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The paper studies a large class of bounded-rationality, probabilistic learning
models on strategic-form games. The main assumption is that players ‘‘recognize’’
cyclic patterns in the observed history of play. The main result is convergence with
probability one to a fixed pattern of pure strategy Nash equilibria, in a large class
of ‘‘simple games’’ in which the pure equilibria are nicely spread along the lattice
of the game. We also prove that a necessary condition for convergence of behavior
to a mixed strategy Nash equilibrium is that the players consider arbitrarily long
histories when forming their predictions. Journal of Economic Literature Classifica-
tion Numbers: C72, D83. Q 1997 Academic Press

1. INTRODUCTION

Modern economic theory makes extensive use of equilibrium concepts,
Ž .Nash 1950 equilibrium in particular, when characterizing the solutions to

models of strategic interaction. In a Nash equilibrium each player is
assumed to correctly anticipate his opponents’ strategic behavior when
playing the game. This strong assumption motivates the recent literature
on ‘‘learning in games.’’

Typically, the literature studies the case where a fixed game is played
repeatedly by payoff maximizing players. In every stage of the repeated
game, each player observes some information about his opponents’ real-
ized play at that stage; he then tries to utilize this information in choosing
an optimal action for the continuation game. The basic postulate of the
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literature is that the players use the observations from the past to extrapo-
late the future. In this sense, the players try to ‘‘learn’’ their rivals’ future
strategies from the realized path of play in the past. The different models
studied in the literature vary in the specific assumptions made on the
learning rules used by the agents,1 the objective maximized by the agents,
and the information revealed after each stage of the game.

The basic motivation underlying this paper is to suggest an intuitively
appealing set of assumptions concerning the learning behavior of agents
with bounded rationality and to study the dynamics of such a learning
process. In particular, we assume that agents can choose their learning
behavior independently throughout the repeated game, and that agents
‘‘learn to learn’’ in the sense of trying to choose the ‘‘best’’ learning model
in every stage of the repeated interaction.

The specific framework we adopt is as follows: Agents with bounded
rationality play repeatedly a fixed, finite strategic-form game. Each agent
knows his payoff function, but doesn’t necessarily know the payoff func-
tions of his rivals. After each stage-game, the agents observe the pure
strategies played at that stage; each player examines the history of play up
to the current stage, and tries to predict how the other agents will play at
the next round. Formally, the realized prediction takes the standard form
of a probability distribution over the pure strategy profiles of the player’s
opponents. The agents are strictly myopic so that in every stage of the
game they play a best response to their realized predictions.

Our main result is convergence with probability one to a pure strategy
Nash equilibrium pattern, in a large class of games in which the pure
equilibria are ‘‘nicely spread.’’ That is, when the topology of the stage

Ž .game is such that potential pure strategy solutions Kreps, 1990 exist, and
are conveniently spread along the lattice of the game, then}with proba-
bility one}the players will eventually adopt one of these points or, more
generally, a finite pattern of such equilibria as a convention on ‘‘how to
play the game.’’

Ž .In a repeated play of the ‘‘Battle of the Sexes’’ Fig. 2.2 , for example,
the players may converge to a symmetric behavior pattern where one pure
strategy Nash equilibrium is played on the even dates, and the other pure
equilibrium is played on the odd dates. Our model is the first bounded
rationality learning model showing that convergence to this intuitively
appealing ‘‘taking turns’’ solution is theoretically possible. The experimen-

1 All through the paper we use ‘‘players’’ and ‘‘agents’’ interchangeably to denote the set of
individuals playing the repeated game. We use the female pronoun ‘‘she’’ when talking about

Ž . Ž .the rows’ player Rows and the matrices’ player Mats in a given game; we use ‘‘he’’ when
Ž .referring to a generic player or the columns’ player Cols in a given game.
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tal literature indeed demonstrates that real subjects may rapidly learn to
alternate when playing games with an equilibrium structure similar to that

Ž . 2in the Battle of the Sexes Rapoport et al., 1976 .
We suggest two postulates concerning the agents’ learning behavior:

Postulate A. Confused learning and random prediction rules. Our play-
ers can choose their learning behavior independently. In every stage of the
game, each player has the freedom to use complicated formal methods,
simple rules of thumb, or even plain intuition in deriving the next period’s
prediction. Each agent may use different prediction models at different
dates. Different agents can use different prediction rules in every date.
Typically, the agents feel confused when searching for the ‘‘right’’ predic-
tion. The confusion is enhanced whenever a player realizes that his
previous prediction was wrong and lead him to a suboptimal play. The
player may then abort a prediction model that failed, and search for an
alternative rule that seems to fit better the observed path of play.

Formally, we assume that for every history of the game, the prediction
rule of each player can be described by a probability distribution over the
space of possible predictions. Moreover, we stipulate that}because of the
strategic confusion described above}the model is of ‘‘rich support’’ so
that with some small proability e the players can behave in any reasonable

Ž .way; e.g., follow the Cournot 1838 best response dynamics, in every stage
of the repeated game.

As an interpretation, we suggest an underlying Bayesian model where
each agent’s learning-behavior-type is drawn independently in every stage
of the game. Our probabilistic prediction rules might then be considered
the direct product of this Bayesian model. The e compatibility with best
response dynamics discussed above, for example, follows if we assume that
there is always a positive probability e that all players will be of the
Cournot-type. With this interpretation, the main convergence result shows
that for almost every realization of types, the players will eventually learn
to play an equilibrium pattern.

Postulate B. Learning to learn through strategic pattern recognition.
Our players ‘‘learn to learn’’ by adjusting their learning behavior to the
recent developments in the observed path of play. In particular, the players
recognize cyclic strategic patterns. As a simple example, consider the case
where three strategy profiles, say C, A, B have been played repeatedly, for
a long time, in that specific order, so that the history of play at some stage
is . . . C, A, B, C, A, B, C, A, B, C, A,B, C, A. We claim that the players

2 In those experiments, however, the payoff matrix was common knowledge among the
players. Since we don’t need this strong assumption for our convergence result, the experi-
mental data backs up our model in a restricted way.
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must ‘‘recognize’’ the repeated pattern if it has been repeated successively
with no interruptions a large enough number of times.3 Upon recognizing
the pattern, each player assumes that his opponents will keep following the
pattern by playing their part in the profile B on the next stage of the game.
Being strictly myopic, he plays a best response to B on the next round.
When B is not a pure strategy Nash equilibrium, then}by recognizing the
pattern}the agents contradict it, since realized play is the best response
to B which is different from the pattern’s prediction. If, however, B is a
pure strategy Nash equilibrium, realized play conforms to the pattern’s
prediction, and expectations are being fulfilled. The players might thus
expect that the same pattern will be followed again at the next stage of the
game. This demonstrates the basic intuition behind our convergence to an
equilibrium-pattern result.

We say ‘‘learning to learn through strategic pattern recognition’’ rather
than ‘‘learning through strategic pattern recognition’’ since the players

Ž .switch to what they conceive to be a better learning model whenever they
recognize a pattern in the observed play. Moreover, our specific assump-
tions are flexible enough to accommodate dynamic, nonstationary strategic
pattern recognition; e.g., if at some stage of the repeated game an
‘‘unfamiliar’’ pattern starts appearing successively in the observed play,
then it may take the players a long time, say 60 successive repetitions, to
recognize the pattern. If, after a short interruption, the same pattern starts
repeating successively once again, then our agents may recognize this
familiar pattern earlier, say after 8 successive repetitions.

Our pattern recognition model, however, deals only with the simplest
case where the agents recognize cyclic strategic patterns that repeat
successively at the observed path of play. Since, broadly interpreted,
pattern recognition may encompass almost any form of inductive reasoning
and learning, this is far from being a complete model. We hope that the
paper will help initiate more research in this field.

Our two behavior postulates are new to the learning in games’ litera-
ture.4 The existing literature can be roughly divided as follows: Some
papers take a general approach to learning, study a large class of learning

3 The computer sciences literature on pattern recognition typically deals with Bayesian-
learning type of problems that are quite different from what we call strategic pattern
recognition in this paper. The literature on machine learning however deals with similar

Žissues when analyzing problems in ‘‘sequence extrapolation’’ Laird, 1994; Laird and Ronald,
.1994 . Yet, that literature typically searches for deterministic algorithms that may be used for

successful sequence predictions in general, while our goal here is to suggest an intuitively
appealing descriptive model of strategic pattern recognition.

4 Ž .Sanchirico 1993 has been working concurrently on a rational probabilistic learning
model with an entropy assumption that is similar to our confused learning. Sanchirico’s
agents don’t recognize strategic patterns, however, and in a repeated play of the Battle of the
Sexes, they converge to play a pure Nash equilibrium of the game.
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models on a large class of games, and accordingly prove general, weak
Ž .results e.g., Milgrom-Roberts, 1991 . Other papers take a stylized ap-

proach, impose structure on the learning models, restrict the class of
games under consideration, and then prove strong convergence results
Ž .e.g., Krishna, 1992 . In this paper we prove a strong convergence result for
a large class of probabilistic learning models on a large class of games.
Furthermore, our basic behavioral postulates are intuitively appealing; we
believe they would survive empirical testing.

Section 2 of the paper presents two introductory examples that motivate
the model and demonstrate the main results. Section 3 provides the formal
setting. Section 4 studies the implications of our first behavioral postulate.
We prove that a confused search for ‘‘the right way to play a game’’ must
always reach a pure strategy Nash equilibrium, when the stage game
belongs to some large class of ‘‘simple games.’’ In Section 5, we superim-
pose a pattern recognition scheme on the confused learning model of
Section 4. The resulting model complies with our two behavioral postu-
lates. We prove that it converges with probability one to a Nash equilib-
rium pattern when the stage game is simple.

Section 6 suggests that convergence of behavior to a mixed strategy
Nash equilibrium of the stage game is ‘‘incompatible with strategic pattern
recognition.’’ This implies that a necessary condition for convergence of
behavior to a mixed equilibrium is that the agents consider arbitrarily long
histories when forming their predictions. In Section 7, we add one assump-

Ž .tion to the model to get a general not restricted to simple games , weaker
convergence result. Section 8 discusses different properties of the model
and considers possible generalizations. Section 9 is a short discussion of
the main results.

2. EXAMPLES

2.1. Probabilistic Learning and Reachability of Pure Equilibria

The existing literature on bounded rationality learning in games typically
imposes, at the outset, some arbitrary set of assumptions on the players’
learning behavior. In many cases, it is even assumed that the players are

Ž .born to use some fixed learning heuristic like fictitious play Brown, 1951
Ž .or Cournot dynamics Cournot, 1838 and they follow that given model

zealously; no deviations can ever occur. In many applications, however,
stationary fictitious play learning and stationary Cournot learning might
lead the players to repeated cyclic behavior and score a very low grade in
predicting their actual behavior in every stage of the game.
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Consider first the fictitious play learning heuristic: In every stage of the
game each agent plays a best response to the empirical distribution derived
from the observed history of play. The play at the first round is chosen
arbitrarily.5

The game in Fig. 2.1.1 has a unique pure strategy Nash equilibrium:
Ž .B, D, L . It is a Pareto efficient equilibrium that pays each player his
maximal payoff. Yet, it is easy to show that for most initial conditions

Ž . Ž . Ž . Žfictitious play ‘‘converges’’ to the cycle A, E, L , A, E, R , B, E, R , B,
. Ž . Ž . Ž . Ž .F, R , C, F, R , C, F, L , C, E, L , A, E, L in the sense that the agents

play only the strategies in this cycle and change strategies according to the
Ž Ž . Ž . Ž .fixed order in the cycle from A, E, L to A, E, R , from A, E, R to

Ž . .B,E, R , and so on . . . . Moreover, the number of successive repetitions
of each strategy in the cycle, in the nth occurrence of the cycle, increases
rapidly in n. At some stage of the repeated interaction, the observed

Ž .history thus shows that the strategy profile A, E, L has been played for
Ž .close to 100,000 periods successively, the strategy profile A, E, R has

followed for more than 120,000 rounds successively, and so on . . . . An
outside observer facing these dynamics can do an asymptotically perfect
job in predicting the players’ behavior in every stage of the game by using
the alternative Cournot learning heuristic; i.e., by assuming that whatever
has been played at the last stage will be played again at the current stage.
The fact that the players keep following the fixed fictitious play learning
rule although it does such a poor job in predicting their actual behavior
seems unreasonable and provides a convincing argument against stationary
fictitious play learning in this example.

Is stationary Cournot learning more plausible? Clearly it is not. In the
game of Figure 2.1.1, for most initial conditions, stationary Cournot

Ž . Ž . Ž . Ž .learning converges to the cycle A, E, L , A, E, R , B, E, R , B, F, R ,
Ž . Ž . Ž . Ž .C, F, R , C, F, L , C, E, L , A, E, L . The players will repeatedly cycle,

Ž . Ž .playing A, E, L for one period, switching to A, E, R on the next period,
Ž .moving to B, E, R at the following stage, etc. . . . . Again we conclude

that stationary learning is unreasonable in this example.
Since fictitious play and Cournot dynamics seem, a priori, reasonable

learning heuristics, their potential instability demonstrates that the bound-
ed rationality learning problem doesn’t obtain any ex ante clear solutions.

Ž .We therefore suggest that at the advanced stages of a repeated game the
players will feel basically confused when searching for the right way to play
the game. This motivates our probabilistic approach to learning and the
first behavioral postulate. We further suggest that a probabilistic, confused
learning model should always reach a pure strategy Nash equilibrium in

5 For slightly different definitions of fictitious play learning see Fudenberg and Kreps
Ž . Ž .1993 and Monderer and Shapley 1993 .
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FIGURE 2.1.1

games similar to that in Fig. 2.1.1. Consider, in particular, a perturbed
Cournot learning model where the players follow the Cournot learning
model with high probability in every stage of the game, but each player i
may, with some small probability e , tremble by recognizing strategic
patterns of length 2 in the observed past play; i.e., if the last strategy
played at some stage of the game is A and somewhere in the observed past
play A has been succeeded by B, then}with probability e}i might play a
best response to strategy B on the next stage of the game. Assume further
that different players can recognize different patterns in a given history of
the game; e.g., if the observed history ends with the string
A, B, C, D, A, C, A, then one player might play a Cournot best response to
A on the next stage of the game, another player might recognize the
pattern A, B and play a best response to B at that stage, while a third
player may recognize the pattern A, C and plays a best response to C on
the next stage of the game.

