] in various ways. For instance, (1) obtain more examples of cat-
egories of interest from large amounts of unlabeled data as in semi-supervised
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learning [15,107] and active learning [73], (2) augment the available examples
by performing simple image transformations including jittering and noise injec-
tion as commonly used in deep learning [16,22,52], (3) borrow examples from
other relevant categories [61], (4) introduce Universum examples (i.e., unlabeled
examples that do not belong to the concerned classes) for max-margin regulariza-
tion [98], and (5) synthesize new virtual examples, either rendered explicitly with
computer graphics techniques or created implicitly through compositional rep-
resentations [18,21,66,67,71,106]. These approaches can significantly improve
recognition performance if a generative model that accounts for the underlying,
natural intra-class variability is known. Unfortunately, such a model is usually
unavailable [7] and the generation of additional real or artificial examples often
requires substantial effort.

In a broad sense, learning novel categories is addressed by exploiting and
transferring knowledge gained from familiar categories [14,70,72,77,86,87]. This
is to imitate the human ability of adapting previously acquired experience when
performing a new task [74]. In particular, inter-class transfer [40] and cross-
generalization [7] are achieved by discovering shared feature representations: (1)
captured by linear or nonlinear feature transformations [1,14,31,48,63,85,94],
(2) obtained by feature selection [27,59,60] or regularization [37], (3) described
by similarities between novel classes and familiar classes [8], (4) encoded as a
distance metric by metric learning [10,11,29,75,92,100] or kernel learning [40],
and (5) learned by boosting approaches [69,89,101]. Recently, there has been
growing interest in learning deep convolutional neural networks in fully super-
vised, semi-supervised, or unsupervised fashions to extract generic features and
then to transfer them to different tasks [19,22,33,35,46,49,52,65,83,95,99].

Another type of knowledge transfer focuses on modeling (hyper-)parameters
that are shared across domains, typically in the context of generative sta-
tistical modeling [25,58,78]. A variational Bayesian framework is first devel-
oped by incorporating previously learned classes into the prior and combining
with the likelihood to yield a new class posterior distribution [25,26]. Gaussian
processes [57,78] and hierarchical Bayesian models [81] are also employed to allow
transferring in a non-parametric Bayesian way. The recently proposed hierarchi-
cal Bayesian program learning utilizes the principles of compositionality and
causality to build a probabilistic generative model of visual objects [54–56]. In
addition, adaptive SVM and its variants present SVM-based model adaptation
by combining classifiers learned on related categories [2,3,23,47,53,88,97,102].
Other approaches transfer the knowledge across different modalities [6,32,36].
Despite many notable successes, it is still unclear what kind of underlying struc-
tures are shared across a wide variety of categories and are useful for transfer.

Different from the previous work, we propose a plausible alternative for
transferring inter-class structure from a model perspective. This paper is the
first to show that there exists certain generic, category agnostic transformation
between small-sample and large-sample models on a wide spectrum of categories.
In addition, such a transformation could be effectively learned by high-capacity
regressors, such as deep neural networks, in a model-level big-data setting. Our
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approach could also be seen as an alternative parametric way of doing model
distillation that relies on the connection between different models [5,13,41].

3 Model Regression Networks

We are given a fixed, discriminative feature space X of dimensionality d, such as
the current deep convolutional neural network features.2 For an object category
c of interest, we generate a model or classifier h(x) that discriminates between
its positive and negative instances x ∈ X . We consider, for example, the linear
SVM classifier commonly used for object recognition tasks, which is a separating
hyperplane in the feature space. The classifier h(·) can then be represented as a
weight vector w belonging to the model parameter space W.

Let w0 indicate a classifier learned from few annotated samples without any
additional information. Let w∗ indicate the corresponding underlying classifier
learned from a large set of annotated samples of the same category. Our goal is to
generate w (or equivalently, h(·)) that generalizes well from these few training
examples, i.e., to make w as close as to the desired w∗. The key assumption
is that there exists a generic non-linear transformation ˜T : W → W for a
broad range of categories, so that for w0 and w∗ in any category c, we have
w∗ ≈ ˜T

(

w0
)

. That is, there is a set of large-sample models and ˜T is the
projection into that set (with w∗ being a fixpoint of ˜T ). Once the transformation
˜T is available, we could easily improve the classifier generalization.