The table in Fig. 2.1.2 shows that the perturbed model might lead the
Ž .players from the Cournot cycle to the pure equilibrium B, D, L . To

understand the example it is enough to focus on those dates where the
Ž .players play the strategy C, E, L .

Ž .) At the first such date t s 1, C, E, L is followed by the best
Ž .response A, E, L .

) At the second such date t s 8, all the players recognize the pattern
Ž . Ž . Ž . Ž .C, E, L , A, E, L and play the best response to A, E, L , A, E, R at
t s 9.

Ž . Ž .) At the third appearance of C, E, L at t s 12 , Rows recognize
Ž . Ž .the pattern C, E, L , A, E, R and thus decides to play her best response

Ž .to A, E, R , Row B, at the next stage. Assuming that Cols and Mats play
Ž .a Cournot best response to C, E, L at that stage, realized play is

Ž .B, E, L .
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FIGURE 2.1.2
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FIG. 2.2. Battle of the sexes.

Ž . Ž .) At the fourth appearance of C, E, L at t s 17 , Rows recognizes
Ž . Ž .the pattern C, E, L , A, E, R and chooses Row B for the next stage of

Ž . Ž .the game, Cols recognizes the pattern C, E, L , B, E, L and accordingly
chooses Col D. Assuming further that Mats plays a Cournot best response

Ž . Ž .to C, E, L , we get the Nash equilibrium B, L, D at t s 18.

In Section 4 we generalize this example and prove that a probabilistic
learning model that always assigns a positive probability to the perturbed
Cournot behavior described above must reach a pure equilibrium in some
large class of games.

2.2. Con¨ergence to Equilibrium Patterns

The well known ‘‘Battle of the Sexes’’ of Fig. 2.2 has two symmetric pure
Ž . Ž .strategy Nash equilibria: A, A is Cols’ favorite equilibrium while B, B

is Rows’ favorite. The repeated play of the game has a natural, intuitively
Ž .appealing solution where one equilibrium, say A, A , is played on the odd

Ž .dates and the other equilibrium, B, B , is played on the even dates. Yet, it
is easy to prove that if fictitious play or Cournot learning ever hit a strict
pure strategy Nash equilibrium, then the players keep playing that equilib-
rium forever.6 These learning heuristics can thus never converge to corre-
lated solutions like that suggested above.

Consider, however, a probabilistic learning model where the players may
recognize patterns of length 2 as illustrated in Example 2.1. Assume
further that because of the players’ confusion about the strategic behavior

Ž .of their opponents ‘‘anything’’ can happen with positive probability at the
first three stages of the repeated game. In particular, there is a positive

Ž . Ž .probability that realized play at these three rounds will be A, A , B, B ,
Ž .A, A . Consider the case where this, in fact, is the observed path of play
at the first three rounds. Assuming that both players happen to recognize

Ž . Ž .the pattern A, A , B, B in that history, and thus play a best response to
Ž .the pattern’s prediction B, B at the fourth stage of the game, we get the

Ž . Ž . Ž . Ž .extended history: A, A , B, B , A, A , B, B . Repeating that argument

6 Ž .For a proof that fictitious play satisfies this property see Fudenberg and Kreps 1993 .
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iteratively we may get an arbitrarily long history where the players repeat-
Ž . Ž .edly play the pure equilibrium pattern A, A , B, B time after time with

no interruptions. Assuming further that the probability of recognizing the
Ž . Ž .pattern A, A , B, B converges to one as the number of previous succes-

sive repetitions increases, we get a scenario where the players converge to
Ž . Ž .the equilibrium pattern A, A , B, B . The main result of this paper is

that a confused learning model with strategic pattern recognition must
converge to an equilibrium-pattern when the stage game belongs to a large
class of ‘‘simple’’ games.

3. THE MODEL: NOTATION AND DEFINITIONS

3.1. The Stage Game

Ž ² i: ² i: .Let G s I, S , p be a finite strategic-form game, where I isig I ig I

a finite set of players, Si is a finite set of pure strategies for player i, and
p i: = Si ¬ R is the payoff function for agent i. S s = Si is used toig I ig I

denote the space of pure strategy profiles in the game. Syi s = S j
jg I R i

denotes the pure strategy profiles of i’s opponents. s i g Si, s g S, and
syi g Syi are used to denote an arbitrary element of the corresponding
space.

Ž .We use D X to denote the space of finite support probability distribu-
i Ž i.tions over a set X. Thus, S s D S denotes the space of mixed strategies

for agent i, S s = S i denotes the space of mixed strategy profiles inig I
Ž yi .the game, and D S denotes the space of probability distributions over

Ž yi .i’s opponents’ pure strategies. We sometimes call D S player i’s predic-
i i Ž yi .tions’ space. s g S , s g S, and y g D S are defined accordingly.

iŽ i.Expressions of the form s s are used to denote the probability assigned
to the pure strategy s i by the mixed strategy s i.

Ž .We extend the payoff functions in the standard way to the space D S ;
iŽ i .p s , y then denotes the expected payoff to player i from playing a

i Ž .mixed strategy s when his opponents play the possibly correlated
strategy y. We use BRi to denote the best response correspondence of

Ž yi . iŽ .player i in pure strategies; i.e., for every y g D S , x g BR y iff
iŽ . iŽ yi .ix g arg max p s, y ; BR s is defined accordingly. To simplify nota-sg S

iŽ . iŽ yi . Ž .tion we sometimes use BR s to denote BR s ; BR s is used to denote
Ž .the joint best response correspondence of the players; i.e., s g BR s iff˜

i iŽ .s g BR s ; i g I. We say that a sequence s , s , . . . , s , is a BR sequence˜ 0 1 n
Ž .iff s g BR s for every j s 1, . . . , n.j jy1

Ž .A strategy profile s is a pure strategy Nash equilibrium iff s g BR s ; it
Ž . Ž .is a strict equilibrium iff s s BR s . We use PN G to denote the set of
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Ž .pure strategy Nash equilibria of G; S R PN G is used to denote the
Ž . Ž .complementary set. We say that G is generic iff for every s g S G , BR s

is a singleton.

3.2. The Learning Process

Throughout this paper we study the case where a generic, finite strate-
gic-form game is played repeatedly at dates t s 1, 2, . . . . After each stage
of the game, every player observes the pure strategy profile played at that
stage. We use z to denote the history of the play up to the beginning oft
date t; i.e., z s s , s , . . . , s , where s X g S for tX s 1, 2, . . . , t y 1. ZZ ist 1 2 ty1 t t
used to denote the space of histories of length t y 1; ZZ denotes the space`

of histories in the infinitely repeated game.
i Ž Ž yi ..Let m : ZZ ¬ D D S be a probabilistic prediction rule for agent i att t

date t. That is, facing a given history z , agent i may choose differentt
predictions for his opponents’ behavior at the next round. We assume
w.l.g. that the probabilistic rule of his choice is given by a finite support

Ž yi . iŽ .probability distribution over his predictions’ space D S : m z gt t
Ž Ž yi .. ŽD D S The finite support assumption is with no loss of generality since

we are analyzing games with finite pure strategy spaces so that for every
i Ž yi .‘‘well-defined’’ probability distribution m over D S there exists a finite˜ t

support probability distribution mi that generates the same probabilistict
i . Ž yi . iŽ .Ž .behavior rule for agent i as m . For every y g D S we use m z y to˜ t t t

denote the probability assigned to the prediction y by the probabilistic
iŽ . Ž iŽ .. Ž .prediction rule m z ; supp m z is used to denote the finite support oft t t t

iŽ . Ž iŽ .. iŽ .Ž .m z ; i.e., y g supp m z iff m z y ) 0.t t t t t t
Ž .For any finite set X we use card X to denote the cardinality of X.

Following the myopia assumption we assume that for every history z ,t
iŽ .for any realization of the random prediction rule m z , agent i plays at t

iŽ .best response to his realized prediction. f z is used to denote the proba-t t
iŽ .bilistic beha¨ior rule derived from the probabilistic prediction rule m zt t

Ž iŽ ..given the myopia assumption; i.e., assuming that card BR y s 1 for
Ž iŽ .. i Ž i. iŽ .Ž .every y g supp m z , f : ZZ ¬ D S is defined by f z x st t t t t t

iŽ .Ž . 7
i iÝ m z y .� y g suppŽ m Ž z .. ¬ xsBR Ž y .4 t tt t

Ž . ²� i4 � i4: Ž .We call the collection m, f s m , f a myopic learning modelig It t
on G. Assuming further that the agents behave independently, we get that

²� i 4 ty1 :X Xfor each t, the collection f determines a distribution on ZZ . Byig It t s1 t
a standard application of Kolmogorov’s extension theorem we can extend

Ž .the process to ZZ ; ZZ , FF, PP is used to denote the extended space.` ` Ž m , f .

7 Ž iŽ .. iŽ .When card BR y ) 1 for some y in the support of m z , the corresponding myopict t
i Ž . iŽ . w xbehavior rule also depends on the tie-breaking rule. Using q ?¬ y : BR y ¬ 0, 1 to denotez t

Ž X
i Ž X . . iŽ .Ž .ia tie breaking rule for agent i so that Ý q x ¬ y s 1 , we define f z x s� x g BR Ž y .4 z t tt

iŽ .Ž . i Ž .i iÝ m z y ? q x ¬ y .� y g suppŽ m Ž z .. ¬ x g BR Ž y .4 t t zt t t
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3.3. Strategic Patterns

We say that p is a strategic pattern in a game G iff p is a finite sequence
Ž .of strategies in G. We use l p to denote the length of a strategic pattern

Ž .p. That is, if p s s , s , . . . , s , then l p s n. When all the elements of p1 2 n
Ž . Ž .are in PN G we say that p is a PN pattern. When l p s 1 we call p a

singleton pattern.8

Since we will be dealing a lot with appearances of strategic patterns in
given histories, we define special projection functions, PRO, that will be
used to denote subsequences of histories and patterns:

Let z s s , s , . . . , s be a sequence of length t of pure strategies in G.1 2 t

Ž . X Ž .X X1 For every 0 F t - t, let PRO z s s .t t

Ž . Ž .2 For every 0 F t - t F t, let PRO z s s , s , . . . , s .1 2 t , t t t q1 t1 2 1 1 2

Similarly, we define an extension operator, EXT, so that for every tX ) t,
Ž .XEXT p is used to denote the sequence generated by copying the1, t

pattern p repeatedly until we get a sequence of length tX; i.e.,

tX div t times! # "
X XEXT z s z , z , . . . , z , s , . . . , s .Ž .1, t 1 t mod t

Ž .XWhen X is a collection of finite sequences in G we define EXT X s1, t
� X X Ž . 4Xx ¬ x s EXT x x g X .1, t

We say that a pattern p has appeared in a given history z if the obvioust
Ž . X � Ž . 4definition holds; i.e., t y 1 G l p and ' t g l p , . . . , t y 1 such that

Ž .X XPRO z s p.t ylŽ p.q1, t t

4. CONFUSED LEARNING LEADING TO PURE EQUILIBRIA

In this section we study the implications of the first behavioral postulate.
We show that a confused search for ‘‘the right way to play the game’’ must
always reach a pure strategy Nash equilibrium when the stage game is
what we define to be ‘‘simple.’’ The basic intuition underlying this reacha-
bility result is that random prediction rules that always assign a positive
probability to the Cournot prediction on one hand, and tremble indepen-
dently across players on the other hand, must reach a pure strategy Nash
equilibrium in many applications. The following stylized example is used to
motivate our definition of ‘‘simple games.’’

8 The definition above considers only the case where all the players are involved in playing
Ž .each strategy along the pattern i.e., s g S for every l . In the sequel we call this type oft

patterns patterns of full dimensionality. In Section 8.2 we briefly discuss patterns of partial
dimensionality that may involve a strict subset of the set of players.
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FIG. 4.1. A nonsimple game.

ŽThe game in Fig. 4.1 is a composition of ‘‘Matching Pennies’’ the
� 4 � 4. Ž � 4subgame A, B = G, H , and ‘‘Battle of the Sexes’’ the subgame C, D

� 4.= E, F . If the players fail to coordinate on one of these subgames, each
of them pays a heavy fine.

Note that the Matching Pennies subgame is best-response-closed in the
sense that the best response to every strategy in this subgame is, again, in
that subgame. We suggest that myopic players that happened to play some
strategy in this closed subgame at the first stage of the repeated game

Ž .might with a positive probability keep playing the strategies in that
‘‘closed subgame’’ forever, and never reach the pure strategy Nash equilib-
ria of the complete game. Our reachability result will thus be restricted to
games that don’t contain such closed subgames. We proceed with the
formal definitions.

DEFINITION. Uniform reachability of PN equilibria. Let G be a finite
Ž . Ž .strategic-form game with PN G / B. A learning model m, f on G

satisfies uniform reachability of PN equilibria iff 'e ) 0, such that for
Ž . Ževery t, and for each z g ZZ satisfying PP Z s z ) 0, PP s gt t Ž m , f . t t Ž m , f . n

Ž . .PN G for some n ) t ¬ z G e .t

DEFINITION. Strategic-form subgame. A strategic-form subgame GU of
Ž ² i: ² i: .the strategic-form game G s I, S , p is a strategic-form gameig I ig I

U 1̂ n̂ 1 n î i iŽ .G s I, S , . . . , S , p , . . . , p such that for every i g I, S : S , and pˆ ˆ ˆ
i îis the restriction of p to = S .ig I

U U Ž U .We use G : G to denote a strategic-form subgame of G. S G is
used to denote the pure strategy profiles in GU.

DEFINITION. BR-closed subgame. Let G be a finite strategic-form game.
U U Ž U .A strategic-form subgame G : G is BR-closed iff for every s g S G ,

X Ž . Ž . X U Ž U .for every s g BR s in G , s g S G .
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DEFINITION. Simple strategic-form game. A strategic form game G is
BR-simple iff every BR-closed subgame GU : G contains a pure strategy
Nash equilibrium of G.

Consider now a probabilistic learning model on a simple strategic-form
game that satisfies the following condition:

There is a fixed positive probability e such that for each player i:

Ž . Ž .a If the last observation at some advanced enough stage of the
repeated game is s, then the probability that i will play a best response to

Žs in the next stage of the game is at least e we call this condition ‘‘e
.compatibility with BR dynamics’’ , and

Ž . Ž .b If the last observation at some advanced enough stage of the
repeated game is s, and somewhere in the observed past play s has been
followed by sX, then the probability that i will ‘‘recognize the pattern s, sX,’’
in the sense that he will expect his rivals to play sX once again in the next

Ž . Žstage of the game after playing s at the current stage , is at least e we
.call this condition ‘‘e compatibility with sophisticated BR dynamics’’ .

The formal definitions that follow only spell out the conditions on the
iŽ .prediction rules m ? . Since we are analyzing a myopic learning model on at

iŽ yi .generic game, the condition m s G e immediately implies that thet
iŽ iŽ yi ..corresponding behavior rule satisfies f BR s G e . We thus omit thet

latter condition.

DEFINITION. e compatibility with BR dynamics. A learning model
Ž .m, f on a strategic-form game G is e compatible with BR dynamics iff

i yiŽ .Ž Ž ..'T and 'e ) 0 such that ; t G T , ;z g ZZ , m z PRO z G e , fort t t t ty1 t
every i g I.

DEFINITION. e compatibility with sophisticated BR dynamics. A learn-
Ž .ing model m, f on a strategic-form game G is e compatible with

sophisticated BR dynamics iff 'T and 'e ) 0 such that ; t G T , ;z g Z ,t t
Ž . Ž . iŽ .Ž yi Ž ..and ; l F t y 2 for which PRO z s PRO z , m z PRO z ) e ,l t ty1 t t t lq1 t

for every i g I.

Ž .In the sequel we say that m, f is a confused learning model on G iff
Ž .m, f satisfies e compatibility with BR dynamics and e compatibility with
sophisticated BR dynamics. The following proposition asserts that con-
fused learning implies uniform reachability of pure strategy Nash equilib-
ria when the stage game is simple.

PROPOSITION 4. Let G be a generic, simple, strategic-form game. Let
Ž . Ž .m, f be a confused learning model on G. Then m, f satisfies uniform
reachability of PN equilibria.

Ž .The proof is left together with all other proofs for Appendix 1.
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5. CONFUSED LEARNING WITH PATTERN RECOGNITION

5.1. Introduction

In this section we superimpose a pattern recognition scheme on the
confused learning model of Section 4. Note that confused learning is
incompatible with strategic pattern recognition; compatibility with BR
dynamics, for example, implies that for every BR cycle in the game, for
every natural n, there is a positive probability that the players repeat the
cycle n times successively. Our model will distinguish between two distinct
learning modes: A confused learning mode where the players find the
observed history hard to interpret and many learning behaviors can occur,
and a pattern recognition mode where the players recognize some strategic
pattern in the observed history of play.

The basic idea of the model can be summarized schematically as follows:
For large enough t, for every history z , the model is in exactly one of thet
following three states.

Ž .State 1: Confused learning as described in Section 4 . For e¨ery history
in this state, many reasonable learning beha¨iors can occur. The confused
search for the ‘‘right way to play the game’’ leads the players to a PN

Ž .equilibrium as pro¨ed in Proposition 4 unless they are stopped on the way
because they recognize some strategic pattern in the extended history of play
Ž .State 2 .

State 2: Pattern recognition. If some strategic pattern repeats successï ely
at the end of the obser̈ ed history z , then it might be the case that learning ist
not as confused as in State 1. In particular, if the pattern has appeared
successï ely a large number of times, then the agents recognize it with high
probability. If the pattern is not a PN pattern, then upon recognizing the
pattern, the agents mo¨e back to the confused State 1 since expectations are
being contradicted. If the pattern is a PN pattern, the agents may e¨entually
mo¨e to State 3.

State 3: Con¨ergence to a PN pattern. History shows that a fixed PN
pattern has been played successï ely without interruptions for a long time. The
players use the fixed pattern to form their predictions for the next period’s play.
Since the pattern contains only PN strategies, expectations are realized and the

Žplayers keep playing the pattern repeatedly. Note that con¨ergence to a PN
equilibrium is a special case where the agents con¨erge to a singleton PN

.pattern.

In formally defining a ‘‘confused learning model with strategic pattern
recognition’’ we will often refer to the number of times a fixed pattern has
appeared successively in a given history of the game. Thus, we would not
want to call a sequence like A, B, C, A, B, C, A, B, C a strategic pattern,
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but rather we would consider that sequence as three successive repetitions
of the basic pattern A, B, C. Formally, we define recursively the collection
of basic strategic patterns of length n in a fixed game G, SP , as follows:n

� Ž .4 � Ž .Let SP s s ¬ s g S G , and let SP s s , . . . , s ¬ s g S G for every1 n 1 n i
4 � Ž .4i s 1, . . . , n R D EXT SP for every n s 2, 3, . . . .� j ¬ n M O D js04 1, n j

We then say that p is a basic pattern in G iff p is an element of
D SP . We use SS PP to denote the collection of basic patterns in G plusng NN n

Ž .a unique empty pattern u ; i.e., SS PP s D SP j u . We say that ang NN n
X X X Ž .pattern p s s , . . . , s of length n G 2 is a m periods shift of a pattern1 n

� 4p s s , . . . , s if the usual definition holds; i.e., if m g 1, . . . , n y 1 and1 n
X X Ž .s , . . . , s s s , . . . , s , s , . . . , s . SH p is used to denote the 1 period1 n mq1 n 1 m 1

Ž .shift of p. When p is a singleton pattern we let SH p s p. To simplify1
Ž . Ž .notation we use SH p to denote the pattern SH p ; i.e., wheny1 lŽ p.y1

Ž .p s s , . . . , s , SH p s s , s , . . . , s .1 n y1 n 1 ny1

5.2. The Con¨ergence Result

To formally define a confused learning model with strategic pattern
recognition on a strategic-form game G, we superimpose on the original
model described in Section 3, a function c : D` ZZ ¬ SS PP that is used tots1 t
describe the learning mode of the players when observing the history z :t

Ž .}c z s u describes the case where the players find the history zt t
hard to interpret and the confused learning assumptions of Section 4 hold.

Ž .}c z s p / u describes the case where the players recognize thet
pattern p in z .t

In the sequel we call c a pattern recognition frame on G. We proceed by
Ž .imposing specific assumptions on the collection m, f, c .

The first two assumptions A.1 and A.2 are very similar to the ‘‘confused
learning’’ assumptions of Section 4. The only difference is that now we
restrict these assumptions to those cases where the agents are in the
confused learning mode.

Assumption A.1. Conditional compatibility with BR dynamics. 'T ,
Ž .'e ) 0 such that ; t G T , ; z g ZZ for which c z s u ,t t t

iŽ .Ž yi Ž ..m z PRO z G e , for every i g I.t t ty1 t

Assumption A.2. Conditional compatibility with sophisticated BR dynam-
Ž .ics. 'T and 'e ) 0 such that ; t G T , ;z g ZZ for which c z s u , andt t t

Ž . Ž . iŽ .Ž yi Ž ..for every l F t y 2 for which PRO z s PRO z , m z PRO zl t ty1 t t t lq1 t
) e , for every i g I.
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Note that Assumptions A.1 and A.2 impose some independence-across-
periods on the random prediction rules; e.g., even if the player has failed
to comply with BR dynamics over a long period, there is still an e
probability that she will comply with this behavior at the next stage of the
game. Note further that these e-probability assumptions are the only
restrictions imposed on the players’ behavior when facing the confused-
mode histories. Thus, with some probability 1 y e X, the agents can behave

Ž .in any arbitrary way e.g., follow fictitious play when observing such
histories.

We proceed by complementing these confused learning assumptions
with a set of assumptions on strategic pattern recognition. Basically, we

Ž .would want to stipulate that ) for every strategic pattern p there is a
Žuniform bound, say T , such that the players must recognize p withp

.probability one whenever it has appeared almost T times successively atp
the end of the observed history. For example, if the bound for the pattern
A, B, T , is 4, then whenever z ends with the string A, B, A, B, A, B, A,A, B t
the agents recognize the pattern A, B, and accordingly play a best re-
sponse to strategy B on the next stage of the game.

Yet, it is easy to show that any such set of assumptions is internally
inconsistent in the sense that for some histories the players will be

Ž .required to recognize two or more contradicting patterns with probability
one. For example, if the best response to strategy B is C, the bound for
the pattern A, B is 4, and the bound for the pattern A, B, A, B, A, B, A, C
is 3, then if the observed history ends with the string A, B, A, B, A, B, A,
C, A, B, A, B, A, B, A, C, A, B, A, B, A, B, A the players must simultane-
ously recognize both patterns with probability one. That is, each player
must play a best response to B with probability one and a best response to
C with probability one at the same time}a possible inconsistency.

To resolve the problem we assume that our bounded rationality players
can fully recognize only patterns of length shorter than some fixed bound
L.9 Assuming then that the bounds T are large enough relative to L wep

Ž .may reformulate ) to get an internally consistent set of assumptions.

Assumption B.1. Boundedness. There is an upper bound L G 1 such
Ž .that for every history z for which c z s p for some basic pattern p,t t

Ž .l p F L.

Assumption B.2. Compatibility with pattern recognition. For every ba-
Ž . Ž .sic pattern p with l p F L where L is as defined in Assumption B.1 ,

Ž .there is a uniform bound T satisfying T ? l p G 3L such that for everyp p

9 Since we only impose e-probability assumptions on the players’ behavior in the confused
learning mode, the players may still partially recognize patterns of length ) L with some high

X Ž X .probability 1 y e where e is a function of e and the structure of the specific pattern .
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Ž . Ž . Ž . Ž .history z , if PRO z s EXT p , then 1 c z s p,t tyT ? lŽ p.q1, ty1 t 1, T ? lŽ p.y1 tp p

Ž . iŽ .Ž yi Ž .. 10 Xand 2 m z PRO p s 1, for every i g I. Moreover, if p is a shiftt t lŽ p.
of p, then T X s T .p p

Ž .Assumption B.2 implies that T ? l p G 2 L for every pattern p. Thisp
guarantees that the conditions stated in the assumption can only apply to

11 Ž .one pattern at a time; i.e., assume by way of contradiction that there is
a history z , and two distinct basic patterns of length F L, p and p , sucht 1 2
that the conditions of Assumption B.2 are satisfied with respect to both

Ž . Ž .patterns. Assume without loss of generality that l p ) l p . Note that if1 2
Ž . Ž . Ž . Ž .l p s 1, then since T ? l p G 2 L ) l p , p consists of l p repeti-2 p 2 1 1 22

Ž .tions of p and thus is not a basic pattern. Assume l p ) 1. Observe2 2
Ž . Ž .)) that since both patterns are recognizable given z , the last l pt 2

Ž . Ž .elements of the pattern SH p must be equal to the pattern SH p .y1 1 y1 2
Ž . Ž . ŽNote also that since p and p are basic patterns l p mod l p / 0 for1 2 1 2

Ž . Ž .if this isn’t the case, p must consist of l p div l p successive repeti-1 1 2
. Ž .tions of p , and it is not a basic pattern . Thus, since T ? l p G 2 L G2 p 22

Ž .2 l p so that the successive appearances of p cover at least the last1 2
Ž . Ž .2 l p periods of the history z , it follows that the last l p elements of1 t 2

Ž . Ž .the pattern SH p must be equal to some shift of the pattern SH p ,y1 1 y1 2
Ž Ž .. Ž . Ž .say SH SH p . This, together with )) implies that SH p sk y1 2 y1 2

Ž Ž .. � Ž . 4SH SH p , for some k g 1, . . . , l p y 1 . It is straightforward tok y1 2 2
verify that p cannot be a basic pattern in such a case.2

In the sequel we thus say that a given history z satisfies the sufficientt
Ž .conditions for con¨ergence to p iff there is a basic PN pattern p with

Ž . Ž . Ž .l p F L such that PRO z s EXT p . Note thattyT ? lŽ p.q1, ty1 t 1, T ? lŽ p.y1p p

these sufficient conditions are stationary in the sense that the agents
always recognize a given pattern after some fixed number of successive
repetitions. In the next section we claim that this stationary approach is
‘‘too stylized’’ and thus suggest a generalized model where the agents can
modify their pattern recognition behavior along the repeated game. The
simplistic scheme suggested above, however, is sufficient for our main
convergence result:

DEFINITION. Confused learning with stationary pattern recognition. Let
Ž .m, f be a myopic learning model on a generic, strategic-form game G.

Ž .We say that m, f is a confused learning model with stationary pattern

10 Ž .The assumption can be generalized by requiring that for every pattern p with l p F L
� Ž .4there is a summable sequence b p , such that whenever p appears n G T timesn ng NN p

Ž .successively, the probability that each player recognizes the pattern is G 1 y b p . Ton
Ž .simplify the exposition we restrict the analysis above to the case where b p s 0 for large n.n

11 Ž .The stronger assumption T ? l p G 3L is used in the Proof of Proposition 5.2.p
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recognition on G iff there is a pattern recognition frame c such that the
Ž . Ž .collection m, f, c satisfies A.1, A.2, B.1, B.2, and c z s p if and only ift

the sufficient conditions for convergence to p hold.12

Ž .DEFINITION. Convergence to a PN pattern. Let m, f be learning
Ž . Ž .model on a strategic-form game G with PN G / B. We say that m, f

Žconverges a.s. to a PN pattern iff PP z for which 'T and a PN patternŽ m , f .
Ž . .p such that PRO z s p for every k s 1, 2, . . . s 1.Tq Žky1.? lŽ p., Tqk? lŽ p.y1

PROPOSITION 5.2. Let G be a generic, simple strategic-form game. Let
Ž .m, f be a confused learning model with stationary pattern recognition on G.