Inspired by recent progress in deep learning, it is possible to estimate this
transformation ˜T from a large set of known categories. A straightforward app-
roach then is to learn a regression function T parameterized by Θ based on a
large collection of “annotated” model pairs

{(

w0
j ,w

∗
j

)}J

j=1
from these categories.

That is, w∗
j ≈ T

(

w0
j , Θ

)

for any small-sample model w0
j and its large-sample

model w∗
j learned on the same category. We employ multi-layer neural networks

as regressors, which are well-known to learn complex, non-linear functions with
minimal human design. By doing so, we avoid an explicit description of the space
of transformations. We then use the obtained transformation in learning models
for novel categories.

3.1 Generation of Model Pairs

We start from large amounts of labeled data from a variety of categories, denoted
as {(xi, yi)}Li=1. Here xi ∈ R

d is the ith data sample in the feature space X ,
yi ∈ {1, . . . , C} is the corresponding label, and C is the number of categories.
Different from conventional recognition systems that directly learn from the data
and label pairs, we learn on a model level. To this end, we produce a collection of
model pairs

{(

w0
j ,w

∗
j

)}J

j=1
as our training model set using the original training

2 Notation: We use boldface letters for vectors and matrices and italicized capital
letters for transformation functions. For notational simplicity, x already includes a
constant 1 as the last element and thus w includes the bias term.
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data set {(xi, yi)}Li=1. Each model is generated as a binary classifier focused
on separating a single category from all the remaining categories in a manner
inspired by the one-vs.-all strategy in multi-class classification.

Specifically, for each category c, we first learn wc,∗ from a large sample set.
We treat wc,∗ as the ground-truth model. Let the positive examples {xc,pos

i }Lc

i=1 be
all the data points of category c, where Lc is the total number of samples whose
labels are c. We obtain negative examples {xc,neg

i }Mi=1 by randomly sampling
M data points from other categories not in category c. We train a binary SVM
classifier wc,∗ on the training set Pc = {(xc,pos

i ,+1)}Lc

i=1 ∪ {(xc,neg
i ,−1)}Mi=1.

We now learn the small-sample model wc,0 for category c. Consistent with
the few-shot scenario that consists of few positive examples, we randomly sam-
ple N � Lc data points {xc,pos

i }Ni=1 out of the Lc positive examples of cat-
egory c. We train a binary SVM classifier wc,0 on the reduced training set
Qc = {(xc,pos

i ,+1)}Ni=1 ∪ {(xc,neg
i ,−1)}Mi=1.

Note that we have many ways of choosing the small sample set for a given
wc,∗ to learn wc,0. This indicates that we could repeat the sampling procedure S

times, leading to S small-sample models
{

wc,0
j

}S

j=1
learned from different small-

sample sized training subset
{Qc

j

}S

j=1
of Pc. Since they correspond to the unique

ground-truth model, we thus obtain a series of model pairs for category c as
{(

wc,0
j ,wc,∗

)}S

j=1
. Including the learned model pairs from all the C categories,

we generate the desired training model set
{(

w0
j ,w

∗
j

)}J

j=1
, where J = S × C.

Due to sub-sampling, the size of the training model set could be potentially
large, with many orders of magnitude larger than the number of categories.

3.2 Regression Network

Given the training model set
{(

w0
j ,w

∗
j

)}J

j=1
with one to one model correspon-

dence, we aim to learn a mapping: w0 → w∗. We parametrize the transfor-
mation as a regression function T

(

w0, Θ
)

, such that w∗ ≈ T
(

w0, Θ
)

. We
simply use the square of the Euclidean distance to quantify the quality of the
approximation. For each model w0

j , we have the corresponding small sample set

Qj =
{(

xj
i , y

j
i

)}M+N

i=1
used to learn the model as well. To make the regression

more robust, we include the performance on these samples as an additional loss,
which is standard in the transfer learning approaches with model parameter
sharing [97,102]. Our final loss function then is