Ž .Then m, f con¨erges a.s. to a PN pattern.

The probability of convergence to a specific pattern is not necessarily
decreasing in the pattern’s length in our model. In a repeated play of the

Ž .Battle of the Sexes Fig. 2.2 , for example, if the agents basically play the
Ž . Ž .PN pattern A, A , B, B repeatedly, but ‘‘tremble’’ with some small

probability e to satisfy the confused learning assumptions A.1 and A.2,
Ž . Ž .then the probability of convergence to A, A , B, B goes to one as e

approaches 0. In general note that since we have only imposed e-probabil-
Žity conditions on the agents’ behavior in the confused mode and left their

.complete behavior unspecified , ‘‘new’’ patterns of length G 2 may emerge
with high probability even when e is arbitrarily small. The specific distribu-
tion of PN patterns adopted by the agents at the limit might thus take
many different forms.

5.3. Nonstationary Pattern Recognition

In the Introduction we emphasized the motivation to present an intu-
itively appealing set of assumptions on learning by agents of bounded
rationality. The basic model presented in the previous section, however,
seems too stylized to fit any realistic learning effort. The problem follows
from the fact that the players in that model always recognize each pattern
p after some fixed, history-independent number of successive repetitions,
T . Consider, for example, the case where the players always recognize thep

singleton pattern A after 100 successive repetitions. Assume that the best
response to A is B. Given the rich-support assumptions of the model,

12 Ž .y1Existence is trivial. Just choose a positive probability e - card S , an integer L, and a
Ž .corresponding collection of T ’s that satisfy the conditions of Assumption B.2. Let m, f bep

any learning model where the agents recognize a pattern iff the sufficient conditions hold,
and where}in the confused learning mode}for every strategy profile s that has been
observed in the past-play, each player plays a best response to s with probability at least e .
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realized play might be

100 times 100 times 100 times 100 times! # " ! # " ! # " ! # "
A , A , . . . , A , B , A , A ,, . . . , A , B , A , A , . . . , A , B , A , A , . . . , A ,

B , A , A , A , A . . . .13

We suggest that this behavior is unreasonable, and that the agents should
Ž .recognize the ‘‘familiar’’ singleton pattern A with probability one sooner;

i.e., after a smaller number of cyclic repetitions, when the observed history
is as above. In this section we present a generalized version of the model
that accommodates such ‘‘dynamic pattern recognition.’’

In the generalized model, the agents can change their pattern-recogni-
tion patterns as the game evolves. Different agents might have different
inclinations for strategic pattern recognition. These individual inclinations

Ž .might even change along the game. The notation c z s p / u will nowt
be used to denote the case where at least one player believes that he has

Ž .identified a cyclic pattern in the observed path of play; c z s u will stillt
denote the default mode where all the players feel confused when observ-
ing z . Assumptions A.1, A.2, B.1, and B.2 still hold in the modified model.t
However, we now complement the sufficient conditions of Assumption B.2
by the following minimal, necessary conditions:

Assumption B.3. Necessary conditions for pattern recognition.

Ž .3.1: For every history z , for every basic pattern p with l p G 3, ift
Ž . Ž . Ž .c z s p, then PRO z s EXT p .t ty2 ? lŽ p.q1, ty1 t 1, 2 ? lŽ p.y1

Ž .3.2: For every history z , for every basic pattern p with l p s 2, ift
Ž . Ž . Ž .c z s p, then PRO z s EXT p .t ty4, ty1 t 2, 5

Ž .3.3: For every history z , for every singleton pattern p, if c z s p,t t
Ž .then PRO z s p, p.ty2, ty1 t

Ž .For example, a necessary condition for c z s A, B, C, D is that thet
last seven observations in z are A, B, C, D, A, B, C. When the pattern ist

Ž .short of length 1 or 2 we require a slightly stronger condition; a necessary
Ž .condition for c z s A, B is that the last four observations in z aret t

B, A, B, A. In the sequel we say that a pattern p is recognizable gï en the
Ž . Žhistory z iff the necessary conditions for c z s p as defined in thist t

.assumption hold. Note that these minimal necessary conditions leave
space for dynamic, nonstationary pattern recognition as suggested above.

13 Assumption B.2 implies that when T s 100, L F 33 so that the agents cannot recognizeA
with probability one the longer pattern

100 times! # "
A , A , . . . , A , B.
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If, at some stage of the repeated game, some ‘‘unfamiliar’’ pattern starts
repeating successively in the observed play, it might take the players a long
time, say, 100 successive repetitions, to recognize that pattern. If, however,
after a short interruption, the same pattern starts repeating successively
once again, the players might recognize it earlier, after 20 cyclic repeti-
tions. If the same pattern starts repeating successively once more}for the
third time in a relatively short period of time}the players might recognize
it even earlier, after 3 successive repetitions.

We argued above that in the modified model, the pattern recognition
mode should represent those cases where at least one player believes that
his opponents follow some cyclic pattern. Assumption B.2 stipulates that,
at the limit, if the pattern has repeated successively a large enough
number of times, all the players recognize it with probability one. In
general, however, it might be the case that only one player recognizes a
pattern in a given history of the game, while the other players are still
‘‘confused’’ when observing the same history. The following Assumption
B.4 says that in such cases, each player recognizes the pattern with some
positive probability d .

Assumption B.4. Coordinated pattern recognition. There is a positive
probability d such that for every basic pattern p, for every history z fort

Ž . iŽ .Ž yi Ž ..which c z s p, m z PRO p G d , for every i g I.t t t lŽ p.

Ž .For example, if z s . . . , A, B, C, A, B, C, A, B, C, A and c z s C,t t

A, B, the assumption implies that with probability at least d car dŽ I ., the
players recognize the pattern C, A, B by playing a best response to the
pattern’s prediction, strategy B, at the next stage of the game.

One undesirable complication that may arise from using minimal neces-
sary conditions for pattern recognition is that the agents might recognize
one pattern, then immediately recognize a different pattern that was
generated when the previous pattern was contradicted and so on . . . . If,
for example, the best response to some strategy B is C, and the agents
recognize the pattern A, C, A, B in some history z , then the extendedt̃
history z ends with the sequence A, C, A, C so that the necessaryt̃q1
conditions for recognizing the pattern C, A hold. The next assumption says

Žthat if z is a history that ends with pattern contradiction i.e., if thet
players were in the pattern recognition mode given the corresponding

.history z and the pattern has been contradicted at date t y 1 , then thety1
agents will not recognize new patterns for a while. Specifically, a necessary
condition for recognizing a ‘‘new’’ pattern pX at some future date t q k is

Ž X.that k is bigger than l p . When applied to the example above, the
assumption implies that the agents cannot be in the pattern recognition
mode with respect to the pattern C, A given the extended history z .t̃q1
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Assumption B.5. Caution in pattern recognition. 'T such that for every
Ž .basic pattern p, for every t G T , for every history z for which c z s p,t t

Ž . Ž . Ž .for every extension of z , say z , satisfying a PRO z / PRO p ,t tqk t tqk lŽ p.
Ž . Ž . X Xand b c z s p for some basic pattern p , it must be the case thattqk
Ž X.k ) l p .

Recalling the two postulates concerning the agents’ learning behavior,
confused learning, and pattern recognition, we may interpret B.5 as fixing
the priorities between these basic assumptions. The agents’ fundamental
strategic confusion is stronger than their belief in strategic pattern recog-

Ž .nition in the advanced stages of the game before convergence .

The following final assumption complements the caution assumption. It
says that if the agents are in the pattern recognition mode with respect to
some pattern p given the history z and realized play at date t conforms tot
the pattern’s prediction, then the agents stay in the pattern recognition

Ž .mode with respect to the appropriate shift of the same pattern.

Assumption B.6. Continuation. For every basic pattern p, for every
Ž . Ž Ž .. Ž .history z for which c z s p, c z , PRO p s SH p .t t t lŽ p. 1

Ž .For example, if z s . . . A, B, C, A, B, c z s A, B, C, and the realizedt t
Ž .play at date t is s s C, then the assumption implies that c z , s st t t

B, C, A.

DEFINITION. Confused learning with dynamic pattern recognition. Let
Ž .m, f be a myopic learning model on a generic, strategic-form game G.

Ž .We say that m, f is a confused learning model with dynamic pattern
recognition on G iff there is a pattern recognition frame c such that the

Ž .collection m, f, c satisfies A.1, A.2, and B.1]B.6.

Note that the stationary-pattern-recognition model of Section 5.2 is a
special, degenerated, case of confused learning with dynamic pattern

Ž .recognition; i.e., let m, f be a confused learning model with stationary
pattern recognition. Observe that the model satisfies the additional as-
sumptions B.3, B.4, and B.6. Assume by way of contradiction that it
violates the caution assumption B.5. Then there is a history z and ant
extension of z , z , such that a pattern p has been contradicted at date t,t tqj
Ž . Ž . Ž .c z s p and j F l p . Since T ? l p G 3L, the successive repetitions˜ ˜ ˜tq j p̃

of p must then cover the last 2 L elements of the history z . Since˜ t
Ž .T ? l p G 3L as well, both patterns p and p cover the last 2 L elements˜p

of z . From the uniqueness proof in Section 5.2, it follows that p s p.̃t
Since p was contradicted at date t, we get a contradiction to the assump-

Ž .tion c z s p which proves that B.5 must hold as well.˜tq j

PROPOSITION 5.3. Let G be a generic, simple strategic-form game. Let
Ž .m, f be a confused learning model with dynamic pattern recognition on G.

Ž .Then m, f con¨erges a.s. to a PN pattern.
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6. CONVERGENCE OF BEHAVIOR TO A
MIXED EQUILIBRIUM

Can the agents’ behavior converge to a mixed strategy Nash equilibrium
in our strictly myopic learning environment?

The concept of ‘‘convergence of behavior strategies’’ was proposed by
Ž .Fudenberg and Kreps 1993 as a more appropriate notion of convergence

to a mixed strategy Nash equilibrium than the previously used ‘‘conver-
Ž .gence of beliefs or empirical frequencies ’’ criterion. Formally, Fudenberg

and Kreps studied the following definition of local stability:
14 Ž .DEFINITION. Local stability. Let m, f be a myopic learning model

on a strategic-form game G. A mixed strategy profile s U is said to be
Ž .locally stable with respect to m, f iff for every e ) 0 there is some

Ž Ž . U .X X Xhistory z such that PP lim f z s s ¬ z ) 1 y e .t Ž m , f . t ª` t t t

Fudenberg and Kreps presented two constructions under which local
stability of a mixed strategy Nash equilibrium profile is technically possi-
ble. In the first construction, the players maintain the equilibrium beliefs
unless and until sufficient evidence against these beliefs has accumulated.
Moreover, when facing the equilibrium beliefs, the players choose the
‘‘right’’ tie-breaking rules; that is, the equilibrium strategies. In the second
construction, the players maintain the empirical beliefs but they are only
asymptotically myopic. Thus, they keep playing the equilibrium strategies
unless and until the cost of doing so becomes too large. As discussed by

Ž .Fudenberg and Kreps 1993, p. 346 , ‘‘in both constructions the players use
precisely the equilibrium strategies with no positive reason at all. . . . Thus,
although the constructions show that convergence to a mixed strategy
Nash equilibrium is possible, neither one convinces us that it would in fact
happen, except perhaps for players who have been trained in game theory
and therefore know how they are ‘expected’ to act.’’

The players in our model, however, are strictly myopic, and in general
know nothing about game theory and equilibrium analysis. In this setting,
a necessary condition for convergence of intended behavior to a mixed
strategy Nash equilibrium is that the predictions reach the equilibrium
strategies and stay there forever. This seems ‘‘too strong to be possible’’ in
our bounded rationality, incomplete information environment. As noted by

Ž .Jordan 1993 , generically, a mixed strategy is expected-payoff maximizing
for some player only if the expected mixed strategies of the other players
lie in a subspace of lower dimension of the corresponding strategies’ space.

14 i Ž yi .Fudenberg and Kreps studied a deterministic learning model where m : ZZ ¬ D S .t t
Although our probabilistic prediction rules are different, the resulting myopic behavior rules
are of the same form in both cases.
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Since the number of finite histories of play is countable, it is a priori
unlikely that the players’ expectations will ever lie in the subspace for
which the mixed strategy is a best response.

Moreover, we now show that convergence of behavior to any fixed
Ž .behavior strategy that is not a pure equilibrium is incompatible with

strategic pattern recognition in the sense that the players don’t recognize
some patterns even when they appear successively an arbitrarily large
number of times.

˜ Ž .DEFINITION. CC incompatibility with pattern recognition. Let m, f be
˜a myopic learning model on a strategic-form game G. Let CC be a

˜Ž .collection of basic patterns in G. A learning model m, f is said to be CC

incompatible with pattern recognition iff for every e ) 0 there is some
Žhistory z such that PP F F p has appeared n times successï ely˜t Ž m , f . pg CC ng NN

.¬ z ) 1 y e .t

˜ UŽ .In the following proposition we use CC s to denote the family of basic
patterns that correspond to the mixed strategy s U ; i.e., p s s , s , . . . , s1 2 m

˜ U UŽ . Ž .g CC s iff p is a basic pattern in G and s g supp s for everyl
l s 1, . . . , m. To smooth the exposition we restrict the formal exposition to
games with no pure strategy Nash equilibria.

Ž .PROPOSITION 6. Let G be a strategic-form game with PN G s B. Let
Ž . Um, f be a myopic learning model on G. If a mixed strategy profile s is

˜ UŽ . Ž . Ž .locally stable with respect to m, f , then m, f is CC s incompatible with
pattern recognition.

An important immediate Corollary to Proposition 6 is that convergence
of behavior to some mixed strategy profile s U is impossible if there exists
a uniform bound T such that each player always plays a best response to
some strategy that has been observed in the last T periods. In this sense, a
necessary condition for convergence of behavior to a mixed strategy Nash
equilibrium is that the players consider arbitrarily long histories when
forming their predictions. Agents with bounded memory can never con-
verge to play a mixed strategy Nash equilibrium.

7. A GENERAL CONVERGENCE RESULT

By adding one assumption to the model of Section 5 we now get a
general convergence result for finite strategic-form games. The extra
assumption, )-adaptiveness, says that for every subset E of pure strategies
in the game, there is a uniform bound T , such that whenever the realizedE
play at the last T periods of the game is a subset of E, the probabilityE
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that each player will play a best response to some strategy in E on the next
stage of the game is one. In the formal definition that follows we use the

iŽ .Ž . iŽ .Ž yi .expression m z E to denote the sum, Ý m z s .t t sg E t t

Ž .Assumption C. )-adaptiveness. For every E : S G , there is a bound
Ž .XT such that for every history z with t G T for which PRO z g EE t E t t

X iŽ .Ž .; t s t y T , t y T q 1, . . . , t y 1, m z E s 1, for every i g I.E E t t

It is easy to prove that Assumption C doesn’t contradict our previous
assumptions A.1, A.2, and B.1]B.6 if the bounds T are chosen appropri-E
ately.

Recalling that a subgame GU is closed iff the best response to each
strategy in the subgame is in the subgame, we say that a closed subgame
GU is minimal iff it doesn’t contain another closed subgame. Note that
every strict pure strategy Nash equilibrium is a minimal closed subgame.
Note also that in games that don’t have strict equilibria, it might be the

Ž . Žcase that the unique minimal closed subgame is the game itself e.g.,
.Matching Pennies . In the following proposition we use ‘‘convergence to

� UMCS with no PN’’ to denote the event: s g G eve., for some minimaln
U Ž . U Ž U . 4 15closed subgame G such that PN G l S G s B .

PROPOSITION 7. Let G be a generic, finite strategic-form game. Let
Ž .m, f be a confused learning model with dynamic pattern recognition on G

Žthat satisfies the additional assumption C. Then, PP con¨ergence to a PNŽ m , f .
.pattern or con¨ergence to MCS with no PN s 1.

To demonstrate the implications of Proposition 7, consider again the
stylized example of Figure 4.1. The game in that figure has three minimal
closed subgames: The two strict Nash equilibria and the Matching Pennies
subgame. Our result thus implies that a confused learning model with
strategic pattern recognition on that game that satisfies the additional
assumption C must either converge to the Matching Pennies subgame, or
to some PN pattern in the Battle of the Sexes subgame.

8. GENERALIZATIONS AND DISCUSSION
OF ASSUMPTIONS

8.1. Relaxing Strict Myopia

The strict myopia assumption was used in the Introduction to motivate
our confused learning and strategic pattern recognition postulates. Indeed,
these assumptions seem to suit best a learning environment where the
agents are strictly myopic. In this section, however, we informally suggest

15 � 4 Ž .E eve. is used to denote the event lim inf E Billingsley, 1986 .n n
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FIG. 8.1. Prisoner’s Dilemma.

that the myopia assumption can be relaxed to some degree. Our agents
may try to take account of the more distant future when searching for the
‘‘best’’ move for the next stage of the game.16 The players are of bounded
rationality, however, and thus they don’t follow rigorously the Bayesian

Ž . Ž .learning scheme Kalai and Lehrer, 1993 . Moreover, we assume that: 1
Žlearning is basically confused so that many different behaviors e.g., those

.corresponding to Cournot dynamics and sophisticated Cournot dynamics
Ž .may occur in most advanced stages of the game and 2 the agents

recognize cyclic patterns in the observed path of play. Any learning model
that satisfies these assumptions must converge to a PN pattern when the
stage game is simple.

Note that convergence to a PN pattern can be given a nonmyopic
justification in many applications, by assuming that whenever a player
detects a recurrent pattern in the path of play, he believes that his rivals
will keep following the pattern if he follows the pattern, while any
deviation on his part will trigger a painful retaliation by his opponents.
Yet, ‘‘Compatibility with Strategic Pattern Recognition’’ must be given
some myopic justification in certain applications. In a repeated play of the

Ž .Prisoner’s Dilemma Fig. 8.1 , for example, compatibility with singleton
pattern recognition implies that any string of repeated Cooperation must
come to an end at some stage of the repeated game. It thus precludes the

Žpossibility that both players adopt some ‘‘tit for tat’’ that is, ‘‘she will
cooperate as long as I cooperate, but she will fiercely retaliate if I

.deviate’’ type of conjectures concerning their opponents’ behavior in the
repeated game.

To justify myopia, the literature typically suggests that the players are
impatient and thus discount the future heavily, or that the players ignore
the impact of their current strategic behavior on the future play of their
opponents because of their bounded rationality. To get a more palatable

Ž .justification of the assumption, Fudenberg and Kreps 1993 invoked a

16 Technically, this can be done by reformulating our basic model so that the assumptions
Ž .only refer to the behavior rules, bypassing the not necessarily myopic prediction process

from which the agents arrive at these behaviors.
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large population story assuming that players are repeatedly drawn from
Ž .some large populations, so that: 1 repeated meetings between a given set

Ž .of players are rare and 2 each player is unaware of how his specific
opponents at some given stage of the game have acted in the previous
rounds in which they were called to play. Alternatively, we may assume
that players have a finite life span, and that once a player dies, he is
immediately replaced by an identical offspring that observes the entire
history upon joining the game. Assuming that the players are of bounded
rationality and their life span is random and relatively short, we hypothe-
size that strictly myopic behavior will emerge.

8.2. Other Forms of Pattern Recognition

The strategic pattern recognition scheme suggested in the previous
Ž .sections has the following restrictive features: 1 It only considers patterns

of full dimensionality that are built from pure strategy profiles in the game
Ž .and specify the behavior of all the players simultaneously. 2 Players may

fully recognize a pattern only if it has appeared successively with no
interruptions at the end of the observed history of play. This section is a
brief discussion of some of the ‘‘other cases’’ where strategic pattern
recognition might seem appropriate.

Consider first the case where a pattern appears successively with non-
contradicting interruptions. For example, take z s A, B, C, A, A, B, C,t
D, A, B, C, A, D, A, B, C, D, C, C, A, B, where the pattern A, B, C has
appeared four times but the successive appearances of the pattern have
been interrupted by some random sequence of strategies that don’t include
a contradicting pattern of the type A, B, s, where s is some strategy profile˜ ˜
different from C.

Formally, we may say that a strategic pattern p of length n G 2 in a
Ž .strategic-form game G has appeared N times successï ely with interruptions

�in a gï en history z iff there is a sequence of N indexes in n, n q 1, . . . , tt
4 Ž .y 1 , say i F i F ??? F i , such that 1 p has appeared at i for every1 2 N k

Ž . � 4 Ž .˜k s 1, 2, . . . , N, and 2 for each t g i , . . . , t y 2 , if PRO z s˜ ˜1 tynq2, t t
Ž . Ž . Ž . 17PRO p , then PRO z s PRO p .˜1, ny1 tq1 t n

The agents of Section 5 cannot fully recognize patterns that have
appeared successively with interruptions; e.g., given any history ending with
A, B, in which the pattern A, B, C has appeared n times successively with

Žinterruptions so that the necessary conditions for recognizing the pattern
.A, B, C as defined in Section 5 don’t hold , there is a positive probability e

that the players with follow Cournot dynamics and play a best response to

17 In the case of singleton patterns the only definition of successive appearances that makes
sense is the one requiring no interruptions.
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the strategy B on the next stage of the game. If the best response to B is
different from the best response to C, the probability of recognizing the
pattern A, B, C given such a history is bounded above by 1 y e , indepen-
dently of n.

Similarly, the agents of Section 5 cannot recognize with probability one
patterns of partial dimensionality that involve a proper subset of the set of
players; our model ignores such patterns even when ‘‘all the other players
except player i successively repeat a given pattern’’ although one may
claim that}as far as player i is concerned}these patterns are almost
equivalent to patterns of full dimensionality.

We also ignore the following types of patterns:

}Stochastic patterns where, for example, the strategy profile A is
‘‘always’’ followed by B or by C, but in no specific order.

}‘‘Patterns of patterns’’ where, for example, the patterns A, B and
A, C appear repeatedly, one after the other, but in between the appear-

Ž .ance of A, B and the following appearance of A, C and vice versa there
appears a sequence of strategies of random length and random structure
that doesn’t include the strategy A.

}Time related patterns where, for example, agent i plays strategy s i˜
on Friday.

To defend the narrow scope of our pattern recognition scheme, we may
first argue that these other patterns are somewhat more difficult to
observe, and thus there is ‘‘always’’}no matter how many times such a
pattern appears successively}a positive probability e X that the agents will
fail to recognize it. An additional excuse for ignoring patterns of partial
dimensionality may be based on the notion of sophisticated learning
Ž .Milgrom and Roberts, 1991 . A sophisticated player observing a recogniz-
able pattern of partial dimensionality might expect that the players in-
volved in playing the pattern will respond on the next stage of the game to
the latest changes that have occurred in the play of those agents that are

Ž .not following the pattern these may include the player himself . He thus
may be uncertain whether these players will keep following the pattern on
the next stage of the repeated game, and feel, overall, ‘‘confused’’ about
the future course of the game.

At the same time we claim that the main convergence result should hold
even if the agents are able to recognize some of the other patterns
mentioned above. The basic intuition still applies: The confused learning
forces should lead the players to an equilibrium pattern when the stage
game is simple. The players may adopt such a pattern as a fixed behavioral
convention on playing the game. In Appendix 2 we briefly outline a
variation on the original model in which the agents can recognize patterns
that appear successively with interruptions.
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8.3. Justifying the Uniform Assumptions

The following example demonstrates that the uniform component of
uniform reachability is essential to the main convergence result; i.e., the
weaker confused learning assumptions: ‘‘For every confused-mode-history
there is a positive probability that the players follow the BR dynamics and
each of the behaviors associated with the sophisticated BR dynamics’’ are
not sufficient for the main convergence result.

Fix a strategic-form game G where s and s / s are non-Nash pure1 2 1
U U Ž .strategies in G, and s is a PN equilibrium such that s s BR s s1

Ž .BR s .2
� 4 Ž .Let a be a summable sequence of numbers in 0, 1 , and consider at

Ž .‘‘learning model’’ m, f on G defined by the following conditions:

}At date 0, s is played with probability 1.1

}At e¨ery date t s 1, 3, 5, . . . if s / sU then s s s with probabilityty1 t 2
1 y a , and s s sU with the complementary probability.t t

}At e¨ery date t s 2, 4, 6, . . . if s / sU then s s s with probabilityty1 1 1
1 y a , and s s sU with the complementary probability.t t

}At e¨ery date t G 1 if s s sU then s s sU with probability 1.ty1 t

It is straightforward to verify that the model described above is a
‘‘confused learning model with strategic pattern recognition’’ if the bound
L is set equal to 1, and if we relax the uniform part of the confused

Ž . Žlearning assumptions A.1 and A.2 as discussed above . Yet, PP con-Ž m , f .
. Ž .vergence to a PN pattern s 1 y Ł 1 y a - 1, since the productt g NN t

Ž .Ł 1 y a converges whenever the sequence a is summable.t g NN t t

9. DISCUSSION

Ž .Herbert Simon 1992 writes on bounded rationality and the theory of
decision making: ‘‘We know today that human reasoning, the product of
bounded rationality, can be characterized as selectï e search through large
spaces of possibilities. The selectï ity of the search, hence its feasibility, is
obtained by applying rules of thumb, or heuristics to determine what paths
should be traced and what ones can be ignored. The search halts when a
satisfactory solution has been found, almost always long before all alternatï es
ha¨e been examined.’’ With this spirit our main result demonstrates that a
satisfactory solution in a myopic search for the right way to play an
infinitely repeated simple game can be an equilibrium pattern of the stage
game.
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Some of the informal interpretations of Nash equilibria in the funda-
mental literature on game theory are ‘‘a steady state of an environment in

Ž .which the players act repeatedly’’ Osborne and Rubinstein, 1993 , and
‘‘some convention . . . concerning how to play the game. . . . a learned

Ž .behavior’’ Kreps, 1990 . Our results support these interpretations}as far
as pure strategy Nash equilibria of the stage game are concerned. When
the stage game is simple, agents of bounded rationality that know nothing
about game theory and equilibrium analysis may adopt a fixed pattern of
such equilibria as a ‘‘behavioral convention’’ or a ‘‘steady state solution’’ to
the game.

We were unable to derive any positive results concerning the general
concept of mixed strategy Nash equilibrium. We have moreover shown
that adaptive agents with bounded memory can never converge to play a
mixed strategy Nash equilibrium. In this respect, we follow Fudenberg and

Ž . Ž . Ž .Kreps 1994, 1995 , Jordan 1993 , and Kalai and Lehrer 1995 in ques-
tioning the adequacy of Nash equilibrium as an attainable solution to
strategic games.

Our basic postulates, confused learning and strategic pattern recogni-
tion, are intuitively appealing, and we believe they would survive empirical
testing. The model also provides a natural channel through which the
context within which the repeated game is played can influence the
equilibrium selection. In a repeated play of the Battle of the Sexes, for
example, if one player is more aggressive than the other in the sense that

Ž .she is less willing to settle on say equilibrium B that gives her the lower
payoff, then our agents may converge to an equilibrium pattern like
A, A, A, B or A, A, B, A, B in which the aggressive player gets a higher
average payoff than her opponent.

The work is a first attempt to model strategic pattern recognition. We
hope it will help to initiate more research on this important subject.

APPENDIX 1: PROOFS OMITTED IN THE TEXT

In all the following proofs we assume w.l.g. that the e of the compatibil-
ity with BR dynamics assumption and the e of the compatibility with
sophisticated BR dynamics assumption are equal.