L (Θ)=
J

∑

j=1

{

1
2

∥

∥w∗
j − T

(

w0
j , Θ

)∥

∥

2

2
+ λ

M+N
∑

i=1

[

1 − yj
i

(

T
(

w0
j , Θ

)T
xj
i

)]

+

}

. (1)

The second term represents the data fitting on the training samples. Here, the
performance loss is measured by a hinge loss, and it could be other types of
losses such as a logistic loss as well.
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Fig. 2. The architecture of our model regression network. Given a model w0 learned
from few samples as input, it is passed though four fully-connected layers with leaky
ReLU. On the loss layer, a model regression loss and a classification performance (e.g.,
hinge) loss on the training data is minimized jointly

Consistent with recent work, we use a multi-layer feed-forward neural net-
work as the regression function for its high capacity. As shown in Fig. 2, our
regression network consists of F = 4 fully-connected layers where the fth layer
applies a non-linear transformation G , which is an affine transformation fol-
lowed by a non-linear activation function. We use leaky ReLU. For the purpose
of regression capacity, the number of units in the first two layers is larger than the
dimensionality of the input classifier weight vectors. The desired transformation
T is then represented as a series of transformations G layer by layer.

3.3 Implementation Details

For the feature space, consistent with recent work, we use the Caffe Alexnet
convolutional neural network (CNN) feature pre-trained on ILSVRC 2012 [20,45,
52]. All the weights of the CNN are frozen to those learned on ILSVRC without
fine-tuning on any other datasets. For each image, we extract the feature on
the center 224 × 224 crop of the 256 × 256 resized image. It is a d = 4,096-dim
feature vector fc6 taking from the penultimate hidden layer of the network,
unless otherwise specified.

To generate the training model set, we use the ILSVRC 2012 training data
set for purpose of reproducibility. There are 1,000 object categories with 600
to 1,300 images per category and 1.2 million images in total. We use Liblin-
ear [24] to train linear SVM models w0 and w∗. For each category, using all the
positive images and randomly sampled negative images, we train w∗ with the
optimal SVM regularization parameter obtained by 10-fold cross-validation. We
then randomly sample N = 1, 2, . . . , 9, 10, 15, 20, . . . , 100 positive images. For
each N , we repeat random sub-sampling S = 5 times, and use different SVM
regularization parameters from 10{−2,−1,0,1,2} to train the SVM model w0 from
few samples. These are essentially valid ways of doing “data augmentation” [52]
for training the regression network, which mimic in practice how w0 changes.
Hence, the number of the generated model pairs is 700 for each category, and
the size of the training model set is 700,000. Finally, we randomly split the set
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with 685 model pairs as training and the remaining 15 pairs as validation per
category.

We then use Caffe [45] to train our model regression network on the generated
training model set and the corresponding training data set. The number of units
from fc1 to fc4 are 6144, 5120, 4097, and 4097, respectively. We use 0.01 as
the negative slope for leaky ReLU. λ is set to 1. We implement the loss function
as two loss layers in Caffe, with one loss layer focusing on the model regression
accuracy and the other focusing on the performance loss on the training data.
We train the network using standard SGD and batch normalization [44].

3.4 Learning Target Models for Novel Categories

We now consider recognizing a novel category from a small labeled training set
{(xi, yi)}Ki=1, where xi ∈ R

d is a data sample and yi ∈ {−1, 1} is the corre-
sponding label. By leveraging the obtained generic model transformation T as
informative prior knowledge, we aim to infer the target model w that generalizes
better than the one produced only from the few training examples. We use a
coarse-to-fine procedure that learns the target model in three steps: initializa-
tion, transformation, and refinement.

Initialization. In this first step, we directly learn the target model w0 on the
small training sample set {(xi, yi)}Ki=1.

Transformation. Using w0 as input to our learned model regression network,
after forward propagation, we obtain the output model T

(

w0, Θ
)

. This thus
encodes the prior knowledge about w being preferable.