Ž .Proof of Proposition 4 and a reachability lemma . While proving the
Ž .proposition, we will also prove a reachability lemma Lemma 4.1 that is

essential for proving the convergence results of Propositions 5.2, 5.3, and 7.
ŽOur specific plan is as follows: Recalling the compatibility with sophisti-

.cated BR dynamics assumptions of Proposition 4, we define a binary
Ž .relation on the pure strategies’ set, C reachability in n steps . The
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assumptions of Proposition 4 immediately imply that if a strategy sU is C
w Ž Ž ..x2reachable from strategy s in no more than COMP s card S R PN G

w Ž Ž ..xy card S R PN G q 1 steps, and the last observation in some history
Ž . Uz is s, then the conditional probability given z that s s s for somet t n

n G t is at least e COMP?cardŽ I .. We then prove that in simple games, for
every strategy s, there exists a PN strategy that is C reachable from s in no

Ž .more than COMP steps this is stated in Lemma 4.1 . It follows that a
model satisfying the conditions of Proposition 4 satisfies uniform reachabil-
ity of PN equilibria.

DEFINITION. C reachability. Fix a generic, simple, strategic-form game
Ž . X Ž . ŽG, and let s g S G . A strategy s g S G is C reachable from s in n0 0

. Ž .steps iff there is a finite sequence of strategies in S G , say s , s , . . . ,0 1
s , s s sX such that for every m s 1, 2, . . . , n, for every i g I, one of theny1 n
following two conditions hold:

Ž . i iŽ .1 s g BR s , orm my1

Ž . � 4 i2 m G 2, and ' l g 0, . . . , m y 2 such that s s s , and s gl my1 m
iŽ .BR s .lq1

We say that s , s , . . . , s is a C sequence iff for every m s 1, 2, . . . , n,0 1 n
for every i g I, one of the two conditions stated in the definition of C
reachability holds. Note that C reachability is a transitive relation, and that

Ževery BR sequence is a C sequence. Note also that since we restrict the
.analysis to generic games once a C sequence hits a PN equilibrium it must

Ž .stay there forever; i.e., if s , s , . . . , s is a C sequence, and s g PN G0 1 n m
for some m - n, then s s s ; l G m. We define a C extension of a Cl m
sequence s , s , . . . , s to be a C sequence s , s , . . . , s such that k G m,ˆ ˆ ˆ0 1 m 0 1 k
and s s s for j s 0, 1, . . . , m.ĵ j

We now show that in simple games, pure strategy Nash equilibria are
‘‘always’’ C reachable in no more than COMP steps. Before stating and
proving this result formally we have to introduce some additional terminol-
ogy:

Let z s s , s , . . . , s be a C sequence. We say that strategy sX has0 0 1 k
Ž . Xappeared in the sequence z at date t iff the singleton pattern s has0

Ž . X Yappeared in that sequence at date t . We say that the pair s , s has
Ž . X Yappeared in the sequence z at date t iff the pattern s , s has appeared0

Ž .in that sequence at date t . We say that the sequence z is pair-wise0
disjoint iff no pair has appeared in the sequence in two different dates. We
say that the sequence contains no repetitions if no element in the sequence
has appeared in both dates t and t q 1 for some t.

For any sequence of strategy profiles in G, say s , . . . , s , we use1 n
� 4s , . . . , s to denote the set corresponding to that sequence; i.e., s g˜1 n
� 4 � 4s , . . . , s iff s s s for some i g 1, . . . , n . For any set of pure strategies˜1 n i
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Ž .X, we use SG X to denote the subgame generated by the strategies in X ;
î i i iŽ . � 4i.e., SG X is the subgame defined by S s s ¬ 's g X s.t. s s s for˜ ˜

every player i.

LEMMA 4.1. Fix a generic, simple, strategic-form game G. For e¨ery
Ž . U Ž .s g S R PN G , 's g PN G that is C reachable from s in no more than

w Ž Ž ..x2 w Ž Ž ..xcard S R PN G y card S R PN G q 1 steps.

Ž .Proof. Let s g S R PN G . We prove the lemma by proving the exis-0
tence of a pair-wise disjoint, no repetitions C sequence leading from s to0
a PN. Note that the number of distinct strategy pairs sX, sY, such that sX

Y Ž . X Y w Ž Ž ..x2 w Žand s g S R PN G , and s / s , is card S R PN G y card S R
Ž ..x UPN G . Thus, if s , s , . . . , s s s is a pair-wise disjoint, no repetitions C0 1 n

U w Ž Ž ..x2sequence leading from s to a PN s , then n F card S R PN G y0
w Ž Ž ..xcard S R PN G q 1, which is the bound given in the lemma.

Let X denote the space of pair-wise disjoint, no repetitions C sequences
starting from s . Note that X is nonempty since it includes the one0
element sequence s . Let % denote the set inclusion partial ordering on0
X ; i.e., for every two sequences in X, say z s s , s , . . . , s , and z s1 0 1 n 2

� 4 � 4s , s , . . . , s , we say that z % z iff s , s , . . . , s > s , s , . . . , s .˜ ˜ ˜ ˜0 1 m 1 2 0 1 n 0 1 m
By Hausdorff maximal principle there exists a pair-wise disjoint, no

repetitions C sequence in X that is maximal under the set inclusion partial
ordering. That is, there is a pair-wise disjoint, no repetitions C sequence,
say z s s , s , . . . , s such that no sequence in X is an extension of z .0 0 1 n 0
We now show that s must be a PN in G.n

Assume by way of contradiction that s is not a PN. Note that if s hasn n
not appeared at some date t - n in the sequence z , then s , s , . . . , s ,0 0 1 n

Ž .BR s is a pair-wise disjoint, no repetitions C extension of z , whichn 0
contradicts the maximality of z .0

Thus, if s is not a PN, it must have appeared at some date t - n in then
Ž �sequence z . Let t , t , . . . , t be the subsequence of indexes in 0, 1, 2,0 1 2 m

4.. . . , n y 1 in which the strategy s has previously appeared in then
sequence z . The strategies s , s , . . . , s will accordingly denote0 t q1 t q1 t q11 2 m

the previous successors of s . Consider the subgame spanned by thesen
Ž�strategies and the best response to these strategies; i.e., SG s , s ,t q1 t q11 2

Ž . Ž . Ž .4.. . . , s , BR s , BR s , . . . , BR s . In the sequel we use SGAt q1 t q1 t q1 t q1m 1 2 m

to denote this subgame.
ŽNote that by definition of C reachability most importantly, by the fact

that the conditions in the definition of C reachability hold independently
.across players ,

Ž .) for every strategy s in SGA, the sequence z , s is a C extension˜ ˜0
of z .18

0

18 This ‘‘subgame spanning’’ idea has been demonstrated in Example 2.1.
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Since G is simple, if SGA is closed, it must contain a PN equilibrium, say
U Ž . Us . But then it follows from ) that z , s is a pair-wise disjoint, no0

repetitions C extension of z , which contradicts the maximality of z .0 0
Thus, SGA cannot be closed and,

Ž . X Y Ž X .)) there must be some strategy s g SGA such that s s BR s f
SGA.

Now note that if s s sX then, by definition of C reachability, s s sY.n t q11Y Ž .But then s g SGA which contradicts )) . Thus,
Ž . X1 s / s .n

Note also that if the pair s , sX has appeared in the sequence z , thenn 0
Ž . Y Ž X. Ž .by definition of SGA s s BR s g SGA, which again contradicts )) .
Thus,

Ž . X2 the pair s , s has not appeared in the sequence z .n 0

Ž . Ž . Ž . Ž . XFrom ) , )) , 1 , and 2 it finally follows that the sequence z , s is a0
pair-wise disjoint, no repetitions C extension of z . Since this contradicts0
the maximality of z , it follows that s must be a pure strategy Nash0 n
equilibrium. B

Given the definition of C reachability and the result of Lemma 4.1, it is
now easy to observe that if a learning model satisfies e compatibility with
BR dynamics and e compatibility with sophisticated BR dynamics, then it
satisfies uniform reachability of PN equilibria and the proposition holds.
For the sake of a complete presentation we write down the form argument:

Ž .Let s g S R PN G .0
U Ž . w Ž Ž ..x2 w ŽBy the lemma 's g PN G , 'q F card S R PN G y card S R

Ž ..x UPN G q 1, and a sequence, say, s s x , x , . . . , x s s , such that for0 0 1 q
every m s 1, . . . , q, for every i g I, one of the following conditions hold:

Ž . i iŽ .1 s s BR s , orm my1

Ž . � 4 i2 m G 2, and ' l g 0, . . . , m y 2 such that s s s , and s sl my1 m
iŽ .BR s .lq1

Ž . � 4Thus, for every m s 1, . . . , q, for every i g I, ' y i g x , . . . , xm 0 my1
i iŽ Ž ..such that x s BR y i . Let t G T , and let z g ZZ be a history endingm m t t

Ž Ž . . � Ž .with s i.e., PRO z s s s x . Denote z s PRO z , x , . . . ,ty1 t 0 tqm 1, ty2 t 0
4x for m s 0, 1 . . . q y 1. Since m is e compatible with BR dynamics, andm

e compatible with sophisticated BR dynamics, we get that
yii i im z y i G e and f z x G e ,Ž . Ž . Ž .Ž . Ž .ž /tqm tqm mq1 tqm tqm mq1

Žfor every i g I, for every m s 0, . . . , q y 1. This implies that PP sŽ m , f . tqm
. cardŽ I .s x ¬ z G e for every m s 0, . . . , q y 1, so that PPmq 1 tqm Ž m , f .

Ž U . ŽcardŽ I .?q. ŽcardŽ I .?wcardŽS .x2 .s s s ¬ z G e G e , whenever the conditionaltqqy1 t
probability is well defined.
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Ž . Ž .Thus, for every t G T , for every z such that PRO z f PN G ,t ty1 t
Ž U . ŽcardŽ I .?wcardŽS .x2 .PP s s s for some n G t ¬ z G e , whenever the conditionaln t

Ž .probability is well defined, and m, f satisfies uniform reachability of PN
equilibria. B

In the following proofs, we sometimes use conditional probability state-
Ž . Ž .ments of the form PP E ¬ z without writing down the PP z ) 0Ž m , f . t Ž m , f . t

qualification. The condition is assumed implicitly.

Proof of Proposition 5.2. Fix a generic, simple, strategic-form game G.
Ž .Let m, f be a confused learning model with stationary pattern recogni-

tion on G. We start by proving three straightforward lemmas. Lemma 5.2.1
says that if the conditional probability of convergence to a PN pattern
given the history z is uniformly bounded below across histories by somet
positive e , then the model converges to a PN pattern with probability one.
Lemma 5.2.2 states an obvious implication of Assumption B.2: If the
players recognize a PN pattern at some stage of the repeated game, then
they must converge to that pattern. Similarly, Lemma 5.2.3 shows that if
the players recognize a pattern that is not a PN pattern at some stage of
the repeated game, then the pattern must be contradicted within the next
L stages of the game.

LEMMA 5.2.1. Assume there is some e ) 0 and an integer T such that for
Ž . Že¨ery t G T , for each z g ZZ satisfying PP Z s z ) 0, PP con¨er-t t Ž m , f . t t Ž m , f .

. Ž .gence to a PN pattern ¬ z G e . Then, m, f con¨erges a.s. to a PN pattern.t

Proof. Assume, by way of contradiction, that
Ž . Ž . Ž) 'd ) 0, 'z such that PP Z s z ) 0, and PP conver-t Ž m , f . t t Ž m , f .

.gence to a PN pattern ¬ z F 1 y d .t

Ž .Note that by standard arguments the event L s‘‘convergence to a PN
pattern’’ is in the s field generated by the s ’s, and thus is FF measurable.t

Ž .By the Paul Levy zero]one law Chung, p. 341 the probability of L
conditional on z X approaches the indicator function of L as tX approachest

Ž .infinity. Since, by ) , L has a probability less than 1 given some history z ,t
there exist continuations of z on which the conditional probability of Lt
can be made arbitrarily small. That is, for every d X ) 0, 'z X such thatt

Ž X . X
PP convergence to a PN pattern ¬ z F d .Ž m , f . t

Choose d X - e to get a contradiction to the supposition. B

Ž .LEMMA 5.2.2. Let z be any history such that c z s p for some basict t
Ž .PN pattern p. Then, PP con¨ergence to p ¬ z s 1.Ž m , f . t

Proof. The proof follows directly from successive applications of As-
sumption B.2.
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ŽFirst note that since p is a basic PN pattern, B.2 implies that in a
. Ž Ž Ž .. Ž . .generic game PP s s BR PRO p s PRO p ¬ z s 1.Ž m , f . t lŽ p. lŽ p. t

Ž .Let z be the corresponding extended history z , PRO p , andtq1 t lŽ p.
Ž .observe that the sufficient conditions for recognizing the pattern SH p1

Žhold in z this follows from the fact that the sufficient conditions holdtq1
in z , from the fact that realized play at date t conforms to the pattern’st

.prediction and from the assumption that T s T . This implies thatp SH Ž p.1

Ž Ž Ž Ž ... Ž Ž .. .PP s s BR PRO SH p s PRO SH p ¬ z s 1.Ž m , f . tq1 lŽ p. 1 lŽ p. 1 tq1

Repeating this argument a large enough number of times we may
Žconclude that PP p has appeared k times successively at the datesŽ m , f .

Ž . Ž . Ž . .t q l p , t q 2 l p , . . . , t q kl p ¬ z s 1.t
Since this equality holds for every natural k the result follows. B

Ž .LEMMA 5.2.3. Let z be any history such that c z s p for some basict t
Žpattern p that is not a PN pattern. Then, PP p is contradicted within LŽ m , f .

.periods of the repeated play ¬ z s 1.t

Proof. The proof is a straightforward modification of the Proof of
Lemma 5.2.2:

Ž Ž .If the last element of the pattern p is not a PN i.e., PRO p flŽ p.
Ž ..PN G then the pattern must be contradicted at the next stage of the

Ž .game this follows immediately from Assumption B.2 .
If, however, the last element of p is a PN, then realized play at date t

Ž .must conform with the pattern’s prediction as in Lemma 5.2.2 , but then
Ž .}since T s T }the players must recognize the pattern SH p atp SH Ž p. 11
Ž .the corresponding extended history z . If the last element of SH p istq1 1

not a PN, then that pattern must be contradicted at date t q 1. If the last
Ž .element of SH p is a PN, then realized play at date t q 1 will conform to1

Ž .the pattern’s prediction and the players must recognize the pattern SH p2
at the corresponding extended history z . . . .tq2

Since p is not a PN pattern, it must contain at least one element that is
Ž .not a PN. Since l p F L, the pattern p must be contradicted within L

repetitions of the process described above. B

The Proof of Proposition 5.2 also relies on the fact that under the
assumptions of the model, any history of the repeated game that ends with

Ž .pattern-contradiction, has an extension that converges to a singleton PN
pattern. We present this result separately in the following lemma:

Ž .LEMMA 5.2.4. 'd ) 0 such that whene¨er z satisfies c z s p fort ty1
Ž . Ž . Žsome basic pattern p and PRO z / PRO p i.e., the pattern p hasty1 t lŽ p.

. Ž .been contradicted at date t y 1 , PP con¨ergence to a PN pattern ¬ z G d .Ž m , f . t
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Proof. We prove the lemma by extending z into a history z sucht tqkŽ z .t
that:

Ž . Ž .1 c z s p for some singleton PN pattern p.tqkŽ z .t
Ž .2 The extension of z into z is compatible with the assump-t tqkŽ z .t

Ž . kŽ z t .tions of the model in the sense that PP z ¬ z ) e where e isŽ m , f . tqkŽ z . tt

as defined in Assumptions A.1 and A.2.

Ž .Moreover, we show that k z is uniformly bounded above acrosst
Ž .histories by some finite K. It then follows from 1 above and from Lemma

Ž . Ž .5.2.2 that PP convergence to a PN pattern ¬ z G PP z ¬ zŽ m , f . t Ž m , f . tqkŽ z . tt

G e kŽ z t . G e K, and the lemma holds.
ŽIn extending z we use a collection of finite sequences one sequence fort

. ² :each pure strategy profile in G , L , defined as follows:sg SŽG .s
Ž . ŽIf s g PN G , then L is a sequence of T y 1 repetitions of s wheres s

.T is the bound defined in Assumption B.2 for the singleton pattern s .s
Ž .If s f PN G , then recall that}by Lemma 4.1}there is a pair-wise

disjoint no repetitions C sequence leading from s to a PN strategy, say
U Ž .s s , in no more than COMP steps. In this case we let L be thes

U Ž .extension of that C sequence in which the PN strategy s s is repeated
T U y 1 times exactly at the end of the sequence; e.g., if the C sequences Ž s.

U Ž . U
Uleading from s to s s is s, s , . . . , s , s s s , and T s 5, then L s1 ny1 n s s

s, s , . . . , s , sU , sU , sU , sU.1 ny1
Note that every history that ends with such a sequence L satisfies thes

sufficient conditions for convergence to a singleton PN pattern. Note
Ž .further that the length of the sequences L is uniformly bounded aboves

by K s COMP q max U T U y 1.s g PNŽG . s
Let s denote the last element in z and let z be the extension of zt tqkŽ z . tt

generated by appending the sequence L to z ; i.e., s will be the seconds t t
element in L , s will be the third element in that sequence and sos tq1
on . . . . Let sU denote the PN strategy to which the extended sequence
converges. Note that the process of appending the sequence L to z iss t
‘‘compatible’’ with e compatibility with BR dynamics and e compatibility

Ž .with sophisticated BR dynamics in the sense of Proposition 4 . Thus, to
complete the proof of the lemma it is enough to show that the process of
extending z to z cannot be disrupted by ‘‘unwarranted’’ patternt tqkŽ z .t

Ž .recognition; i.e., it cannot be the case that c z s p for some nonempty˜tq j
U Ž .basic pattern p / s , for some index j F k z .˜ t

Ž . USo assume by way of contradiction that c z s p / s for some basic˜tq j

Ž .pattern p, for some index j F k z . From the definition of the sequences˜ t
² : Ž .L and the condition T ? l p G 3L it follows directly that p cannot˜sg Ss p

Ž U . X Ybe a singleton pattern different from s . Thus, there must be a pair s , s
where sX / sY that appears in the pattern p. From the definition of the˜
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Ž . Ž .sequences L , it then follows that j - l p . Since T ? l p G 3L, we˜ ˜s p̃
conclude that the successive repetitions of p must cover the last 2 L˜
elements of the history z .ty1

Ž .But then both patterns p the one contradicted at date t y 1 and p̃
cover the last 2 L elements of the history z . From the uniqueness proofty1

Ž .in Section 5.2 after the statement of Assumption B.2 it follows that
p s p. Since p has been contradicted at date t y 1, we finally conclude˜

Ž . Uthat c z s p / s is impossible. B˜tq j

With these four lemmas the Proof of Proposition 5.2 is straightforward:
Consider an arbitrary history z ending with the strategy profile s. Lett

Žz denote the extension of z ending with the sequence L as definedtqkŽ z . t st
.in the Proof of Lemma 5.2.4 .

X K ŽLet e s d ? e where d is as in Lemma 5.2.4, the e is from Assump-
tions A.1 and A.2, and K is the complexity bound defined in the proof of

.Lemma 5.2.4 . We now show that

Ž . Ž . X) PP convergence to a PN pattern ¬ z G e .Ž m , f . t

Ž . kŽ z t . Ž . Ž .If PP z ¬ z ) e , then ) holds since k z F K. If not, itŽ m , f . tqkŽ z . t tt

must be the case that the process of concatenating the sequence L to zs t
� Ž . 4was interrupted by pattern recognition; i.e., ' j g 0, 1, . . . , k z y 1 andt

Ž .a pattern p such that c z s p / u .tq j
Letting j denote the first date of such an interruption, we have

Ž . Ž . K)) PP z ¬ z G e .Ž m , f . tqj t

Ž .If p is a PN pattern, then )) and Lemma 5.2.2 together imply that
Ž . K X Ž .PP convergence to a PN pattern ¬ z G e ) e and ) holds.Ž m , f . t

If p is not a PN pattern, then Lemma 5.2.3 implies that p must be
contradicted within L periods. Applying Lemma 5.2.4 to the corresponding

Ž .extended history we get that PP convergence to a PN pattern ¬ z ) d ?Ž m , f . t
K Ž .e , which completes the proof of ) . The proposition then follows

immediately from Lemma 5.2.1. B

Proof of Proposition 5.3. Fix a generic, simple, strategic-form game G.
Ž .Let m, f be a confused learning model with dynamic pattern recognition

on G. The proof of the proposition is a straightforward generalization of
the Proof of Proposition 5.2.19 First we have to generalize Lemmas 5.2.2,
5.2.3, and 5.2.4. We call the modified lemmas 5.3.2, 5.3.3, and 5.3.4
correspondingly.

19 We have presented the proof of the stationary degenerated case first in order to simplify
the exposition.
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LEMMA 5.3.2. 'j ) 0 such that whene¨er z is a history such thatt
Ž . Ž .c z s p for some basic PN pattern p, PP con¨ergence to p ¬ z G j .t Ž m , f . t

Proof. The proof follows directly from successive applications of As-
sumptions B.4 and B.6, and from Lemma 5.2.2.

First note that since p is a basic PN pattern, Assumption B.4 implies
Ž . Ž Ž Ž .. Ž . .that in a generic game PP s s BR PRO p s PRO p ¬ z GŽ m , f . t lŽ p. lŽ p. t

d cardŽ I ..
Ž .Let z be the corresponding extended history z , PRO p , andtq1 t lŽ p.

Ž . Ž .observe that by Assumption B.6, c z s SH p . Assumption B.4 thentq1 1
implies that

PP s s BR PRO SH p s PRO SH p ¬ zŽ . Ž .Ž . Ž .Ž .ž /Ž m , f . tq1 lŽ p. 1 lŽ p. 1 tq1

G d cardŽ I . .

Repeating these argument a large enough number of times we may
Žconclude that PP p has appeared T times successively at the datesŽ m , f . p

Ž . Ž . Ž . . ŽTp? lŽ p.q1.?cardŽ I .t q l p , t q 2 l p , . . . , t q T ? l p ¬ z G d .p t
Let z be the corresponding extension of z that ends with T successivet̃ t p

repetitions of the pattern p. Note that the sufficient conditions for
convergence to p hold in z . By Lemma 5.2.2, the probability of conver-t̃
gence to p given z is one. Thus, the probability of convergence to a PNt̃
pattern given z is at least d ŽTp? lŽ p.q1.?cardŽ I .. Since, by Assumption B.1,t

Ž . ŽDq1.?cardŽ I .T ? l p is bounded above by some integer D, we may set j s dp
to complete the proof. B

LEMMA 5.3.3. 'r ) 0 such that whene¨er z is a history such thatt
Ž . Žc z s p for some basic pattern p that is not a PN pattern, PP p ist Ž m , f .

.contradicted within L periods of the repeated play ¬ z G r.t

Proof. The proof is a straightforward modification of the Proof of
Lemma 5.2.3:

Ž Ž . Ž ..If the last element of p is not a PN i.e., PRO p f PN G thenlŽ p.
Assumption B.4 implies that with probability at least d cardŽ I ., the pattern
will be contradicted at the next stage of the game.

If, however, the last element of p is a PN, then the assumption implies
that with probability at least d cardŽ I ., realized play at date t will conform

Ž .with the pattern’s prediction as in Lemma 5.3.2 , but then Assumption B.6
and B.4 together imply that with probability at least d cardŽ I ., the players

Ž .will recognize the pattern SH p at the corresponding extended history1
Ž .z . If the last element of SH p is not a PN, the pattern will betq1 1

Ž .contradicted at that date. If the last element of SH p is a PN, then1
realized play at date t q 1 will conform to the pattern’s prediction and, by
one more application of Assumptions B.6 and B.4, there exists a positive
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cardŽ I . Ž .probability d that the players will recognize the pattern SH p2
at the corresponding extended history z . . . . Since p must have attq2
least one element that is not a PN, the probability that it will be contra-
dicted within L repetitions of the process described above is at least
d L?cardŽ I .. B

The statement of Lemma 5.3.4 is identical to that made in Lemma 5.2.4
and we will not repeat it. The proof however is different since now the
conditions under which the model can get into the pattern recognition
mode are weaker than before. However, the additional caution assumption
B.5 implies that the basic construction used to prove Lemma 5.2.4, can be
applied in the generalized model as well.

Proof of Lemma 5.3.4. Let z be the extension of z generated bytqkŽ z . tt

appending the sequence L to z as defined in the Proof of Lemma 5.2.4.s t
As in the proof of that lemma, it is enough to show that the process of
extending z to z cannot be disrupted by ‘‘unwarranted’’ patternt tqkŽ z .t

Ž .recognition; i.e., it cannot be the case that c z s p for some nonempty˜tq j
U Ž .basic pattern p / s , for some index j F k z .˜ t

Ž . USo assume by way of contradiction that c z s p / s for some basic˜tq j
Ž . Ž .pattern p, for some index j F k z . Assumption B.5 implies that j G l p˜ ˜t

² :and this together with the definition of the sequences L implies thatsg Ss
there is a pair sX, sY that appears in the pattern p and appears at least˜

² :twice in the sequence L . From the definition of the sequences L itsg Ss s
follows that p s sU , a contradiction. B˜

Proposition 5.3 follows immediately from the three lemmas proved
above and from Lemma 4.2.1. The basic argument is identical to the one
used to prove Proposition 5.2 from Lemmas 5.2.1]5.2.4. We will not re-
peat it.

Proof of Proposition 6. First note that in order to prove the proposi-
tion it is enough to prove that there is some history z such thatt

Ž .UPP F F p has appeared n times successively ¬ z ) 0.˜Ž m , f . pg CC Žs . ng NN t
ŽThe proof of this assertion follows directly from the fact that by

. Ustandard arguments the event ‘‘F F p has appeared n times˜pg CC Žs . ng NN

successively’’ is FF measurable, and from Paul-Levy’s zero or one law
Ž .Chung, 1974 as used in the Proof of Lemma 5.1.

Let s U be a mixed strategy profile that is locally stable with respect to
Ž .m, f .

Ž U Ž ..ULet d s 1r2 ? min s s .sg suppŽs .
Ž . UChoose arbitrarily e ) 0, and recall that local stability of s implies

Ž Ž . U .X X Xthat there is some history z such that PP lim f z s s ¬ z )t Ž m , f . t ª` t t t
1 y e .
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z t Ž . Ž .Using PP ? to denote the conditional probability PP ?¬ z weŽ m , f . Ž m , f . t
z t Ž < Ž .Ž . U Ž . < .X Y X Y YUget that 1 y e - PP D F F f z s y s s F dŽ m , f . t G t t G t sg suppŽs . t t

z t Ž < Ž .Ž . U Ž . < .X Y X Y YUF Ý PP F F f z s y s s F d .t G t Ž m , f . t G t sg suppŽs . t t

˜Thus, ' t G t, and there is a continuation of z , say z , satisfying˜t t
z˜ UtŽ . Ž . Ž < Ž .Ž . Ž . <Y Y YUPP z ) 0 such that ) PP F F f z s y s s˜ ˜Ž m , f . t Ž m , f . t G t sg suppŽs . t t

.F d ) 0.
z t̃ Ž UTo complete the proof we show that PP F F p has˜Ž m , f . pg CC Žs . ng N

.appeared n times successively ) 0.
� < Ž .Ž . U Ž . < 4Y Y YULet L s z g ZZ ¬ F F f z s y s s F d .˜` t G t sg suppŽs . t t

Ž .Note that by standard arguments L is a measurable event, and that by
z t̃Ž . Ž .inequality ) , PP L ) 0.Ž m , f .

˜ UŽ .Let p be a strategic pattern in CC s , say p s s , s , . . . , s .˜ ˜ ˜1 2 m
L ŽWe now prove that for any natural number n, PP p has appeared nŽ m , f .