Refinement. We then introduce T
(

w0, Θ
)

as biased regularization into the
standard SVM max-margin formulation to retrain the model by minimizing

R (w) =
1
2

∥

∥w − T
(

w0, Θ
)∥

∥

2

2
+ η

K
∑

i=1

[

1 − yi
(

wTxi

)]

+
. (2)

Equation (2) is similar to the standard SVM formulation, with the only difference
being the bias towards T

(

w0, Θ
)

instead of 0. η is the regularization parameter
used to control the trade-off between the regularization term and data fitting
term. We thus obtain an intermediate solution with a decision boundary close
to the regressed classifier while separating the labeled examples well.

4 Experimental Evaluation

In this section, we explore the use of our learned model regression network
on a number of supervised learning tasks with limited data, including domain
adaptation, fine-grained recognition, action recognition, and scene classification.
We begin with a sanity check of the regression network for the 1,000 training
categories on the ILSVRC validation data set. We then evaluate the network
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Fig. 3. Performance sanity check of the model regression network by comparing small-
sample models w0, large-sample models w∗ (learned on thousands of examples), and
regressed models T (w0) on the held-out ILSVRC validation data set. X-axis: number of
positive training examples. Y-axis: average binary classification accuracy. Our network
effectively identifies a generic model transformation

for one-shot domain adaptation and compare with state-of-the-art adaptation
approaches. We further evaluate our approach for novel fine-grained, action, and
scene categories. Finally, we present experimental results evaluating the impact
of different feature spaces and model types.

4.1 Sanity Check

Our model regression network is learned from the 1,000 categories on the
ILSVRC training data set. As a sanity check, the first question to answer
is whether the learned transformation indeed improves generalization of the
small-sample models for these categories. To answer this question, we evalu-
ate the models on the held-out ILSVRC validation data set, which contains the
same 1,000 categories with 50 images per category and has no overlap with the
ILSVRC training data.

Consistent with the way the models are generated, we evaluate them in a
binary classification scenario. For each category, we construct a test set consisting
of all these 50 positive images and 50 randomly sampled negative images from
other categories. We compare the three types of models: small-sample models
w0, large-sample models w∗ (as ground-truth), and regressed models T (w0)
(without the refinement step). We evaluate how performance varies with the
number of positive training examples N when used to learn w0. We average the
classification accuracy over the models corresponding to the same N but with
different sampled training data and SVM regularization parameters. Figure 3
summarizes the average performance over the 1,000 categories.

As expected, Fig. 3 shows that T (w0) significantly improves the generaliza-
tion of w0. In the one-shot learning case, there is a notable 20% performance
improvement of T (w0) over w0, whose performance is only a little bit higher
than chance (50% for binary classification). With increased number of training
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Table 1. Performance comparison between our model transformation with state-of-
the-art approaches that adapt other types of prior knowledge gained on the ILSVRC
source domain in manners of data, feature, model parameter, and joint fine-tuning for
one-shot learning on the Webcam domain of the Office dataset

Source prior knowledge type Method Acc (%)

NA SVM (target only) [43] 62.28

Data SVM (source only) [43] 53.51

SVM (source and target) [43] 56.68

Feature GFK [34] 65.16

SA [28] 59.30

Daumé III [17] 59.21

MMDT [42] 59.21

Model parameter PMT [2] 66.30

Late fusion (Max) [43] 59.59

Late fusion (Lin. Int. Avg) [43] 60.64

Joint Fine-tuning [43] 61.13

Model transformation Model regression network (Ours) 68.47

examples, the performance of T (w0) gradually converges to that of w∗ trained
on thousands of examples. This verifies the existence of a generic transformation
from small-sample to large-sample models for these 1,000 categories, which is
effectively identified by our model regression network. In the following exper-
iments, we will show that the learned transformation applies to other novel
categories as well.

4.2 One-Shot Adaptation

Our approach can be viewed as transferring certain prior knowledge gained from
the source domain (ILSVRC) to new tasks. It is thus interesting to compare
different types of prior knowledge, including those on data, feature, and model
parameter levels. To this end, we provide a comprehensive evaluation in the
scenario of domain adaptation, in which the target images come from the same
set of source categories but are drawn from a different distribution. Due to the
common categories between source and target domains, this experimental setup
allows us to best identify the possible shared domain structure and compare
with state-of-the-art adaptation approaches without learning additional category
correspondence, which turns to be another difficult problem.