. 20times successively s 1.
Fix a natural number n, and for every k s 1, 2, . . . let E be the eventk

Ž .˜‘‘p has appeared n times successively starting at date t q nm k y 1 ’’; i.e.,
E s Fny1 Fmy 1 s s s .˜˜k ls0 js0 tqnmŽky1.qmlqj jq1

L Ž . wŽ U Ž . .Note that by definition of L and d , PP E G s s y d ?˜Ž m , f . k 1

Ž U Ž . . Ž U Ž . .xn nms s y d ? ??? ? s s y d G d ) 0 for every k s 1, 2, . . . .˜ ˜2 m
L Ž C . Ž C˜We now claim that for any t G t, PP F E s 0 where EŽ m , f . k G t k k

.denotes the complementary event to E ; i.e., by definition of L and byk
Ž . L Ž tq j C . tq j Žinequality ) it follows that for every j G t, PP F E F Ł 1 yŽ m , f . kst k kst

. n?ms , where s s d .˜ ˜
x L tqj C yj?s̃Ž .Using the inequality 1 y x F e we get that PP F E F e .Ž m , f . kst k

Since s ) 0, we finally have˜

PPL F EC s lim PPL Ftq j EC s 0.Ž . Ž .Ž m , f . k G t k jª` Ž m , f . kst k

L Ž C . L Ž .Thus, PP D F E s 0, and PP F D E s 1; i.e.,˜ ˜Ž m , f . t G t k G t k Ž m , f . t G t k G t k
L Ž . L ŽPP E i.o. s 1. In particular, PP p has appeared n times succes-Ž m , f . k Ž m , f .

. L Ž .sively G PP E for some k s 1.Ž m , f . k

Since this argument holds for every natural n, and since there are
L Ž Ucountably many strategic patterns, PP F F p has ap-˜Ž m , f . pg CC Žs . ng N

.peared n times successively s 1.
z˜ z˜t tŽ . Ž USince PP L ) 0, it follows that PP F F p has ap-˜Ž m , f . Ž m , f . pg CC Žs . ng N

˜ U. Ž . Ž .peared n times successively ) 0, so that m, f is CC s incompatible
with pattern recognition. B

20 The proof of this assertion is a generalization of the proof of Borel]Cantelli Lemma 2.
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Proof of Proposition 7. The proof is a direct extension of the Proof of
Proposition 5.3. We present the ‘‘new elements’’ in the proof in three

Ž .simple lemmas 7.1]7.3 . First, we claim that the conditions stated in the
)-adaptiveness assumption are sufficient for convergence to a MCS; i.e.,
whenever a minimal closed subgame E has been played at for T periodsE
successively, the players must keep playing strategies in E forever.

Ž .LEMMA 7.1. Sufficient Conditions for Convergence to a MCS . Let E
be a MCS in a strategic-form game G. Let z be any history such thatt

Ž . X ŽXPRO z g E ; t s t y T , t y T q 1, . . . , t y 1. Then, PP con¨er-t t E E Ž m , f .
.gence to E ¬ z s 1.t

The proof follows immediately from successive applications of Assump-
Ž .tion C just as the proof of Lemma 5.2.2 follows from Assumption B.2 .

The next lemma says that whenever a C sequence reaches a BR-closed
subgame of G it can never ‘‘leave’’ this subgame.

LEMMA 7.2. Let G be a strategic-form game. Let s , s , . . . , s be a C1 2 n
U U Ž U .sequence in G. If G is a MCS of G, and s g S G for some m - n,m

U Ž U .then s g S G ; l s m q 1, . . . , n.l

The proof is straightforward: Assume w.l.g. that m is the first date at
U Ž U .which some strategy in S G has been played. It then follows from

the definition of C reachability and from the assumption that GU is a
Ž . U Ž U .MCS, that s s BR s g S G . Proceeding by induction assumemq 1 m

U Ž U . X
Xthat s g S G for every k s 0, 1, . . . , k, for some k - n y m. Itmq k

again follows immediately from the definition of C reachability that for
Ž . � 4each player i there is some strategy s i in s , s , . . . , s , such thatl m mq1 k

i iŽ Ž ..s g BR s i . From the induction hypothesis and the assumption thatkq1 l
U i U ŽG is a MCS it then follows that s is in the subgame G in the sensekq1

i i .that there exists a strategy, say s, in that subgame such that s s s , so˜ ˜ kq1
U Ž U .that s g S G . Bkq1

With Lemmas 7.2 in stock we are ready to prove the following ‘‘reacha-
bility lemma’’:

LEMMA 7.3. Let G be a generic, finite, strategic-form game. For e¨ery
Ž .s g S G there is a pair-wise disjoint, no repetitions C sequence, say s, s ,1

Ž .. . . , s , such that one of the following two conditions hold: 1 s is containedn n
Ž .in some MCS with no PN, or 2 s is a PN.n

The proof is an immediate extension of the Proof of Lemma 4.1. In
Lemma 4.1 we have assumed that the game G is simple. To prove Lemma
7.3, remove that assumption and consider the maximal C sequence
s , s , . . . , s as defined in the Proof of Lemma 4.1. Assume that s is not a0 1 n n



LEARNING AND PATTERN RECOGNITION 327

PN and repeat the arguments given in the Proof of Lemma 4.1 with the
following small change. When considering the case where SGA is closed
distinguish between two subcases:

Ž . U ŽA SGA contains a PN equilibrium, say s , in which case argue as in
. Uthe original proof that z , s is a pair-wise disjoint, no repetitions, C0

extension of z , to get a contradiction to the maximality of z .0 0

Ž .B SGA does not contain a PN equilibrium, in which case it follows
from Lemma 7.2 that s is an element of a MCS with no PN of G.n

Thus, if s is not a PN equilibrium of G, then it must be an element of an
‘‘MCS with no PN,’’ as stated in Lemma 7.3.

We are now ready to prove Proposition 7. The basic idea of the proof is
the same as that underlying the Proof of Proposition 5.3: We show that
every history z can be extended to a history z such that thet tqkŽ z .t
extended history either satisfies the sufficient conditions for convergence
to a PN pattern or the sufficient conditions for convergence to a MCS with

Ž .no PN. We further show that k z is uniformly bounded across z .t t
² :In extending z we used a collection of sequences, L , definedsg SŽG .t s

as follows:

Ž .}For every s g S G for which there is a pair-wise disjoint, no
U Ž .repetitions, C sequence leading from s to a PN, say s s , let L be thes

U Ž . Uextension of that C sequence where s s is repeated T y 1 timess Ž s.
Žexactly at the end of that sequence just as defined in the Proof of

.Proposition 5.2 .
Ž .}For each other strategy s g S G , by Lemma 7.3, there exists a

pair-wise disjoint, no repetitions C sequence, say s, s , . . . , s , leading from1 n
s to a MCS with no PN. Let L be an extension of that sequence, says

ˆŽ . Ž .s, s , . . . , s , s , . . . , s , where 1 T s max T , and 2 s sˆ1 n nq1 nqT E ; SŽG . E mq1
ˆŽ . ŽBR s for every m s n, . . . , n q T y 1. That is, we copy the BR cyclem

ˆ .starting from s successively until we get a history of length n q T.n

A key element in the Proof of the Proposition is the following version of
Lemma 5.3.4:21

Ž .LEMMA 7.4. 'd ) 0 such that whene¨er z satisfies c z s p for somet ty1
Ž . Ž . Žbasic pattern p and PRO z / PRO p i.e., the pattern p has beenty1 t lŽ p.

. Žcontradicted at date t y 1 , PP Con¨ergence to a PN pattern or con¨er-Ž m , f .
.gence to MCS with no PN ¬ z G d .t

21 Since the arguments from this point on are very similar to those used in previous proofs,
Ž .we outline the basic ideas briefly. The details can be found in Sonsino 1995 .
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The proof is very similar to the Proof of Lemma 5.3.4: Let z betqkŽ z .t
the extension of z generated by appending the sequence L to z . As int s t

Ž .the Proof of Lemma 5.3.4, it is enough to show that ) the process of
extending z to z cannot be disrupted by ‘‘unwarranted’’ patternt tqkŽ z .t
recognition.

Ž .We distinguish between two cases: 1 If L converges to a PN, then thes
Ž . Ž .proof of ) is just as in Lemma 5.3.4. 2 If however L converges to as

MCS with no PN, say GU , then}since L may end with successives
repetitions of some BR cycle in GU}the process to appending L to zs t

Ž .might be disrupted by )) recognizing a pattern that consists only of
strategies in GU. But since GU is BR closed, such pattern recognition will
not kick the players out of the subgame. From Lemma 7.2 and the fact that

U ˆG is BR closed, it follows that we may keep extending z until its last Tt
U Ž .elements are in G . This shows that pattern recognition of type )) does

not constitute a problem, and we only have to worry about the possibility
that the process of extending z to z was disrupted by recognizingt tqkŽ z .t
some pattern that includes at least one strategy s that is not in the

U Žsubgame G . This caution assumption B.5, however, implies as in the
.Proof of Lemma 5.3.4 that this cannot happen and Lemma 7.4 holds.

Proposition 7 follows directly from the last lemma and from the Paul-
Levy 0]1 law as used in the Proof of Lemma 5.2.1. B

APPENDIX 2: A MODEL WITH TWO MODES OF
PATTERN RECOGNITION

In this appendix we briefly outline a variation on the model of Section 5
Ž .in which the agents can also recognize with probability one strategic

patterns that appear successively with interruptions.
The modified model will distinguish between two different modes of

pattern recognition, a strong pattern recognition mode and a weak pattern
recognition mode. Formally, we redefine the pattern recognition frame c

` Ž � 4. Ž .so that c : D ZZ ª D SP = W, S j u . As before, c z s uts1 t ng NN n t
denotes the case where the agents are in the confused learning mode given

Ž .z ; c z s p, S denotes the case where the agents are in the strongt t
Ž .pattern recognition mode with respect to p given the history z ; c z st t

p, W denotes the case where the agents are in the weak pattern recogni-
tion mode with respect to p given that history.

The boundedness assumption B.1 and the coordination assumption B.4
will now apply to both types of pattern recognition; i.e., we will restate

Ž .these assumption so that they apply to any history satisfying c z s p,?t
for some basic pattern p. The compatibility with pattern recognition
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assumption B.2 can be restricted to the strong pattern recognition mode
and we prefer not to extend it to cases of weak pattern recognition since
the notion of n successive repetitions with interruptions is general enough
to accommodate many different histories including some in which the
interruptions between the successive repetitions of the pattern are very
short, and others in which these interruptions are quite long and of a
confusing nature; we thus do not wish to impose a uniform bound on the
number of successive repetitions with interruptions after which the agents
recognize patterns with probability 1.

The necessary conditions for strong pattern recognition will be the same
as those stated in Assumption B.3 of Section 5; i.e., we keep Assumption

Ž .B.3 but restrict it to the cases where c z s p, S for some basic patternt
p. The necessary conditions for weak pattern recognition will be defined
accordingly but they will refer to the weaker notion of successive appear-
ances with interruptions.

Assumption B.3X. For every history z , for every basic pattern p witht
Ž . Ž .l p G 3, if c z s p, W, then the following three conditions hold:t

Ž .a p has appeared successively at least once in z ,t

Ž . Ž . Ž .b PRO z s PRO p , andty lŽ p.q1, ty1 t 1, lŽ p.y1

Ž . Ž .c the necessary conditions for c z s p, S don’t hold.t

The necessary conditions for being in the weak pattern recognition
mode with respect to a basic pattern of length 2 are defined accordingly
with the small change that p must have appeared successively at least
twice in z .t

The caution in pattern recognition assumption B.5 of the original model
will now apply to both modes of pattern recognition, but we will add
another caution assumption that deals with the case where patterns that
appear successively ‘‘fade away’’. For example, consider the history z st
. . . A, B, C, D, F, A, B, C, F, A, B, C, B, F, A, B where C is a pure strat-
egy Nash equilibrium. Assuming that the agents weakly recognize the
pattern A, B, C given the history z so that realized play at date t is C, itt

Ž . Xseems reasonable to assume that c z , C s u . Assumption B.5 says thatt
a necessary condition for recognizing a new pattern pX at any future date

Ž X.t q k is that k ) l p .

XAssumption B.5 . 'T such that for every basic pattern p, for every
Ž .t G T , for every history z for which c z s p, W, for every extension oft t

Ž . Ž Ž .. Ž . Ž . Xz , say z , satisfying a c PRO z s u , and b c z s p ,? fort tqk 1, t tqk tqk
X Ž X.some basic pattern p , it must be the case that k ) l p .
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The continuation assumption B.6 will now be restricted to the strong
pattern recognition mode since, for example, if history is z s . . . A, B,t

ŽD, A, B, C, A so that the pattern A, B appears successively with interrup-
.tions where B is a pure strategy Nash equilibrium, and the players

recognize the pattern A, B at date t, so that realized play at date t is B,
there is still no reason for the agents to recognize the pattern B, A in
period t q 1. Yet, to have some control over the dynamics we impose the
following additional assumption:

Assumption B.6X. For every basic pattern p, for every history z fort
Ž . Ž Ž ..which c z s p, W, if c z , PRO p s p,? for some basic pattern p,˜ ˜t t lŽ p.

Žthen it is either the case that p is a one period extension of p i.e.,˜
.p s p, s for some strategy s , or that p is a one period forward shift of p.˜ ˜

Note that, in particular, Assumption B.6X enables the players to weakly
recognize long patterns before the necessary conditions for strong pattern
recognition have been realized; e.g., the agents may recognize the pattern
A, B, C, . . . , X, Y, Z given the history A, B, C, D, . . . , Z, A, B, C. Under
the original formulation the players could have recognized this pattern
with probability 1 only given a history that ends with A, B, C, D, . . . , Z,
A, B, . . . , Y.

We claim that a myopic learning model with a two modes-pattern
recognition frame that satisfies the modified assumptions A.1, A.2, B.1]B.6,
B.3X, B.5X, and B.6X, converges with probability one to a PN pattern when
the stage game is simple. The proof is a straightforward extension of the
original proof, and thus we omit the details.
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