Datasets and Tasks. We evaluate on the Office dataset [80], a standard domain
adaptation benchmark for multi-class object recognition. The Office dataset is
a collection of 4,652 images from three distinct domains: Amazon, DSLR, and
Webcam. We use Webcam as the target domain since it was shown to be the
most challenging shifted domain [43]. Of the 31 categories in the dataset, 16
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overlap with the categories presented in the 1,000-category ILSVRC. We focus
on these common classes as our target (i.e., 16-way classification), as is customary
in [43]. Following a similar experimental setup in [43], 1 labeled training and 10
test images per category are randomly selected on Webcam. We report average
multi-class accuracy over 20 random train/test splits in Table 1.

Baselines. In addition to the SVM (target only) baseline that directly trains
SVM classifiers on the target data, we compare against four other types of base-
lines that transfer prior knowledge on the ILSVRC source domain gained in
manners of data, feature, model parameters, and joint fine-tuning. Type I data
level: SVM classifiers trained on only source data and both source and target
data, respectively. Type II feature level: geodesic flow kernel (GFK) [34],
subspace alignment (SA) [28], Daumé III [17], and max-margin domain trans-
forms (MMDT) [42], which seek common feature spaces using learned feature
embedding, augmentation, or transformation. Type III model parameter
level: projective model transfer (PMT) [2] and late fusion [43], which adapt the
parameters of the pre-trained source classifier to construct the target classifier.
Type IV joint level: fine-tune the weights of the pre-trained CNN on the
16-way target classification task. These results are reported from [43].

Table 1 shows that our model transformation provides an alternative, com-
petitive way to encode the shared structure and prior knowledge. It is on par
with or outperforms other types of prior knowledge and adaption approaches.
Notably, ours achieves significantly better performance than fine-tuning, the
standard transfer strategy for CNNs, in this one-shot learning scenario. Fine-
tuning requires a considerable amount of labeled target data and actually reduces
performance in the very sparse label regime.

4.3 Learning Novel Categories

We now evaluate whether our learned model regression network facilitates the
recognition of novel categories from few samples. For multi-class classification on
the target datasets, we test how performance varies with the number of training
samples per category. Following the standard practice, we train linear SVMs in
a one-vs.-all fashion with default settings in Liblinear [24]. After obtaining the
regressed models, we then incorporate them to retrain each one-vs.-all classifier.

Datasets and Tasks. We evaluate on standard benchmark datasets for fine-
grained recognition: Caltech-UCSD Birds (CUB) 200-2011 [93] and Oxford
102 Flowers [68], for action recognition (compositional semantic recognition):
Stanford-40 actions [103], and for scene classification: MIT-67 [90]. We follow
the standard experimental setups (e.g., the train/test splits) for these datasets:
CUB200-2011 contains 11,788 images of 200 bird species; 5,994 images are used
for training (29 or 30 images per class) and 5,794 for testing. 102 Flowers con-
tains 102 flower classes and each class consists of 40–258 images; 10 images per
class are used as training data and the rest are used as test data. Stanford-40
contains 9, 532 images of humans performing 40 actions with 180–300 images per
action class; 100 images per class are used as training data and the rest are used
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as test data. MIT-67 contains 15,620 images spanning 67 indoor scene classes;
the provided split for this dataset consists of 80 training and 20 test images per
class. In our experiments, due to the lack of published protocols for small-sample
learning, we randomly generate the small-sample version of training images as
shown in Fig. 4 and use all the same test images for testing.

Baselines. Due to the CNN training procedure, the original models directly
learned from target samples can be viewed as transfer learning with feature
sharing. We also include the transfer learning baseline with model parameter
sharing on Stanford-40 and MIT-67, which transfers the 1,000 ILSVRC category
models using [88]. Moreover, we report an additional CNN fine-tuning baseline
on MIT-67, which is the best fine-tuning result we have achieved following [39].

Figure 4 summarizes the average performance over 10 random splits on these
datasets. The performance of the model transfer is similar to the original models
learned from few samples due to the dissimilarity between source and target
tasks. In our case of limited target data, the standard fine-tuning approach
leads to degraded performance due to over-fitting. The models refined by our
regression network, however, significantly outperform them for a broad range
of novel categories. Our approach has particularly large performance boosts in
one-shot learning scenarios. For example, there is a nearly 15% boost on MIT-67.
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Fig. 4. Performance comparison between models learned from few samples and models
refined by our model regression network for fine-grained recognition, action recogni-
tion, and scene classification on four benchmark datasets. For completeness, we also
include additional baselines of transfer learning with model parameter sharing and
CNN fine-tuning on certain datasets. The Alexnet CNN is used as the feature space.
X-axis: number of training examples per class. Y-axis: average multi-class classifica-
tion accuracy. Since they benefit from the learned generic model transformation, ours
significantly outperform all the baselines for small sample learning
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4.4 Evaluation of Different Feature Spaces

In the previous experiments, we used the Alexnet CNN as the feature. To test
the robustness of our model regression network to the choice of the feature space,
here we evaluate two additional features: the more powerful VGG19 CNN [83]
fc7, pre-trained on ILSVRC 2012, and the unsupervised CNN [95] fc6, pre-
trained on YouTube videos. We keep the other design choices the same (e.g., the
way of generating the training model set and the regression network structure).
In a similar way as before, we train our network and evaluate the recognition
performance on the target tasks with few samples. Figure 5 validates the benefit
of our approach in different feature space settings. Importantly, it shows that
the data used to estimate the model transformation (ILSVRC) is not necessarily
the same as the data used to learn the feature representation (YouTube).
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Fig. 5. Feature space evaluation between models learned from few samples and mod-
els refined by our model regression network on these four benchmark datasets. The
stronger VGG CNN [83], pre-trained on ILSVRC, and the unsupervised CNN [95],
pre-trained on YouTube, are used as the feature space, respectively. Ours show consis-
tent performance improvements over the original models for small sample learning in
different feature spaces

4.5 Evaluation of Different Types of Classification Models

In the previous experiments, we focused on SVM classifiers. In fact, the mod-
els do not need to come from max-margin classifiers and could be other set of
weights learned in different fashions. To verify this, we test a widely used alter-
native classifier, logistic regression, and keep the other design choices the same
(e.g., the way of generating the training model set and the regression network
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Fig. 6. Model type evaluation between models learned from few samples and models
refined by our model regression network on these four benchmark datasets. We evaluate
the logistic regression as the model of interest. The robust performance shows generic
transformations for different types of models

structure). Naturally, we change the hinge loss to the logistic loss. In a similar
way as before, we train our network and evaluate the recognition performance
on the target tasks with few samples as shown in Fig. 6. Combining with Fig. 4,
the logistic regression demonstrates comparable performance to SVM, and the
refined logistic regression classifiers generalize better as well.

5 Conclusions

Even though it has long been believed that learning algorithms should be able
to induce general functions not only from examples but also from experience as
humans, it is still unclear what types of knowledge are shared across tasks and
crucial for transfer. In this work we proposed a conceptually simple but power-
ful approach to address the problem of small sample learning in this context of
learning to learn. Our approach is based on the insight that there exists a generic,
category agnostic transformation T from small-sample models to the underly-
ing large-sample models. In addition, such a transformation could be effectively
learned by high-capacity regressors on a large collection of model pairs and could
be later used as informative prior for learning novel categories. This work opens
up several interesting questions and could be explored further. While we focused
on the existence of the transformation here, it would be interesting to design the
best network architecture and other types of regressors (e.g., kernelized ridge
regression) to learn the transformation. Also, we have assumed that the trans-
formation T is independent of the sample size whereas, in general, one would
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envision that T would change when the number of samples increases dramat-
ically all the way to T = identity for very large training sample sets. Finally,
while we assumed a fixed representation, it would be interesting to extend this
approach for use of a loss to inform modification of features as well.
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